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A(X) AND GB-NOETHERIAN RINGS

L. J. RATLIFF, JR.1

ABSTRACT. Three theorems concerning a Noetherian ring A are
proved: (1) A(X) is a GB-ring (that is, adjacent prime ideals in in-
tegral extension rings of A contract in A to adjacent prime ideals) if
and only if A[X] is a GB-ring; (2) if A is local and altitude
A = n + 2 (n ^ 0), then A(Xlf • • •, XJ is a GB-ring if and only if A
satisfies the second chain condition for prime ideals (s.c.c.); and, (3)
each GB-local domain A is such that A(X) is a GB-ring if and only if
each GB-local domain satisfies the s.c.c.

1. Introduction. All rings in this article are assumed to be commuta-
tive with identity, and the undefined terminology is the same as that in
[8].

GB-rings were considered in their own right for the first time in [11],
and therein a number of properties of such rings were proved. The rea-
son such rings are of interest is that they are closely related to the (cat-
enary) chain conjectures. Specifically, these conjectures are concerned
with whether or not certain rings satisfy the chain condition for prime
ideals (c.c.) (see (3.6.4) for the definition), and it is known [11, (3.8)]
that a ring A satisfies the c.c. if and only if A is catenary and a GB-
ring. Now, catenary rings have been deeply investigated in a number of
papers, but, except for [11], GB-rings seem not to have been considered
as an object of study in their own right. Even so, the literature does
contain scattered information on GB-rings. For instance, it is easily seen
that M. Nagata's example [6, Example 2, pp. 203-205] is not a GB-ring.
And, probably the most important fact obtained on such rings is I. Kap-
lansky's 1972 paper [3] in which he gave a negative answer to the fol-
lowing question asked by W. Krull in 1937 in [4, p. 755]: is every in-
tegrally closed integral domain a GB-ring? (However, it is still an open
problem if the integral closure of a Noetherian domain is necessarily a
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GB-ring, and this problem is closely related to the chain conjectures.)
Thus, GB-rings are of importance for the chain conjectures (and even

in their own right). In this paper, we concentrate on the relationships
between a GB-Noetherian ring A and the rings A(X1? • • •, XJ. A brief
summary of the contents of this paper will now be given.

The main result in Section 2, (2.7), is (1) above. This result greatly
sharpens [11, (5.3)], and it has the following result as a corollary: for a
local domain (R, M), R(X) is a GB-ring if and only if R[X] is a GB-ring
if and only if R[X]jy- is a GB-ring, for some maximal ideal N in R[X]
such that N D R = M (2.8). This is a quite unexpected result, since for
almost all of the other chain conditions on a local domain, R has the
conditions if and only if R(X) has it, and R[X] and R[X](MtX) do not in-
herit the condition from R. (Concerning this, see the end of Section 4.)

Section 3 contains (2) above, (3.7). This result is a corollary to a
more general theorem from which it follows that if a Noetherian ring
A is such that A(X1, • • •, Xn) is a GB-ring, for some n = altitude
A — 2, then every locality over A is also a GB-ring (3.11).

In Section 4, the main result, (4.2), is (3) above. This result shows
that two of the most important open problems concerning GB-rings are,
in fact, equivalent problems.

Section 5 contains two new characterizations of GB-rings ((5.2) and
(5.3)), and then a characterization is given for when a GB-local domain
R is such that R(X) is a GB-ring.

Four results on a GB-ring A of altitude three are proved in Section
6. Among these is: A(X) is a GB-ring if and only if A satisfies the chain
condition for prime ideals (6.2).

Finally, Section 7 contains three questions on GB-rings which the
author has been unable to answer.

2. A[X] is a GB-ring if and only if A(X) is. The main result in this sec-
tion, (2.6), is a considerable improvement of [11, (5.3)], and yields the
title of this section (for Noetherian rings) as a corollary (2.7). In order
to prove (2.6), a few preliminaries are needed. We begin by fixing two
notational conventions, in order to avoid continual repetitions through-
out this paper.

NOTATION (2.1). A' denotes the integral closure of a ring A in its total
quotient ring, and L* denotes the /-adic completion of a semi-local ring
L, where / is the Jacobson radical of L.

The next result, which is an easy consequence of the Going Down
Theorem [6, (10.13)], is of some interest in itself, and will be used in
the proof of (2.6).
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PROPOSITION (2.2). Let A be an integral domain, X an indeterminate,
and C an integral extension domain of A[X], Let F be a prime ideal in
C, P = F H A[X], and p = P n A. // pA[X] C P, then there exists a
prime ideal Pl in C such that Pl C F and P^ n A[X] = pA[X].

PROOF. Let D = C[A'} (2.1), so D is integral over A'[X]. Let Q' be a
prime ideal in D such that £)' n C = F, let Q = £>' n A'[X], and let
q = Q H A', so 9 H A = p. Then qA'[X] C Q (since pA[X] C P and
qA'[X\ H A[X] = pA[X]). Therefore, by the Going Down Theorem,
there exists a prime ideal @" in D such that £)" C Q' and
<?" H A'[X] = qA'[X], so P! = Q" n C is such that Px C F and
P! 0 A[X] = pA[X].

We now begin to consider GB-rings specifically.

DEFINITION (2.3). A ring A is a GB-ring (going between ring) in case,
for all integral extension rings B of A and for all prime ideals P C Q in
B, if there exists a prime ideal p in A such that P D A C p C p n A ,
then there exists a prime ideal F in B such that P C F C Q. (That is,
adjacent prime ideals in B lie over adjacent prime ideals in A—see
(2.5.3).)

