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SOLUTION OF SOME STOCHASTIC EQUATIONS 
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ABSTRACT. A method is presented for analyzing several types of 

equations describing interacting species in a random environment. 

Approximate solutions of the models are obtained under the assump­

tion that the stochastic fluctuations of the environment are rapidly 

varying. 

1. This paper contains a brief description of a method which has 
been used to analyze several types of stochastic models of interacting 
species. Theorems justifying the method are in [1, 4, 6], and a more de­
tailed discussion of the applications is in [5, 2]. 

Among the simplest deterministic models of interacting species is the 
ordinary differential equation. Let x(t) — (x1(f), x2(t), • • -, xn(t)) be a 
vector of (scaled) population sizes xv x2, • • -, xn of a system of n spe­
cies. Then in a non-random environment, the equations are 

(1.1) ft *(t) = F(x(t), y), i(0) = x0 given. 

Here F is some non-linear function describing the species interaction 
dynamics, and y — (yv • -, ym) is a vector of m parameters occurring 
in the equations, e.g., growth rates, carrying capacities, inter-species 
competition coefficients, etc. More realistic models than (1.1) may also 
incorporate time-delays, as well as an environment which is itself 
changing in time. Further generalizations of (1.1) may treat spatial in-
homogeneities in the environment. 

In a stochastic environment, the parameters y may be expected to 
fluctuate randomly in time. The fundamental assumption that we make 
here is that the random environmental fluctuations are on a time scale 
which is much faster than any other time scale in the sytem. Mathe­
matically, we assume that y = y(r) is a stochastic process, and that 

(1.2) T = t/e, 0 < e « 1. 

The small parameter € is then the ratio of the time scale t for which 
the equations are written to the time scale r of the noisy fluctuations. 
The idea is to exploit this disparity of time scales to derive an approx-
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imate solution of the equations. A heuristic argument will be given here 
for equation (1.1). 

Denoting the solution for fixed c by x€(f), (1.1) now becomes 

dt 
U.r) 

x*(t) = F(*(t), y(t/e)) 

x€(0) = x0 given. 

We assume that for fixed, non-random x, the random process F(x, 
Y(T)) satisfies the law of large numbers, i.e., that there is a limit F(x) to 
which the time averages of F converge in the mean. 

(1.3) 
1 r («+r 

- J , o F(x,y(r))dT 

By (1.3) we mean that for all f0, 

(1.3') lim E 
1 p O + T _ 

- Jt0 F(x,y(t))dr-F(x) 

Fix). 

= 0. 

It is furthermore assumed that the limit is approached uniformly in x, 
t0. Clearly, if such an F exists, it may be computed by 

(1.4) F(x) = lim - i j j E[F(x, 7(T))] dr. 
7^oo T 

To clarify what is necessary for (1.3'), consider the example F(x, y(r)) 
— f(x) + ë(x)y(T) w i t n x> f> & Y scalars, and y(r) a stationary stochastic 
process with mean zero and correlation function R(u). Then (1.3') will 
be satisfied with F(x) = f(x) if 

Jt0 

1 fto+T 
(x)y(r) dr 0 

uniformly in x and t0. If \g(x)\ is bounded, we need that 

1 Cto+T 
Y X Y(T) dr 0 

uniformly in t0. But by the Schwarz inequality, 

/ I 1 Po+71 I \ 2 

( E | y J,. 7(r)dr | j 

= "ja" £ J«. d T i J r „ dT2Y(Ti)Y(T2) 
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1 rto+T rto+T 

w X ^ X ^2I*K-T2)| 

fj (l - ± ) \R(u)\ dufk^ £ ° \R(u)\ du. 

T2 

_2_ 

T 

Thus (1.3') is satisfied in this case if f %> \R(u) | du < co. 
A sufficient condition for this example is therefore that the correla­

tion R(u)9 of Y(T) and y(r -f ti), goes to zero sufficiently rapidly as the 
time separation u becomes large. For the results that follow, what must 
be assumed is a "mixing condition''—roughly, that events separated by 
a large time gap u become asymptotically independent as u —> oo. 

Returning to (1.1'), let x°(t) be the (wholly deterministic) solution of 

(1.5) ft X0(t) = F(x°(t)), *o(0) = *0. 

The claim now is that x°(t) is a good first approximation to x€(t) for 
small €. 

Equation (l .T) may be written in integrated form as 

(1.1") At) = x0+ X F(As),y(s/e))ds. 

