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SEMICOMPACT COZERO-FIELDS AND UNIFORM SPACES 

ANTHONY W. HAGER1 

ABSTRACT. A cozero-field .r/ is semicompact if each countable s/-
cover has a finite subcover. This paper examines those uniform 
spaces X for which coz X is semicompact, and shows that each of 
the following conditions (among others) characterizes such spaces: 
Each completely additive coz X-cover has a finite subcover; X is the 
unique member of its cozero class; X is the unique member of its 
proximity class and each finite coz X-cover is uniform; X is pre-
compact, and either cozero-fine or metric-fine; X is G8-dense in its 
Samuel compactification; Each metric uniformly continuous image 
of X is compact. 

1. Alexandroff Spaces. We use the terminology of §1 of [8d]. 
Briefly: A pair (X, s/}, where X is a set and s/ is a separated cozero-
field of subsets, is called an Alexandroff space or A-space, the members 
of s/ are called cozero-sets (and the complements zero-sets), and an A-
morphism between A-spaces is a function inversely preserving cozero-
sets. When possible, we just write X for (X, s/). If X and Y are A-
spaces, A(X, Y) stands for the set of A-morphisms from X to Y. For 
A(X, R) we just write A(X) (R being the reals, whose topology is a co­
zero-field); A*(X) denotes the subset of bounded functions. For any A-
space (X, s/), we have from [1] that s/ = (coz f \ f EL A(X)}, where 
coz f = [x \ f(x) ¥= 0 ) . A topology T and a cozero-field s/ are coz-
compatible if s/ is a base for r; a compact Hausdorff space has a 
unique coz-compatible cozero-field [1]. (See also §9 of [8a].) There is 
an analogue of the Stone-Cech compactification [1], which we denote 
ßAX: an essentially unique compact A-space containing X as a dense A-
subspace, such that if K is compact, then A(X, K) = A(ßAX, K) | X (or 
just A*(X) = A(ßAX) | X). A uniformity /x on X is coz-compatible with 
s/ if s/ = (coz f \ f E U(i*X)}9 where U(fxX) denotes the real-valued 
uniformly continuous functions. (Similarly, (7*(JUX) denotes the subset of 
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bounded functions.) Note that a topological (resp., uniform) space X can 
be equipped with the cozero-field (coz / | / G C(X)} (resp., (coz / | / 
G U(X)}.) So it makes sense to speak of A-maps from an A-space into 
a topological (resp., uniform) space. 

The objects we are calling Alexandroff spaces were introduced in [1] 
(called there completely normal Hausdorff spaces) and re-invented in 
[7] (defined dual to the above, called Hausdorff zero-set spaces). Other 
recent studies include [3], [6], and [8a, d]. 

2. Semicompact Alexandroff spaces. (X, s/) will be called semi-
compact if each countable s/-cover has a finite subcover. These spaces 
have been studied in [1] (called "countably compact") and [7] (called 
"pseudocompact"). We use the term "semicompact" (consistent with 
[12], at least) to avoid confusion. 

Recall (say, from [5]) that a Tychonoff space X is called pseudocom­
pact if C(X) = C*(X). Equivalently, if each countable cozero-cover (i.e., 
by sets coz / , / G C(X)) has a finite subcover, that is , if the associated 
A-space is semicompact. 

Let S be an A-subspace of the A-space X: S is called G8-dense if 
each non-empty zero-set of X meets S (equivalently, if each non-empty 
G5-set of X meets S, referring to the topology with the cozero-sets as 
base). 

THEOREM 2.1. The following conditions on the A-space X are equiva­
lent. 

(a) X is semicompact. 
(b) A(X) = A*(X). 
(c) X is G8-dense (ct) in ßAX; or (c2) in every A-compactification; or 

(c3) in some A-compactification. 
(d) X has a unique A-compactification. 
(e) X admits a unique coz-compatible uniformity. 
(fA) Each A-image of X in an A-space is semicompact. 
(fj) Each A-image of X in a uniform space is precompact. 
(fT) Each A-image of X in a topological space is pseudocompact. 
(fM) Each A-image of X in a metric space is compact. 
(g) Each A-morphism of X into a metric space extends over ßAX 

(with values in the metric space). 

Much of this is known: the equivalence of (a), (b), (ct), (c2), and the 
first part of (f) is in both [1] and [7]. These are probably familiar as 
analogues of pseudocompactness. There are more analogues as well. For 
example, each of the following is equivalent to (a): (g) vAX = ßAX (vA 

being Gordon's A-space analogue of the Hewitt realcompactification); 
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(h) Each / G A*(X) assumes its sup and inf; (f) Each infinite family of 
cozero-sets has a cluster point. 