The next two remarks summarize the known facts about GB-rings
which are needed in what follows.

REMARK (2.4). Let A be a GB-ring. Then the following statements
hold:

(2.4.1) [11, (3.11)]. If B is an integral extension ring of A, then B is a
GB-ring.

(2.4.2) [11, (3.9.1)]. If A is a domain and altitude A ^ 2, then A satis-
fies the c.c. (see (3.6.4)).

(2.4.3) [11, (2.2.3)]. If A is a domain and P is a height one prime
ideal in an integral extension domain of A, then height P n A = 1.

REMARK (2.5). The following statements hold for a ring A:
(2.5.1) [11, (3.3)]. The following statements are equivalent: A is a GB-

ring; A/7 is a GB-ring, for all ideals I in A; and, A/z is a GB-ring, for
all minimal prime ideals z in A.

(2.5.2) [11, (3.5)]. The following statements are equivalent: A is a
GB-ring; As is a GB-ring, for all m.c. sets S in A; and, AM is a GB-ring,
for all maximal ideals M in A.

(2.5.3) [11, (2.2.1)]. A is a GB-ring if and only if, for all integral ex-
tension rings B of A and for all prime ideals P C Q in B, if height
Q/P = 1, then height (Q n A)/(P n A) = 1.
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(2.5.4) [11, (4.2)]. If A is a Noetherian domain, then A is a GB-ring if
and only if the condition in (2.5.3) holds for all principal integral exten-
sion domains B = A[c] of A.

(2.5.5) [11, (5.1)]. If A is Noetherian and A(X) is a GB-ring, then A is
a GB-ring.

(2.5.6) [11, (3.10)J. If altitude A < oo, then A satisfies the s.c.c if and
only if A satisfies the f.c.c. and is a GB-ring. (See (3.6) for the defini-
tions.)

We can now prove the main result in this section. (2.6) is a consid-
erable improvement of [11, (5.3)], which showed that if A is a Noethe-
rian ring such that A(X) is a GB-ring, then, for all integral extension
rings B of A, adjacent prime ideals in B[X] lie over adjacent prime
ideals in A[X]. (Recall that A(X) = A[X]S, where S is the set of poly-
nomials whose coefficients generate the unit ideal in A. For some de-
tails on this, see [6, pp. 17-18].)

THEOREM (2.6). Let A C B be rings such that A is Noetherian and B
is integral over A, and let X be an indeterminate. If A(X) is a GB-ring,
then B[X] is a GB-ring.

PROOF. By (2.4.1), it suffices to prove that A[X] is a GB-ring. Also, by
(2.5.1), it suffices to prove that (A/z)[X] is a GB-ring, for all minimal
prime ideals z in A, hence it may be assumed that B = A is a Noethe-
rian domain. Further, by (2.5.2), A[X] is a GB-ring if and only if A[X]^
is a GB-ring, for all maximal ideals N in A[X]. Therefore, since ANnA(X)
is a GB-ring (by (2.5.2)) and A[X]^ is a quotient ring of ANnA[X], it suf-
fices, by (2.5.2), to prove that R[X] is a GB-ring whenever R is a local
domain such that R(X) is a GB-ring. The proof that this holds will be
by induction on a — altitude R, and it may clearly be assumed that
a >0.

Let C be a principal integral extension domain of R[X], and let
F C Q' be prime ideals in C such that height Q'/F = 1. Let
P = F n R[X], Q = Q' 0 R[X], p = P 0 R, and q = Q n R. Then it
suffices to prove that height Q/P = 1 (2.5.4).

For this, if q ¥= M (the maximal ideal in R), then let S = R — q, so
Cs is an integral extension domain of fls[X] = fl[X]s and Q'C8 is prop-
er. Therefore, by induction on a (since RS(X) ^ H(X)Q/WX) is a GB-ring
(2.5.2)), HS[X] is a GB-ring, so height Q/P = 1 (2.5.3), as desired. Thus
it may be assumed that q = M. Also, if Q = MR[X], then R[X]Q = R(X)
is a GB-ring, by hypothesis, so height Q/P = 1 (2.5.3). Thus it may be
assumed that Q is a maximal ideal in R[X] and q = M, and then Q* is
also maximal.
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Assume that p ¥= (0). If P = pR[X], then C/F is integral over
(R/p)[X] ^ R[X]/P, and Q'/F is a height one prime ideal in C/F.
Therefore, since (R/p)(X) ^ R(X)/pR(X) is a GB-ring (2.5.1), height
Q/P = 1, by induction on a. Thus, assuming that p ¥= (0), it may be as-
sumed that pR[X] C P. Therefore, by (2.2), there exists a prime ideal Pl

in C such that Pl C F and Pl H R[X] = pR[X]. Hence, by induction on
a, it is readily seen (on considering (R/p)[X] C C/PJ that height
Q/P = l.

Thus it may be assumed that p = (0), so height P = 1, and so height
F = 1. Therefore (0) C F C Q' is a maximal chain of prime ideals of
length k = 2 in C, and so there exists a maximal chain of prime ideals
of length k in an integral extension domain of R[X]Q. Hence, by [12,
(2.14.1) <=> (2.14.5)], there exists a maximal chain of prime ideals of
length k — 1 in some integral extension domain of R. Therefore, since
a > 0, it follows that k = 2 and there exists a height one maximal ideal
in some integral extension domain of R. Thus, since R is a GB-local do-
main (2.5.5), altitude R = 1 (2.4.3), so altitude R[X]Q = 2, hence height

= 1.