For simplicity, we argue heuristically here that if F is bounded, and has 
a bounded first derivative with respect to x, then x° is approximately a 
solution of (1.1") as e—•(). Let n be a large integer, and for t > 0, de­
fine A = t/n. Then 

x0 + J0* F(x°(s), y(s/€j) ds 

= *o + 2 JiA F(*Uy(*/€))£fa 

= *„ + 2 x r + i F(^°(iA)' s/£) * + ° ( A ) 

A L T JiA/. F(x°(iA),T)dr J . 
n - 1 

Comparing the quantity in brackets above to (1.3), and identifying 
T — A/e —* co as e —» 0, we have 

*o + J 0 ' F(x°(«), Y(«/c))ds « x0 + I 2 AF(x°(*A)) 1 . 
L i-0 J 
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The quantity in brackets above is a Riemann sum approximation to an 
integral. Therefore 

x0 + £ F(As), Y(s/e)) ds 

« *0 + £ F(x°(S)) ds = At)-

This last equality follows from integration of (1.5). 
Then to first approximation, the stochastic function F may be re­

placed by its average (both with respect to time and probability) F, and 
the stochastic equation (1.1') replaced by the deterministic one (1.5). 
The non-linear equation (1.5) may still pose formidable mathematical 
problems, but the analysis lies outside the domain of probability. Thus 
it will be possible to utilize any pre-existing theory of interacting spe­
cies based on equation (1.5) in constructing an approximate solution to 
the stochastic problem (l.T). 

We next construct the second term in a perturbation expansion of 
x€(f). The first term is evidently x°(t), so that we seek a solution of the 
form 

(1.6) x'(t) « x°(t) + eay°(t) + • • • . 

The parameter a > 0 is to be chosen to make such an expansion pos­
sible. Putting (1.6) into (1.1') and using a Taylor series of F gives 

= F(X0(t), y(t/t)) + e« 4 - (aP(t), yitU))y°(t) + ••• . 
OX 

Note that equating coefficients of powers of € does not give the correct 
result (1.5). This is because epsilons still occur in the equation as the 
time scale of y. Instead, we drop terms higher than ea , and use equation 
(1.5). After re-arrangement, the result is 

it ^{t)= - f ^ W ) Y(fA))y°W 

(1.8) +-L[F{3p{t),y(t/€))-F(At))] 
ea 

+ o(l). 
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Since x€(0) = x0 = x°(0), evidently y°(0) = 0. Integration of (1.8) then 
gives the integral equation 

y°(t)= Jo -^-(x%s\y(s/e))y%s)ds 

(1.9) + 4 " So Wx°^> ^/ €)) 

- F (*?(*))] ds + o(l). 

A central limit theorem for mixing processes now dictates the choice 
a — 1/2, for which the last integral in (1.9) converges (weakly) to a 
gaussian process, whose derivative is formally a white noise. By reason­
ing similar to that used in deriving (1.5) the term dF/dx in (1.9) can be 
replaced by dF/dx. Omitting the details, the resulting stochastic equa­
tion is 

(1.10) ft y°(t) = -?L-(x°(t))y<>(t) + a(At))W(t), t/°(0) = 0. 

Here W(t) is a vector of gaussian white noises with covariance 

EtW^W^f)] = 8(t - t)I. 

I is the nxn identity matrix, and 8 is the Dirac delta function. The ma­
trix a(x) is to be calculated as follows. First, the matrix function A(x) is 
calculated by the formula (with x fixed). 

A(x) = lim — J0 dst J0 ds. 2 

( L 1 1 ) £{[F(x, y(Sl)) - EF(x, y(Sl))] [F(x, y(s2)) - EF(x, y(s2))f}. 

a(x) is then any matrix such that 

(1.12) ooT = A. 

To summarize, the solution of (1.1') is constructed as follows. First F 
is averaged according to (1.4), and x° determined from (1.5). Next a(x) 
is calculated from (1.11) and (1.12), and evaluated along x°(t) for use in 
(1.10). Since (1.10) is a linear white noise equation, its solution y° will 
be a gaussian process with mean zero. Its covariance will be calculated 
in the next section. 

From (1.6) we have that 

(1.10) x«(t)«*°(t)+ yT «A*). 
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Therefore the approximate solution will be a deterministic function 
with small superimposed gaussian fluctuations. 