We need just 2.1 for application to uniform spaces so we give the 
proof. 

PROOF OF 2.1. (a) => (b). If / G A(X), then {{x \ \f(x)\ < r}} is a 
countable cozero-cover (2.1 of [8d]); with a finite subcover, / is 
bounded. 

(b) => ( c j . If 0 ^ Z(f) C ^ X - X, then for x G X, g(x) = l/f(x) 
defines unbounded g G A(X) (1.2 of [8d]). 

(c1) => (a). If (C n ) is a countable cozero-cover with no finite sub-
cover: for each n, choose a cozero-set Cn ' of ßAX with Cn ' PI X = Cn. 
Then Z = ^ X - U n C n ' works. 

(cx) => (c2) => (c3). Obvious. 
Now, 4.3 B of [8d] implies immediately: If S is G8-dense in Y, then 

A(S) = A(Y) | S. 
Thus (c3) => (Cj), because the A-compactification in (c3) has to be 

j8^X; and (c2) => (d), because every A-compactification has to be ßAX. 
(a) => (e). Assume (a), and let /A be coz-compatible. Since any unifor­

mity has a base of some of its own cozero-covers, each ju-uniform cover 
has a finite subcover. So \x is precompact, and fxX is a uniform subspace 
of its Samuel compactification s/xX. But SJIX is an A-compactification of 
X (because (7*(/xX) = U(s[iX) | X). Since (d) holds too, ju, is determined 
uniquely. 

(e) => (a). §2 of [8a] shows that, if t c / is a cozero-field, then the fam­
ily of countable s/-covers is the base for a uniformity, say /xa(^/), which 
is coz-compatible with s/. The obvious variation on that construction 
shows the family of finite s/-covers is the base for another coz-com­
patible uniformity, /x0(c/). (These are provable as well by combinatorial 
means. For ju0(r/) one uses the "normality" of .r/ and for /A1(C/), the 
"perfect normality".) Now, obviously, (a) <=> [/x0 = jtij, which is im­
plied by (e). 

Certainly (a) => (fA). (fA) => fv as in (a) => (e). And (f^) => (a) by 
considering the identity X —» j^X (as in (e) => (a)). Next: (fA) => (fT), 
clearly. / r => (fM) because a pseudocompact metric space is compact 
[5], 

(IM) => (g)- Obvious. 
(g) => (Cl). If / G A*(ßAX) and 0 * Z(f) C ßAX - X, then with M 

= /(X), the restriction / | X violates (g). 
3. Semicompact uniform spaces. A separated uniform space X (we 

can usually suppress indicating the uniformity) will be called semi-
compact if the associated A-space is semicompact, that is, if each 
countable cover by sets in coz X = (coz / | / G U(X)} has a finite 
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shall give some characterizations. 
Since each uniform space "is" an A-space the notation A(X, Y) (for 

X, Y <E Unif) is clear. Evidently, U(X, Y) C A(X, Y) always. But hardly 
conversely: for X, Y metric, A(X, Y) = C(X, Y), but only rarely is C7(X, 
Y) = C(X, Y). In case X G Unif has the property that U(X, Y) = A(X, 
Y) for each Y E Unif, (or equivalently, for each metric Y), then X is 
called coz-fine. It is a small theorem that X is coz-fine iff X is finest in 
its cozero-class (which by definition consists of all uniform spaces X' 
with coz X' = coz X); see [8c]. 

Given X G Unif, let X be the uniform space weakly generated by all 
functions in all A(X, Y), Y Œ Unif. That is, X carries the coarsest uni­
formity making all these functions uniformly continuous; this uniformity 
is at least as fine as X's (since U(X, Y) C A(X, Y) always) and it is eas­
ily seen that X = X iff X is coz-fine. 

There is a somewhat complicated cover-theoretic description of X 
which we shall need: Given X G Unif, a cover 7// (not necessarily uni­
form) is called a completely additive (cd) coz X-cover if (a) °fr' C % im­
plies U J// G coz X, and (b) 7// initiates a normal sequence of covers 
with property (a). Then (§4 of [8c]), X has subbasis of ca coz X-covers. 

We write X G coz! if X is the only member of its coz-class. 
/P denotes the class of precompact uniform spaces, p is the pre-

compact reflection (see [10a]) and the ^-(proximity, or precompactness) 
class of X consists of all X' with pX = pX' (equivalently, U*(X) = 
U*(X')). We write X G SP\ if X is the only member of its p-class. Isbell 
[10b] and Polyakov [13] have s t u d i e d ^ ! . One sees easily that X G SP\ 
iff X G SP H (proximally-fine). (See [2] on proximally-fine spaces.) 