COROLLARY (2.7). If A is a Noetherian ring, then A[X] is a GB-ring if
and only if A(X) is a GB-ring.

PROOF. This follows immediately from (2.6) and (2.5.2).

COROLLARY (2.8). The following statements are equivalent for a local
ring (R, M):

(2.8.1) R(X) is a GB-ring.
(2.8.2) R[X] is a GB-ring.
(2.8.3) R[X](MtX) is a GB-ring.
(2.8.4) R[X]N is a GB-ring for some maximal ideal N in R[X] such

that N H R = M.

PROOF. (2.8.1) <=^> (2.8.2), by (2.7); (2.8.2) implies (2.8.3) and (2.8.4),
by (2.5.2); and, (2.8.3) and (2.8.4) each implies (2.8.1), by (2.5.2), since
R(X) is a localization of H[X]^ for each maximal ideal N in R[X] such
that N D R = M.

(I am indebted to the referee for suggesting this proof of (2.8). It is
much easier than my original proof.)

(2.8) is a very surprising result to the author. The reason for this will
be explained following (4.3) below.

3. R(X1, - • •, Xa_2) is a GB-ring if and only if R satisfies the s.c.c.
For a local domain R and a = altitude JR, the title of this section is a
corollary (3.7) to the main theorem in this section (3.5). The proof of
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(3.5) seems to be quite deep, so a number of preliminary results will
first be given. We begin with the following remark which gives two
facts that will quite often be used in what follows.

REMARK (3.1). The following statements hold for a semi-local domain
R:

(3.1.1) (cf. [7, Proposition 3.5].) There exists a depth one minimal
prime ideal in R* (2.1) if and only if there exists a height one maximal
ideal in R'. (This was proved only for a local domain in [7], but the
semi-local domain case follows immediately from the local domain
case.)

(3.1.2) [6, (33.11)]. If there exists a height one maximal ideal in R',
then, for all nonzero x G /, the Jacobson radical of R, xR has some
maximal ideal as a prime divisor.

The condition in (3.1.2) that some maximal ideal in R is a prime divi-
sor of xR will often, in the future, be written xR : J ¥= xR.

The following result, which is of some interest in itself, will help to
simplify the proof of the main theorem in this section.

PROPOSITION (3.2). Let R be a semi-local domain which has infinitely
many (height one) prime ideals p such that p has a principal primary
ideal and p C /, the Jacobson radical of R. Assume that each maximal
ideal in R has height ^ 3 and that R is a GB-ring. Then, for all min-
imal prime ideals z in R*, depth z ^ 3.

PROOF. Fix a minimal prime ideal z in R*. Then clearly depth z > 0
and, by (3.1.2), and the existence of a principal primary ideal contained
in /, depth z > 1. Now, if nR is a principal primary ideal contained in
/ and p is the prime divisor of ?rR, then L = R/p is a semi-local do-
main such that each maximal ideal has height = 2 (by [6, (9.7)] and
since maximal ideals in R have height = 3) and, by (2.5.1) and hypoth-
esis, L is a GB-ring. Therefore there does not exist a height one max-
imal ideal in L' (2.4.3), so there are no depth one minimal prime ideals
in L* (3.1.1).

Now suppose that depth z — 2 and let p* be a minimal prime divisor
of (z, ?7)R* ((z, 7r)R* ¥= R*, since IT G /.) Then, by the Principal Ideal
Theorem, height p*/z = 1, hence depth p* — depth p*/z = 1. Now
there are infinitely many choices for TT with a different prime divisor,
so there are infinitely many such p*, and at most finitely many of the
p* are such that height p* > height z + 1 = 1 [5, Theorem 1]. There-
fore there exists TT G / such that height p* = 1, where p* is a minimal
prime divisor of (z, n)R*. Thus p* is a depth one minimal prime divisor
of 77-R*, so there exists a depth one minimal prime ideal in L* = (R/p)*,
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where nR is p-primary. But this contradicts the observation in the first
paragraph of this proof. Therefore depth z > 2.

The following corollary of (3.2) will be strengthened in (3.5) (the case
k — 3 and g — 1), by showing that condition (a) is not actually needed.
However, this version of the result is of interest, since it will be used to
help shorten the proof of (3.5).

COROLLARY (3.3). Let R be a semi-local domain such that height
M ^ 3, for all maximal ideals M in R. Assume that: (a) there exists a
nonzero x E /, the Jacobson radical of R, such that xR : / = xR; and, (b)
R(X) is a GB-ring. • Then, for all minimal prime ideals z in R*, depth
z^3.

PROOF. By (a), there exist infinitely many R-sequences a{, bi contain-
ed in /, and then pi — (a^X — bi)R(X) is a principal prime ideal [2, Ex.
3, p. 102] which is contained in the Jacobson radical of R(X). There-
fore, since (b) holds, (3.2) applied to R(X) implies that every minimal
prime ideal w in R(X)* is such that depth w = 3. Now R*(X) is a dense
subspace of R(X)* [8, Lemma 3.2], hence every minimal prime ideal in
R*(X) has depth ^ 3, and so every minimal prime ideal in R* has
depth ^ 3.

Another corollary of (3.2) will be given in (6.1).
The following definition will, to some extent, simplify the notation in

the next few results.

DEFINITION (3.4). For a ring A, let Afnl = A[XV • • •, Xn] and A(n) =
A(XV "•, XJ. Also, let Aroi - A = A(0).

