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SOME RESULTS ON THE POLYNOMIALS LB**(x) 
T. R. PRABHAKAR AND SUMAN REKHA 

ABSTRACT. An integral representation, a finite sum formula and a 
series relation are derived for the polynomials Ln

a'P(x) defined by 

(*) L«ß(x) = r ( a n + f + 1 ) 2 ^ ^ , Re£ > - 1 
*l fcto T(afc + 0 + l)fc! 

where a is any complex number with Re a > 0. 

1. Introduction. Recently, Konhauser [4], Prabhakar [5] and Srivas-
tava [9] established several results on the polynomials Zn

a(x; k) defined 
by 

(Li) zn«(* ; jfc) = r ( fc" + a + 1} 2 (-1Y (n ) - m . + + „ 
n! i-o \ ; / T(k] + a -f 1) 

where fc is a positive integer. In [6] we considered the polynomials 
Ln

a'ß(x) defined by (*) and proved results for these polynomials. Evi
dently, if a — h a positive integer, then Ln

k'ß(xk) — Zn^(x; k) and more 
particularly L^(x) - L/(x\ where L/(x) is the generalized Laguerre 
polynomial. Thus for a = k, the result proved in [6] as also those of 
the present paper yield results on Zn@(x; k). For a — 1, all the results 
for Ln

a'ß(x) reduce to known results for Ln
ß(x). 

2. An integral representation. We first show that for all ß, y with 
Re ß > Re y > - 1 

L a.ß(xa) = T(an + ß + l)x-ß 
n { } T(an + y+l)T(ß-y) 

(2.1) 
J0* (x - w ^ - ï - ^ ï L / ' ^ w « ) du. 

PROOF. Using (*), we are led to 

jj (x - uf-y-1 uyLn«>y(ua) du 

= T(an + 7 + 1 ) y (-n)k 

n! êo T(ak + y + l)Jt! 
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£ (x - uf-y-1 uak+y du 

= T(an + 7 + 1) " (-n)k x"k+ßT(ß - y) 
n\ ào k\T(ak + ß + 1) 

= T(an + y + l)T(ß - y)xß L 

T(an + ß + 1) n 

from which (2.11) follows. 
For a — k, we get an interesting integral relation for Zn@(x; k): 

z/{x;k)= __&?__+ ß + D ^ 
T(kn + y+ l)T(ß - y) 

fj (x - uf-y-1 MT zny(u; k) du 

which is new. For a = 1, (2.1) reduces to the known result for Ln^(x) 
[7; (15)]. 

3. A summation formula. Since the polynomials Ln
a>ß(x) possess the 

generating relation [6; (2.1)] 
00 T a,ß(r\fn 

(3.1) 2 r , " fll» = «W«, ß + l> -**) 
n=o r(an + ß+ 1) 

where cp(a, ft z) is the Bessel-Wright function [3; 18.1(27)], employing 
the technique of Sri vasta va ([8], [9]), we get 

L / . % ) = r(an + j 6 + l ) ( - ) n 

(3-2) / \ * 

k-O T(an - ak + ß + l)fc! 

For a = 1, (3.2) yields a multiplication formula [3; 10.12(40)] for 
Ln&(x)9 whereas for a= k, it leads to [9; (4)]. 

4. A series relation for Ln
a'P(x). We now make use of the fractional 

differentiation operator Dw
x defined by [2] 

(4.1) 

D"X{W""1} = ih {""~1} 

- ^ — co»-*-1, for X # jit, 
r(M - X) 
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to show that 

2 —F, L"T{X)™" Ï T " iFi(M - A + 1; n + /I + 1; t)f» 
n=o r(an + iß + l)(/x 4- l)n

 X * 
(4.2) . x 

T(A) x 2 V (<x, ß + 1), (1, M + 1) / 

where pFQ* is Wright's generalized hypergeometric function [3; 4.1]. 

PROOF. If we rewrite (3.1) as 

00 r a,/3/r\ fit 
2 n TV \ fll^C"' = ^ ' S + ^ - ^ 
n=o 1 (an + p + 1) 

multiply both the sides by £x_1, and apply the operator D ^ - ^ - 1 , we 
get 

J Lnß(x) £ (-i)T(n + r + X) ft+t^<t 

n=o r(cm + /? + 1) r=o r!r(n + r + ju, + 1) 

_ * ( -*)T(n + A) fn+/x 

n=o n'.r(an + ß + l)r(n + JLI + 1) 

which immediately leads to (4.2). 
For À = JU + m -f 1 and a = 1, (4.2) reduces to the result on Ln^(x) 

due to Al-Salam [1] proved by using an operator x(l + xD). 
(4.2) can also be proved directly by the use of Kummer's transforma

tion [3; 6.3(7)]. We owe this remark to the referee. We are, indeed ex
tremely grateful to the referee for several valuable comments and sug
gestions which have helped us improve the paper. 
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