For X G Unif, we write X G coz-^5 if each A-image of X in a uni­
form space is in SP (i.e., precompact). Cf. 2.1(f). 

Finally, X is called metric-fine [8a] if U(X, M) = U(X, aM) for any 
metric M. (Here a is the fine coreflector in Unif [10a]: Given Y G 
Unif, OLY carries the finest uniformity compatible with the underlying 
topology of Y.) We need only this (2.3 of [8a]): if X has a base of 
countable covers, then X is metric-fine iff each countable coz X-cover 
is uniform, i.e., \i2X — X, where [ix — /A1(COZ X) is the uniformity with 
base of countable coz X-covers mentioned in the proof of 2.1(e) ==> (a). 

THEOREM 3.1. 

(a) X is semicompact. 
(b) The image of X in its Samuel compactification sX is G8-dense. 
(c) X is a G8-dense uniform subspace (cx) of its Samuel com­

pactification; or equivalently, (c2) of some compact space. 
(d) X G coz! 
(e) X G coz-,^. 
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(f) X G SP H (coz-fine). 
(g) Each ca coz X-cover has a finite subcover. 
(h) X G SP\ and each finite coz X-cover is uniform. 
(i) X G SP\ H (metric-fine). 
(/) X G ^ n (metric-fine). 
(k) Each metric uniformly continuous image of X is compact. 
(I) Each uniformly continuous function from X into a metric space 

extends over sX (with values in the metric space). 

PROOF, (a) through (e) are equivalent: 2.1 shows the equivalence of 
(a), (b), (d), (e). Such an X is precompact, hence X C sX, hence (b) => 
(Cj). Clearly, (cx) => (c2). And (c2) => (b) because the compact space in 
(c2) must be sX. 

(d) => (h). The p-class of any space is a subset of the coz-class; so 
coz! C SP\. The uniformity jn0 defined by finite coz X-covers is in the 
coz-class of X (see 2.1(e) => (a)). So (d) => [[IQX = X]. 

(h) => (i). Assume (h). Since each finite coz X-cover is uniform, and X 
G SP, JLIQX = X. Evidently, p^X = JLIQX for any Y. Thus, /XjX is in the 
p-class of X. Since X G SP\, iitX — X. Since X has a base of countable 
covers (even finite ones, since X G SP), X is metric-fine. 

(i) => (j) is clear, since SP\ C SP. 
(j) => (k). Let / G U(X, M) be onto, with M metric. If X is metric-

fine, then / G U(X, aM). If X G SP, then aM G SP. Since the base for 
an aM is all open covers, each open cover has a finite subcover. 

(Je) => (T) is obvious. 
(I) => (c) is like 2.1 (g) =» (cx). _ 
(f) <£> (g) by the description of X given above. 
(/) => (e). Each uniform image of X is precompact (since X G SP), 

and each A-image is a uniform image (since X G coz-fine). 
(c) => (j). Assume (c), with X C K. Then X G ^ and K = sK, the 

Samuel compactification. A uniform subspace is an A-subspace (by 
Katëtov's extension theorem for bounded functions [11]). Thus, as in the 
proof of 2.1 (c3) =* (ct), it follows that sX = ßAX. Now let / G A(X, 
M), M metric and / onto. There is an extension f G A(ßAX, ßAM). 
Since (c) holds, (a) holds also, and by 2.1(f), M = /^M. Since ßAX — 
sX, then, / ' G A(sX, M) = C7(sX, M) (by compactness of sX). Thus, the 
restriction / = f | X E U(X, M). 

COROLLARY 3.2. The class coz! of semicompact uniform spaces is 
closed under formation of: uniformly continuous images, G8-dense sub-
spaces, and arbitrary products. 

PROOF. In each case, 3.1(c) can be used. 

REMARKS 3.3. We compare coz! with SP\\ 
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Isbell [10b] has shown (1) that the cone T in precompact spaces over 

the countably infinite free precompact space is a test space for spaces 

in . ^ 1 , i.e., X G #\ iff each / G U(X, T) extends over sX; this is to be 

compared with the much simpler condition 3.1(1) for coz!; and (2), that 

# \ is closed under uniformly continuous images and products (the latter 

result using (1)). It can be shown that ^P\ is closed under forming G8-

subspaces, as well. 

Polyakov [13] has shown that SP\ is closed under finite products, and 

Husek [9], that a product is proximally-fine iff each finite subproduct 

is. These combine to give another proof of Isbell's product theorem. 

REMARK. 3.4. In [4], A. Diabes has shown, independently, 3.1 (a) <^> 

(c), and given a number of other equivalences, mostly involving uniform 

measures. 
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