THEOREM (3.5). Let (R; M19 • • - , Mh) be a semi-local domain, fix
k ^ 2, and assume that height Mi ^ k, for all i = 1, • • •, h. Also, as-
sume that R(g) (3.4) is a GB-ring, for some g (0 ̂  g ^ k - 2). Then the
following statements hold:

(3.5.1) For each maximal ideal M' in R', height M' ^ g + 2.
(3.5.2) For each minimal prime ideal z in R*, depth z ^ g + 2.

PROOF. Since each (RM)' is a quotient ring of R', since (RM)* is a di-
rect summand of R*, and since (RM)(g) is a GB-ring, if R(g) is (2.5.2), it
suffices to prove the theorem in the case that (R, M) is a local domain.
For this, the proof that both statements hold will be by induction on
g ^ 0. Fix a maximal ideal M' in R'. Then, since R is a GB-ring (2.5.5),
height M' > 1 (by hypothesis and (2.4.3)). Therefore, if g = 0, then
(3.5.1) holds, and so (3.5.2) holds, by (3.1.1). Thus assume that g > 0 (so
k>2) and that the conclusions hold for g — 1.
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Since there are no height one maximal ideals in R', let b, c E M be
such that height (b, c)R' — 2. Then Q = MR[c/b] is a depth one prime
ideal such that height Q = height M - 1 ̂  k - I [8, Lemma 4.3].
Likewise, with x E M' and not in any other maximal ideal in R', and
with N = M' H R[x], Q' = NR[x][c/b] is a depth one prime ideal such
that height Q' = height N -1= height M' - 1 (by [8, Lemmas 4.2
and 4.3], since height (b, c)R[x] = 2(2.4.3)). Let S = R[c/b] - Q, and
let R(c/b) = R[c/b]s. Then it is readily seen that R(c/b) ^ R(X)/K, for
some height one prime ideal K in R(X). Therefore
R(c/b)to-1) s flto)/Xflto) is a GB-ring (2.5.1), and so, by induction, the
conclusions hold for R(c/b). Thus, since R[x][c/b]fi C R(c/b)', height
£' ^ (g - 1) + 2, and so height M' ̂  g + 2, hence (3.5.1) holds.

Now fix a minimal prime ideal z in R*, let u; = zR*[l/b] H R*[c/b],
let S* = R*[c/b] - M*R*[c/b], where M* = MR*, and let R*(c/b) -
R*[c/b]g!|c. Then R(c/V) is a dense subspace of R*(c/b) (by [8, Lemma
3.2]), so if u; C M*R*[c/b], then depth wR*(c/b) ^ (g - 1) + 2, by in-
duction. Therefore depth u; ^ g + 2 (since M*R*[c/b] is a depth one
prime ideal (by [8, Lemma 4.3])), so depth z i? g + 2 (since
R*/z c H*[c/b]/u; C R*[l/b]/zR*[l/b] =s (H*/*)[l/(& + *)])• Thus it
remains to show that b, c can be chosen such that b, c G M, height
(b, c)R' = 2, and zR*[l/b] n R*[c/b] C M*R*[c/b].

For this, if depth z ^ 3, then let b, c e M be such that height
(b, c)R' = 2 and height (b + z, c + z)(R*/z) = 2. (This is possible, since,
for each nonzero b E M, (z, b)R* and bR' have only finitely many min-
imal prime divisors and no such minimal prime divisor contracts in R
to M.) Then zR*[l/b] n R*[c/b] C M*R*[c/b] (by [8, Remark 4.4(i)]).
Thus it remains to show that depth z ^ 3.

For this, by the first paragraph of this proof, depth z > 1. To see
that depth z > 2, let R(M?) = n (Rp; p G Spec R and p ^ M}. Then
R(w) c R' = n{R'p,; p' G SpecR' and height p' = 1}, by (2.4.3) and
[8, Corollary 5.7(2)], so R(w?) is Noetherian [1, Corollary 1.4] and every
maximal ideal in R<™> has height ^ g + 2 ^ 3, by (3.5.1). Also, R(W\X)
is a GB-ring (2.4.1) and, with / the Jacobson radical of R(w) and
0 ^ x E /, xRM :/ = xR(w\ by [8, Lemma 5.6(2)]. Therefore every min-
imal prime ideal in R(w)* has depth ^ 3 (3.3). Hence there does not ex-
ist an integral extension domain of R(w) which has a maximal chain of
prime ideals of length < 3 [12, (2.14.1) <=> (2.14.2)], and so this also
holds for R. Therefore every minimal prime ideal in R* has depth i= 3
[12, (2.14.1) <=> (2.14.2)], hence depth z ^ 3.

(3.5) has some important corollaries which are concerned with certain
chain conditions on a ring. In order to state these corollaries, we recall
the definitions of these chain conditions at this point.
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DEFINITION (3.6). Let A be a ring.
(3.6.1) A satisfies the first chain condition for prime ideals (f.c.c.) in

case each maximal chain of prime ideals in A has length equal to the
altitude of A.

(3.6.2) A is catenary in case, for each pair of prime ideals p C q in
A, (A/p)q/p satisfies the f.c.c.

(3.6.3) A satisfies the second chain condition for prime ideals (s.c.c.)
in case, for each minimal prime ideal z in A, every integral extension
domain of A/z satisfies the f.c.c. and depth z = altitude A.

(3.6.4) A satisfies the chain condition for prime ideals (c.c.) in case,
for each pair of prime ideals p C q in A, (A/p)Q/p satisfies the s.c.c.