2. Equation (1.10) may be integrated in terms of the fundamental so­
lution matrix Y(t) of the linear deterministic system 

(2.1) j - Y(t) = ^ - (At)) y if), no) = i. 
at ox 

Variation of parameters then gives 

(2.2) y%t) = Y(t) £ Y-\s)o(As))W(s)ds. 

Since y° is gaussian, its statistics are completely determined by its co-
variance. From (2.2), this may be calculated by (for t' i^ 0), 

(2.3) E[y\t + f)y°(t)] = Y(t + f) £ Y-\s)A(s)Y-^(s) ds Y*(t). 

We define the covariance of the components of y° at one instant of 
time by 

(2-4) D(t) = E[tf(t)y™(t)]. 

D(t) may be calculated from (2.3) by setting f — 0. By differentiating 
this expression, and using (2.1) we obtain 

^ D(t) = C(t)D(t) + D(t)CT(t) + A(X0(t)) 

D(0) = 0 
(2.5) 

where 

(2.6) C(t)= 4-(x°(t)). 
OX 

Thus we may solve directly a linear system of matrix differential equa­
tions for D. 

First, we consider the equilibrium point model. That is, we assume 
that the deterministic system (1.5) has a linearly stable equilibrium 
point, at some population point x. Then for a starting point x€(0) = x, 
we have x°(t) — x, a constant for all time. Therefore C — (dF/dx)(x), 
A = A(x) are constant matrices, and (2.3) may be put in the form 

(2.7) E[y°(t + t')y0T(t)] = ecr £ eCsAecTs ds. 

In this case, C is what has been called the "community matrix". Since 
the deterministic system is linearly stable, the eigenvalues of C have 
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negative real parts. Therefore, from (2.7), the co variance of the random 
fluctuations goes to zero exponentially in £' as if becomes large. The ex­
ponential decay rates, or, roughly, the rates of forgetfulness of the sys­
tem, are the eigenvalues of C. 

Furthermore, setting if — 0 in (2.7), we see that at t gets large, D(t) 
converges exponentially (with rates that are sums of eigenvalues of C) 
to a limit D(oo). More graphically, we may picture the contour lines of 
the gaussian density of x€(t) as ellipsoids centered at x with axes deter­
mined by D(t). These ellipsoids expand as time increases and uncertain­
ty in the position of x€(t) also increases. The ellipsoids do not, however, 
expand indefinitely, but converge to a limiting ellipsoid determined by 
D(oo). This limit can be calculated simply by solving a system of linear 
algebraic equations; we set (d/dt)D(t) = 0 in (2.5) to get 

(2.8) 0 = CD(oo) + D(oo)CT + A. 

Another type of model is the limit cycle. We assume here that xc is 
2-dimensional, and that the solution x°(t) of (1.5) is a limit cycle in the 
plane. Then 

c(t) = -^-(*°(*)). Mt) = MAt)) 

are periodic functions of time, and Floquet theory is applicable to the 
analysis of (2.1). We include here only the results. Details are in [5]. 

It is convenient to change coordinates in the plane to (r, s), where r 
is distance from the limit cycle, and s is arc-length along the limit 
cycle. Then it can be shown that the variance of the random fluctua­
tions along the limit cycle (s) diverge slowly (that is, linearly) as time 
gets large, i.e., the fluctuations in "phase" of the approximately cyclical 
populations x€(t) become considerable after long time. The variance of 
the distance from the limit cycle (r) converges, however, in the follow­
ing way. Let re(t) be the perpendicular distance of xe(t) from the limit 
cycle, and a the period of x°(t). Then the variance of r€(t + na) con­
verges to a limiting value as n - » o o through integer values. The con­
vergence is geometric in the square of the Floquet multiplier of equa­
tion (2.1). 

An illustration of the theory, as well as comparison with Monte-Carlo 
results of May [3] is in [5]. 

3. The methods of the previous sections may be modified to handle 
time-delays and non-autonomous systems. The equations then are 

(3.1) A x\t) = F(x<(t), *(t - 8,), At - 82), • • • At - 8N), t, yit/,)). 
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Here 0 = 80 < dx < 82 < • • • < 8N are time delays, y(t/e) is the vector 
of rapidly-varying stochastic parameters, and time t may occur explicit­
ly in the equations. Initial conditions are specified as 

(3.2) tf(t) = <J>(f), given for -8N ^ t ^ 0. 