Rings which satisfy one or more of the above conditions have been
deeply investigated, and numerous properties of such rings are known.
A summary of most of the results concerning such rings which are
needed in what follows is given in [9, Remark 2.22-2.25].

With these definitions, five corollaries of (3.5) will now be given.
If R is a semi-local domain such that a — altitude R = 1, then R is a

GB-ring and satisfies the s.c.c., so attention is limited to a = 2 in (3.7).

COROLLARY (3.7). Let R be a semi-local domain, let altitude
R = a ^ 2, and assume that height M = a, for all maximal ideals M in
R. Then R satisfies the s.c.c. if and only if R(a_2) is a GB-ring.

PROOF. If R(a_2) is a GB-ring, then R is quasi-unmixed (3.5.2), so R
satisfies the s.c.c [7, Theorem 1].

Conversely, if R satisfies the s.c.c, then R(a_2) satisfies the s.c.c. [7,
Corollary 3.7], so R(a_2) is a GB-ring (2.5.6).

COROLLARY (3.8). Let R be as in (3.7). If R(a_2) « 0 GB-ring, then
Hrnl(3.4) is a GB-ring, for all n ^ 0.

PROOF. If R(a_2) is a GB-ring, then R satisfies the s.c.c. (3.7), so, for
all n ^ 0, Rrn] satisfies the c.c. [7, Corollary 3.7]. Therefore (flrnl)0 sat-
isfies the s.c.c., for all prime ideals Q in Hfnl, so each (Hrnl)Q is a GB-
ring (2.5.6), hence Rfnl is a GB-ring (2.5.2).

Of course, the converse of (3.8) holds, by (2.5.2).

COROLLARY (3.9). Let A be a Noetherian ring such that A(g) is a GB-
ring, for some g = 0. Then the following statements hold:

(3.9.1) Ap satisfies the c.c., for all prime ideals P in A such that
height P ̂  g + 2.

(3.9.2) A/Q satisfies the c.c., for all prime ideals Q in A such that
depth Q ̂  g + 2.
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PROOF. (3.9.1) Let P be a prime ideal in A such that h = height
p ^ g _ l _ 2 . If h < 2, then clearly Ap satisfies the c.c., so assume that
h ^ 2. Then to show that Ap satisfies the c.c., it suffices to show that
Ap/z satisfies the s.c.c., for all minimal prime ideals z in Ap[9, Remark
2.23(iv)]. For this, fix such z and let d = depth z. Then R — (AP\d_2) is
a GB-ring by (2.5.2), since A(d_2) is (2.5.5.) and R ^ \d-2)PA(d_2)- There-
fore R/zR is a GB-ring (2.5.1) and R/zR s£ (AP/z\d_2), hence Ap/z satis-
fies the s.c.c. (3.7).

(3.9.2) Let Q be a prime ideal in A such that d = depth Q ^ g -h 2.
If d < 2, then clearly A/Q satisfies the c.c., so assume that d ^ 2. Then
to show that A/Q satisfies the c.c., it suffices to show that (A/Q)M satis-
fies the s.c.c., for all maximal ideals M in A/Q [9, Remark 2.23(iv)], and
the proof of this is quite similar to the proof of (3.9.1).

If A is a Noetherian ring such that altitude A = a — 1, then A satis-
fies the c.c. and Afnl is a GB-ring, for all n ^ 0. Therefore we restrict
attention to the case a > 1 in the next corollary, which generalizes
(3.7) and (3.8).

COROLLARY (3.10). Let A be a Noetherian ring and let 2 = a — alti-
tude A < oo. If A(a_2) is a GB-ring, then A satisfies the c.c. and A[nl is
a GB-ring, for all n = 0.

PROOF. If A(a_2) is a GB-ring, then AM satisfies the c.c., for all max-
imal ideals M in A, by (3.9.1), so A satisfies the c.c. [9, Remark
2.23(iii)]. Therefore, for all n ^ 0, Afnl satisfies the c.c. [8, Theorem
2.6]. Thus, for each minimal prime ideal z in A, D — Afnl/zArnl satisfies
the c.c. [9, Remark 2.23(iii)], so D is a GB-ring (as in the proof of (3.8)),
hence A[nl is a GB-ring (2.5.1).

As with (3.8), the converse of (3.10) holds by (2.5.2).

We close this section by giving a sufficient (and necessary) condition
for all localities over a Noetherian domain to be GB-rings.

COROLLARY (3.11). Let A be as in (3.10), let I be an ideal in A, let B
be a finitely generated ring over A/7, let C be an integral extension ring
of B, and let S be a m.c. set in C. If A(a_2) is a GB-ring, then C8 is a
GB-ring.

PROOF. B is a homomorphic image of Afnl, for some n ^ 0, and Arnl

is a GB-ring (3.10), so B is (2.5.1). Therefore, by (2.4.1) and (2.5.2), Cs

is a GB-ring.

4. Two (equivalent) problems. There are a number of open problems
concerning GB-rings, but among the two most important are: (a) if R is
a GB-local domain, is R(X)? and, (b) if R is a GB-local domain, is R
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catenary? In this brief section we show that, in fact, these two prob-
lems are equivalent.

PROPOSITION (4.1). The following statements are equivalent:
(4.1.1) Whenever R is a GB-local domain, R(X) is a GB-ring.
(4.1.2) Whenever R is a GB-local domain, R is catenary.

PROOF. Assume that (4.1.1) holds and let R be a GB-local domain.
Then, with a — altitude R, H(a_2) is a GB-ring (by hypothesis), so R sat-
isfies the s.c.c. (3.7). Therefore R is catenary, so (4.1.2) holds.

Conversely, assume that (4.1.2) holds and let R be a GB-local do-
main. Then R is catenary and a GB-ring, so R satisfies the s.c.c (2.5.6),
hence R(X) satisfies the s.c.c [7, Corollary 3.7]. Therefore R(X) is a GB-
ring, (2.5.6), so (4.1.1) holds.

COROLLARY (4.2). // the equivalent statements in (4.1) hold, then the
following statements are equivalent for a local domain (R, M):

(4.2.1) R is a GB-ring.
(4.2.2) R(X) is a GB-ring.
(4.2.3) R satisfies the s.c.c.

PROOF. (4.2.1) <=^> (4.2.2), by hypothesis and (2.5.5), and (4.2.1) <=>
(4.2.3), by hypothesis and (2.5.6).

COROLLARY (4.3). // the equivalent statements in (4.1) hold, then the
following statements are equivalent for a Noetherian ring A:

(4.3.1) A is a GB-ring.
(4.3.2) A(X) is a GB-ring.
(4.3.3) A satisfies the c.c.

PROOF. By (2.5.1) (resp., [9, Remark 2.23(iii)]), a ring B is a GB-ring
(satisfies the c.c.) if and only if B/z is a GB-ring (resp., satisfies the
c.c.), for all minimal prime ideals z in B. Therefore it suffices to prove
this corollary for Noetherian domains A.

Assume that (4.3.1) holds, let N be a maximal ideal in A(X), and let
M = N O A. Then AM is a GB-ring, so A(X)N = A^X) is a GB-ring
(4.2). Therefore A(X) is a GB-ring (2.5.2).

Assume that (4.3.2) holds and let M be a maximal ideal in A. Then
A^X) = A(X)MA(X) is a GB-ring, so AM is a GB-ring (2.5.5), hence AM

satisfies the s.c.c. (4.2). Therefore A satisfies the c.c. [9, Remark

Finally, assume that (4.3.3) holds and let M be a maximal ideal in A.
Then AM satisfies the s.c.c., so AM is a GB-ring (2.5.6), hence A is a GB-
ring (2.5.2).

As mentioned at the end of Section 2, (2.8) is a very surprising result
to the author. The reason for this is that, for most other chain condi-



348 L. J. RATLIFF, JR.

tions, a local domain (R, M) has the condition if and only if R(X) has it.
(For example, f.c.c. [9, Theorem 4.11], s.c.c. [12, (2.15)], HJ13, (2.7)],
and, there exists a maximal chain of prime ideals of length n in the ring
[12, (2.15)].) And usually R[X] and R[X](MfX) do not inherit the condition
from R. But, as partly shown by the results in this section, for GB-rings
the difficult part is to show that R(X) is a GB-ring whenever R is, and
then R[X] and R[X](MfX> do inherit the GB condition (2.8).

5. R(X) and R(x). As noted in Section 4, it is an open problem if
R(X) is a GB-ring whenever R is. The few results in this section came
about from an effort to prove that this does hold. We begin with the
following remark.

REMARK (5.1). The following statements hold for a GB-Noetherian do-
main A:

(5.1.1) A(1) = 0 (Ap; p G Spec A and height p = 1} C A', so A(1) is a
GB-ring.

(5.1.2) If (A, M) is local then A<w> = D (Ap; P E Spec A and P =£ M}
is a GB-semi-local domain.

PROOF. (5.1.1) Since height one prime ideals in A' contract in A to
height one prime ideals (2.4.3), A(1) C A'(1) = A', so A(1) is a GB-ring
(2.4.1).

(5.1.2) A(w> C A*1* C A' (5.1.1), so A(M?) is a quasi-semi-local GB-ring
(2.4.1). Also, A(w} is Noetherian [1, Corollary 1.4], so A<w> is a GB-semi-
local domain.

The next two results give characterizations of GB-rings which are
sometimes useful. In particular, (5.3) will be used in the proof of the
main result in this section.

PROPOSITION (5.2). A ring A is a GB-ring if and only if, for all prime
ideals p C q in A such that height q/p > 1, there does not exist a
height one maximal ideal in L\ where L = (A/p)Q/p.

PROOF. If A is a GB-ring, then each such L is a GB-ring, by (2.5.1)
and (2.5.2), so there does not exist a height one maximal ideal in L'
(2.4.3).

Conversely, assume that the condition holds, let B be an integral ex-
tension ring of A, and let P C Q be prime ideals in B such that height
Q/P = 1. Let p = P H A and q = Q n A, so C = (B/P)(M/p).te/p)) is in-
tegral over L = (A/p)Q/p and (Q/P)C is a height one maximal ideal in
C. Therefore there exists a height one maximal ideal in C", so there ex-
ists a height one maximal ideal in L', by [6, (10.14)]. Thus height
q/p = 1 (by hypothesis), and so A is a GB-ring (2.5.3).
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PROPOSITION (5.3). The following statements are equivalent for a Noe-
therian domain A:

(5.3.1) A is a GB-ring.
(5.3.2) A/p is a GB-ring, for all height one prime ideals p in A, and

C A'.

PROOF. A(1) C A' if and only if height q fl A = 1, for all height one
prime ideals q in A' [8, Corollary 5.7(1)], and then height n fl A = 1,
for all height one prime ideals n in each integral extension domain of
A [8, Corollary 5.9(3)]. From this it is readily seen, using (2.5.3), that
(5.3.2) => (5.3.1), and (5.3.1) => (5.3.2), by (2.5.1) and (5.1.1).