The solution may be approximated by a method similar to that of the 
preceding sections. First, the function F is averaged, both with respect 
to time and probability 

F(x0? xv • • -, xN, t) 

(3-3) x 

s l i m T Jo £[F(% * ' •> % *> Y(*))] * • 

One then solves the deterministic system 

-4 - *°W = F(x°(£), x°(f - «J, • • -, x°(t - 8N), t), t > 0, 
at 

(3.4) 

The matrices C^f) are defined by 

3~F 
(3.5) C{(t) = - ^ - ( ^ ( f ) , x°(f - Si), • • -, x°(f - <U t), t = 0, 1, • • -, tf. 

The solution x€(£) is then approximately of the form 

(3.6) xHt) ^ At) + V^ y°(t)-

y°(t) is a gaussian stochastic process, the solution of the linear white 
noise delay-differential equation 

^ A*)= 2 Ct(t)tf(t - «,) + a(()W(() 

(3.7) 
t/°(f) = 0 for £ ^ 0. 

Here W(f) is a vector of independent white noises, and the matrix a(t) 
is calculated as follows. First, one calculates the matrix 

A(x0, xv • • -, xN, t) 

= l i m y Jo & i Jo ^2£{tF(% xi> '-> % *> YK)) 

(3.8) 
-EF(x0, xv ••• x^, t, y^ ) ) ] 

[F(x0, xv • • -, xN, t, y(s2)) - EF(x0, xv • • -, xN, t, y(s2))]
T}. 
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A matrix a(xQf xv • • • %, t) is then chosen so that 

(3.9) oaT = A. 

a(t) in equation (3.7) is then defined by a(t) = a(x°(£), x°(t — SJ, 
x°(t - 8N), t), and A(t) = o(t)oT(t). 

As in the non-delay case, the solution of (3.7) may be written in 
terms of a deterministic fundamental solution matrix. Here this matrix 
is the solution of 

4 m s) = s cim -si>S) t>s 
at i=o 

(3.10) 
Y(t, s) = 0 for t < s, Y(s, s) = L 

The solution of (3.7) may then be written as 

(3.11) y°(t)= X ' Y(t,s)o(s)W(s)ds. 

The covariance of y°(t) is then calculated as (for if = 0) 

(3.12) E[y°(t + t)y°T(t)] = £ Y(t + f, s)A(s)YT(t, s) ds. 

Unfortunately in the delay case there appears to be no analogue of 
equation (2.5) for calculating the covariance (with f = 0) directly. 
The analysis of equilibrium point models now proceeds along lines 
quite similar to that for the non-delay case. It is assumed that time t 
does not appear explicitly in equation (3.1), and that the corresponding 
deterministic equations (3.4) have a solution x°(t) — x a constant. If this 
solution of (3.4) is linearly stable, then the covariance of the gaussian 
distribution of y°(t) converges exponentially to a limit, and the general 
qualitative features are the same as in the non-delay case, although ex­
plicit calculations are more difficult. Methods for calculating the cov­
ariance, and applications to a specific example are in [4]. A comparison 
with Monte-Carlo results is in [2]. 

4. The methods of § 3 may be extended to handle several other 
types of models. First, the fixed delays of § 3 may be replaced by 
delays which are themselves rapidly-varying random functions of time. 
We may consider, for instance, the equations 

(4.1) ±*{t) = f(At - «(*/«))) 

where 8(T) is a stochastic process. We consider first the case where 
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there are only a finite number of possible values {<50, 8V • • •, 8N) for 8. 

(4.2) 5(T) = 8i for some i — 0, 1, • • -, N with probability 1. 

This may be reduced to the problem of fixed delays by the following 
device. Define the "random switches" 

(4-3) Yt(r) c 1 if S(T) = 8, 

otherwise. 

Then for vector y(r) — (y0(r), • • -, y^r)) we have the identity 

-£ *<(') = S / ^ - Ô ^ Y ^ A ) 
at i=o 

(4.4) 
- F ( x ^ - Ô 0 ) , • • • , * « ( * - S w ) , y(t/e)). 

The methods of § 3 may now be applied directly to (4.4). 
The case of random delays with a continuum of possible values may 

also be treated, but a further extension is needed [see 2, 3]. The ap­
proximation xe(t) ~ x°(t) + \fêy°(t) with x° deterministic and y° gaus-
sian is still valid. Calculation of the relevant quantities, however, in­
volves the solution of integrodifferential equations. 