There is a somewhat analogous, but less easily stated, character-
ization of a GB-Noetherian domain A using localizations. Namely, A is
a GB-ring if and only if Ap is a GB-ring, for all depth one prime ideals
P in A, and, for all principal integral extension domains B of A and for
all adjacent prime ideals Q C N in B such that N is maximal, height
(N n A)/(Q 0 A) = 1. The proof follows easily from (2.5.2), (2.5.3), and
(2.5.4).

The following proposition is the main result in this section. The char-
acterization in (5.4) of when R(X) is a GB-ring is not easy to apply, but,
at least in comparison to (2.5.1), it reduces the number of prime ideals
P that must be shown to be such that R(X)/P is a GB-ring. Since local
domains of altitude < 2 are GB-rings, we restrict attention to the case
altitude R i= 2 in the proposition.

PROPOSITION (5.4). The following statements are equivalent for a GB-
local domain (R, M) such that altitude R = a ^ 2:

(5.4.1) R(X) is a GB-ring.
(5.4.2) For all elements x in an algebraic closure F* of the quotient

field of R such that depth MR[x] = 1, R(x) = R[x]MRw " a GB-ring.

PROOF. Assume that (5.4.1) holds and let x G F* be such that depth
MR[x] = 1. Then MR[x] is a prime ideal and the residue class of x
modulo MR[x] is transcendental over R/M (this is clear by the structure
of R[x]/MR[x]), so R[x]MRlx] =s H(X)/P, for some prime ideal P. There-
fore flMjifl^] is a GB-ring, by hypothesis and (2.5.1), hence (5.4.2)
holds.

Conversely, assume that (5.4.2) holds. Then it will be shown that
(5.4.1) holds by using (5.3) and induction on a. If a = 2, then
(5.4.2) => (5.4.1), for R satisfies the s.c.c. (2.4.2) (so R(X) is a GB-ring
(3.8) and (2.5.2)). Therefore assume that a > 2 and (5.4.2) => (5.4.1) for
local domains of altitude < a.

Since R is a GB-ring, height one prime ideals in R' lie over height
one prime ideals in R (2.4.3), so it is readily seen that height one prime
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ideals in R(X)' = R'(X) lie over height one prime ideals in R(X), hence
R(X)(1) C R(X)'. Therefore, by (5.3), it remains to show that if P is a
height one prime ideal in R(X), then R(X)/P is a GB-ring.

For this, if P n R = (0), then R(X)/P = R[x]MR^ with x = X + P al-
gebraic over R. Since depth MR[X\ = 1 and P n R[X] C MR[X], depth
MR[ac] = 1, so R(X)/P is a GB-ring, by hypothesis. Therefore assume
that p = P n R ¥= (0), so height p = 1 and P = pR(X). Now
(R/p)(X)<1> C (R/p)(X)', as above (since R/p is a GB-ring). Also, (5.4.2)
holds for R/p, as will now be shown. Let ° denote residue class modulo
p and let y be an element in an algebraic closure of the quotient field
of R° such that depth M°R°[y] — 1. Then, since R°[y] is a homomorphic
image of R[X], it readily follows that there exist x G F* and a prime
ideal p' in R[x] such that p' n R = p and R[x]/p' = R°[t/]. Therefore,
since depth M°R%] = 1 and M°R°[y] = MR[x]/p', depth MR[x] = 1.
Thus, by hypothesis, R(x) = R[X]MR\X] is a GB-ring, so R°[t/]Afo/goryl =
R(x)/p'R(x) is a GB-ring. Therefore R(X)/JP^ R°(X) is a GB-ring, by in-
duction on a, so R(X) is a GB-ring (5.3).

(5.4) would be a somewhat nicer result if (5.4.2) could be replaced
by: for all analytically independent elements b, c in M, R(c/b) =
R[c/b]MRfC/bi is a GB-ring. (If b, c are analytically independent in R,
then MR[c/b] is a depth one prime ideal [8, Lemma 4.3].) Like (5.4.2),
this condition is inherited by factor domains of R, but I have been
unable to show it is strong enough to imply that R(X) is a GB-ring.
However, it is quite straightforward to show that (5.4.2) is equivalent
to: for each principal local integral extension domain (L, N) of R and
for each pair of analytically independent elements b, c in N,

6. GB-rings of altitude three. If A is a GB-ring such that altitude
A < 3, then A/z satisfies the c.c., for all minimal prime ideals z in A,
by (2.5.1) and (2.4.2), so A satisfies the c.c. [9, Remark 2.23(iii)]. So, in
this section we consider Noetherian GB-rings of altitude three. It seems
that it should be possible to show that all such rings satisfy the c.c., but
our results fall considerably short of this goal. Even so, some things
worthy of note can be said about such rings, as will now be shown.

It is an open problem if every local UFD of altitude three satisfies
the s.c.c. However, because of (3.2), we can show that they do if and
only if they are GB-rings.

PROPOSITION (6.1). Let R be a local UFD such that altitude R = 3.
Then R is a GB-ring if and only if R satisfies the s.c.c.

PROOF. If R is a GB-ring, then R is quasi-unmixed (3.2), so R satisfies
the s.c.c. [7, Theorem 3.1], and the converse is given by (2.5.6).
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Of course, if R is as in (6.1), then each height one prime ideal p in R
is such that depth p — 2 (since p is principal), so every prime ideal P in
R is such that height P + depth P = 3, hence R is catenary [10, Theo-
rem 2.2.], and so (6.1) also follows from (2.5.6).

The next result is concerned with a more general type of ring than
was (6.1).

PROPOSITION (6.2). Let A be a Noetherian ring such that altitude
A — 3. Then A satisfies the c.c. if and only if A(X) is a GB-ring.

PROOF. If A satisfies the c.c., then, as in the proof of (3.10), A[nl is a
GB-ring, for all n ^ 0, so A(X) is a GB-ring (2.5.2).

The converse is clear by (3.10).

It is an open problem if a GB-local domain of altitude three satisfies
the s.c.c. However, this holds for such rings of the form R(X), as is
shown by the following result.

PROPOSITION (6.3). Let R be a local domain such that altitude R — 3.
Then the following statements are equivalent-.

(6.3.1) R(X) is a GB-ring.
(6.3.2) R(X) satisfies the s.c.c.
(6.3.3) R satisfies the s.c.c.
(6.3.4) R is catenary and a GB-ring.

PROOF. (6.3.4) <=> (6.3.3) and (6.3.2) => (6.3.1) by (2.5.6),
(6.3.1) <^> (6.3.3) by (3.7), and (6.3.3) => (6.3.2), by [7, Corollary 3.7].

As is partly indicated in the introduction to this section, the author
believes that all GB-local domains satisfy the s.c.c, but is unable to
prove this even for the altitude three case. The next result considers
what can be said if a GB-local domain of altitude three is not catenary
(hence does not satisfy the s.c.c.).

PROPOSITION (6.4). Let (R, M) be a local domain such that altitude
R = 3 and R is a GB-ring. Assume that R is not catenary. Then there
exists a depth two minimal prime ideal in R* and a finite (possibly
empty] set S of height one prime ideals in R such that if
0 ^ * E M — U {p ; p E S}, then xR has a depth one prime divisor.

PROOF. Since R is not catenary, there exists a height one depth one
prime ideal in R, so there exists a depth two minimal prime ideal z in
R* [12, (2.14)]. Let 0 ¥= x E M, and let q* be a minimal prime divisor
of (z, x)R*. Then, by the Principal Ideal Theorem, height q*/z — 1, so
depth q* = 1. Also, q*R*Q* is a prime divisor of xfl*Q* [14, Lemma 1,
p. 394], hence q* is a prime divisor of xR*, and so q = q* D R is a
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prime divisor of xR and q* is a prime divisor of qR* [6, (18.11)]. Let
T*= (g* ; g* is a minimal prime divisor of (z, x)R*, for some
0 ¥= x E M) and let S* = {q* E T*; height q* = 2), so S* is a finite
set [5, Theorem 1], and T* is an infinite set.

Fix q* E T* and let q = q* fl R. If q* $ S*, then height q* = 1,
50 9* is a minimal prime divisor of qR*. Thus, R/g is a GB-ring (2.5.1)
such that (R/q)* has a depth one minimal prime ideal (isomorphic to
q*/qR*), so depth q = 1, by (3.1.1) and (2.4.3). Therefore, for each non-
zero x E q, xR has q as a depth one prime divisor. On the other hand,
if q* E S*, then there are two possibilities: depth q — 1, so each x E q
has q as a depth one prime divisor (possibly height q = 2); or, depth
q — 2, so height 9 = 1 and q* is an imbedded prime divisor of qR*.
Let S = {q* n R; q* E S* and depth 9* n R = 2). (Possibly S is emp-
ty.) Then, for each nonzero x E M — U (p ; p E S}, xR has a depth one
prime divisor.

Of course, a much nicer conclusion for (6.4) would be: for each non-
zero x E M, xR has a depth one prime divisor. This would hold (by the
proof of (6.4)) if it were known that GB-local domains of altitude two
are unmixed (instead of being merely quasi-unmixed (see (2.5.6) and [7,
Theorem 3.1])). However, in [1, Proposition 3.3] there is given a local
domain of altitude two which is not unmixed, but which is quasi-
unmixed (by [6, (34.2)], since its integral closure is a regular local ring
(so satisfies the s.c.c)). Therefore there exist local domains of altitude
two which are GB-rings and are not unmixed.

It should also be noted that if R is as in (6.4), and if there does not
exist a height two maximal ideal in R', then the Chain Conjecture (that
is, the integral closure of a local domain satisfies the c.c.) fails. For,
then every maximal ideal in R' has height three (2.4.3), so the Chain
Conjecture would say that R' satisfies the s.c.c., hence R satisfies the
s:c.c [6, (34.2)] and so must be catenary: contradiction.

7. Three questions. This paper will be closed with the following
questions and a brief remark on one of them.

(7.1) QUESTIONS. (7.1.1) If R is a GB-local domain, is R(X)?
(7.1.2) If R(X) is a GB-local domain, is R(X1, • • -, Xn), for all n ^ 1?
(7.1.3) If (R, M) and (S, N) are local domains such that S is integral

over R, N D R = M, and S is a GB-ring, is R a GB-ring?
Concerning (7.1.3), if an integral extension domain of a local domain

R is a GB-ring, R need not be a GB-ring. (For example, in [6, Example
2, pp. 203-205], the integral closure of R is a regular domain, (so satis-
fies the c.c. and is a GB-ring), but R is not a GB-ring.) This is why S
was limited to having only one maximal ideal in (7.1.3). [Added in
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proof: M. Brodman has shown in A Particular Class of Rings (12 page
preprint) that all three equations in §7 have a negative answer.]
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