Further generalizations of these types of models may involve integral 
memory terms rather than point time delays. That is, the non-linear 
function F may depend on terms of the form 

(4.5) y(t)= £xk(t - S)g(Xi(Sj) ds, 

where x.^s) is one of the components of the population vector x€. These 
models may be treated by the methods of § 2 in the special case when 
the kernel k(t) has a Fourier transform £(«) which is a rational function 
of co. Actually, any reasonably well-behaved kernel can be approx­
imated by such a function by means of an expansion in Laguerre func­
tions [see 7]. The idea is to introduce new dependent variables t/1(f) = 

y(t)> yét)> y3^1 •••> !/<*(')> s o t h a t (*/i> y» '"> Val* *€ together form a 
system of coupled ordinary differential equations. 

As an example, consider the single stochastic equation for scalar x£(f) 

(4.6) JL *(t)=f ( £ook(t-s)g(x^s))ds,y(t/i)y 

We define 

(4.8) yi(t)= £xk(t - s)g(As)) ds. 
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For the case of exponentially decaying memory, k(t) — e \ we have 
that 

We may therefore solve the 2-dimensional system 

J_ \ At) 1 = r jfai(t). y(tU)) 1 
dt L yi(t) J L-y^ + g ^ J 

= F(x<(t), yi(t), y(t/t)). 

For the kernel k(t) — te~\ we define 

We may then solve the 3-dimensional system 

f(yi(t), y(t/€)) 1 

-yi(t) + y2(t) 

-y2(t) + g(At)) \ 

The main difficulty that arises is that, depending on the form of k, 
there may be considerable enlargement of the number of simultaneous 
equations to be solved. 

Recent theoretical work [see 6] has extended these methods to handle 
some boundary value problems of the type that occur in models of in­
teracting species in random spatial environments. More specifically, we 
assume that the populations are distributed along a one-dimensional 
space, and that the environment does not change with time. It has, 
however, a random spatial structure that may give rise to random 
"patches" where some species are favored more than others. While any 
one such community may reach its own equilibrium, there will be sig­
nificant differences due to chance if many such communities are ob­
served. 

Let u{(U x) be the density of species i at position x in space, at time 
t. The population vector is then defined as u — (uv u2, • • -, un). If the 
stochastic fluctuations are on a small space scale, then models allowing 
for diffusive migration can be written in the form 

r) R a 

(4.6) X
 9 

+ f(u(t, x), —-u(£, x), x, ylx/c)) for x E[0, L]. 
ÔX 

d 
dt 

At) 
yi(t) 

yet) 
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Here a is the diffusion matrix, and / gives the form of the local inter­
action dynamics. y(x/c) is a spatial stochastic process, and e > 0 is 
small. In addition to (4.6), some boundary conditions must be specified 
for u(t, x) at the limits of the finite environment at x — 0 and x — L. 

While interesting dynamical behavior may well occur in (4.6), we 
consider here only possible steady states, solutions of the equation 

(4.7) - A . a(x, y(xA)) - | - V(X) + f(v(x), -j-v(x), x, y(x/t)) = 0. 
OX OX OX 

Since (4.7) is to be solved as a boundary-value problem, fundamental 
questions of existence and uniqueness of the stochastic solution need to 
be considered. 

There is a deterministic equation relèvent to the solution of (4.7). It 
is of the form 

(4.8) ~ -a(x) ~ v(x) + f(v(x), ~v(x\ x) = 0, 
OX OX OX 

where à, f are determined by explicit averaging formulae analogous to 
those for the initial value problems considered earlier. The expression 
for a is a sort of harmonic mean of a (which is assumed invertible): 

(4.9) a{x) = [ lim -1 £ E[a~\x, y(y))} dy Y \ 

I f / does not depend on (d/dx)v(x), then / is computed simply by 

(4.10) /(i), x) = lim 1 fj E[f(v, x, y(y))} dy. 

Under general hypotheses, it can be shown that for any solution v(x) 
of (4.8) there exists, with probability arbitrarily close to one as € —» 0, a 
unique solution of (4.7) that is close to v in an appropriate sense, and 
satisfies the same boundary conditions. This solution, v(x), can then be 
written approximately for small e as v(x) « v(x) + \fl vx(x). Further­
more, vx(x) is gaussian, and can be characterized as the solution of a 
linear stochastic boundary value problem. 
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