SOME RESULTS ON THE POLYNOMIALS $L_{n}{ }^{\alpha, \beta}(x)$

T. R. PRABHAKAR AND SUMAN REKHA

AbSTRACT. An integral representation, a finite sum formula and a series relation are derived for the polynomials $L_{n}{ }^{\alpha, \beta}(x)$ defined by

$$
\begin{equation*}
L_{n}^{\alpha, \beta}(x)=\frac{\Gamma(\alpha n+\beta+1)}{n!} \sum_{k=0}^{n} \frac{(-n)_{k} x^{k}}{\Gamma(\alpha k+\beta+1) k!}, \operatorname{Re} \beta>-1 \tag{*}
\end{equation*}
$$

where α is any complex number with $\operatorname{Re} \alpha>0$.

1. Introduction. Recently, Konhauser [4], Prabhakar [5] and Srivastava [9] established several results on the polynomials $Z_{n}{ }^{\alpha}(x ; k)$ defined by

$$
\begin{equation*}
\mathrm{Z}_{n}{ }^{\alpha}(x ; k)=\frac{\Gamma(k n+\alpha+1)}{n!} \sum_{j=0}^{n}(-1)^{j}\binom{n}{j} \frac{x^{k j}}{\Gamma(k j+\alpha+1)} \tag{1.1}
\end{equation*}
$$

where k is a positive integer. In [6] we considered the polynomials $L_{n}^{\alpha, \beta}(x)$ defined by $\left.{ }^{*}\right)$ and proved results for these polynomials. Evidently, if $\alpha=k$, a positive integer, then $L_{n}{ }^{k, \beta}\left(x^{k}\right)=Z_{n}{ }^{\beta}(x ; k)$ and more particularly $L_{n}{ }^{1, \beta}(x)=L_{n}{ }^{\beta}(x)$, where $L_{n}{ }^{\beta}(x)$ is the generalized Laguerre polynomial. Thus for $\alpha=k$, the result proved in [6] as also those of the present paper yield results on $Z_{n}{ }^{\beta}(x ; k)$. For $\alpha=1$, all the results for $L_{n}^{\alpha, \beta}(x)$ reduce to known results for $L_{n}{ }^{\beta}(x)$.
2. An integral representation. We first show that for all β, γ with $\operatorname{Re} \beta>\operatorname{Re} \gamma>-1$

$$
\begin{gather*}
L_{n}^{\alpha, \beta}\left(x^{\alpha}\right)=\frac{\Gamma(\alpha n+\beta+1) x^{-\beta}}{\Gamma(\alpha n+\gamma+1) \Gamma(\beta-\gamma)} \\
\int_{0}^{x}(x-u)^{\beta-\gamma-1} u^{\gamma} L_{n}^{\alpha, \gamma}\left(u^{\alpha}\right) d u . \tag{2.1}
\end{gather*}
$$

Proof. Using $\left({ }^{*}\right)$, we are led to

$$
\begin{aligned}
\int_{0}^{x} & (x-u)^{\beta-\gamma-1} u^{\gamma} L_{n}{ }^{\alpha, \gamma}\left(u^{\alpha}\right) d u \\
& =\frac{\Gamma(\alpha n+\gamma+1)}{n!} \sum_{k=0}^{n} \frac{(-n)_{k}}{\Gamma(\alpha k+\gamma+1) k!}
\end{aligned}
$$

$$
\begin{aligned}
\int_{0}^{x} & (x-u)^{\beta-\gamma-1} u^{\alpha k+\gamma} d u \\
& =\frac{\Gamma(\alpha n+\gamma+1)}{n!} \sum_{k=0}^{n} \frac{(-n)_{k} x^{\alpha k+\beta} \Gamma(\beta-\gamma)}{k!\Gamma(\alpha k+\beta+1)} \\
& =\frac{\Gamma(\alpha n+\gamma+1) \Gamma(\beta-\gamma) x^{\beta}}{\Gamma(\alpha n+\beta+1)} L_{n}^{\alpha, \beta}\left(x^{\alpha}\right),
\end{aligned}
$$

from which (2.11) follows.
For $\alpha=k$, we get an interesting integral relation for $Z_{n}{ }^{\beta}(x ; k)$:

$$
\begin{aligned}
& Z_{n}^{\beta}(x ; k)=\frac{\Gamma(k n+\beta+1) x^{-\beta}}{\Gamma(k n+\gamma+1) \Gamma(\beta-\gamma)} \\
& \int_{0}^{x}(x-u)^{\beta-\gamma-1} u^{\gamma} Z_{n}^{\gamma}(u ; k) d u
\end{aligned}
$$

which is new. For $\alpha=1$, (2.1) reduces to the known result for $L_{n}{ }^{\beta}(x)$ [7; (15)].
3. A summation formula. Since the polynomials $L_{n}{ }^{\alpha, \beta}(x)$ possess the generating relation [6; (2.1)]

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{L_{n}^{\alpha, \beta}(x) t^{n}}{\Gamma(\alpha n+\beta+1)}=e^{t} \varphi(\alpha, \beta+1,-x t) \tag{3.1}
\end{equation*}
$$

where $\varphi(\alpha, \beta, z)$ is the Bessel-Wright function [3; 18.1(27)], employing the technique of Srivastava ([8], [9]), we get

$$
\begin{align*}
L_{n}^{\alpha, \beta}(x)= & \Gamma(\alpha n+\beta+1)\left(\frac{x}{y}\right)^{n} \\
& \sum_{k=0}^{n} \frac{L_{n-k}^{\alpha, \beta}(y)\left(\frac{y}{x}-1\right)^{k}}{\Gamma(\alpha n-\alpha k+\beta+1) k!} . \tag{3.2}
\end{align*}
$$

For $\alpha=1$, (3.2) yields a multiplication formula [3; 10.12(40)] for $L_{n}{ }^{\beta}(x)$, whereas for $\alpha=k$, it leads to [9; (4)].
4. A series relation for $L_{n}{ }^{\alpha, \beta}(x)$. We now make use of the fractional differentiation operator $D_{\omega}{ }^{\lambda}$ defined by [2]

$$
\begin{align*}
D_{\omega}{ }^{\lambda}\left\{\omega^{\mu-1}\right\} & =\frac{d^{\lambda}}{d \omega^{\lambda}}\left\{\omega^{\mu-1}\right\} \\
& =\frac{\Gamma(\mu)}{\Gamma(\mu-\lambda)} \omega^{\mu-\lambda-1}, \text { for } \lambda \neq \mu \tag{4.1}
\end{align*}
$$

to show that

$$
\begin{align*}
\sum_{n=0}^{\infty} & \frac{L_{n}{ }^{\alpha, \beta}(x)(\lambda)_{n}}{\Gamma(\alpha n+\beta+1)(\mu+1)_{n}}{ }_{1} F_{1}(\mu-\lambda+1 ; n+\mu+1 ; t) t^{n} \\
& =\frac{\Gamma(\mu+1)}{\Gamma(\lambda)} e^{t}{ }_{1} F_{2}{ }^{*}\left(\begin{array}{l}
(1, \lambda) \\
(\alpha, \beta+1),(1, \mu+1)
\end{array} ;-x t\right) \tag{4.2}
\end{align*}
$$

where ${ }_{p} F_{q}{ }^{*}$ is Wright's generalized hypergeometric function [3; 4.1].
Proof. If we rewrite (3.1) as

$$
\sum_{n=0}^{\infty} \frac{L_{n}^{\alpha, \beta}(x) t^{n}}{\Gamma(\alpha n+\beta+1)} e^{-t}=\varphi(\alpha, \beta+1,-x t)
$$

multiply both the sides by $t^{\lambda-1}$, and apply the operator $D_{t^{\lambda-\mu-1}}$, we get

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{L_{n}{ }^{\beta}(x)}{\Gamma(\alpha n+\beta+1)} & \sum_{r=0}^{\infty} \frac{(-1)^{r} \Gamma(n+r+\lambda)}{r!\Gamma(n+r+\mu+1)} t^{n+r+\mu} \\
=\sum_{n=0}^{\infty} & \frac{(-x)^{n} \Gamma(n+\lambda)}{n!\Gamma(\alpha n+\beta+1) \Gamma(n+\mu+1)} t^{n+\mu}
\end{aligned}
$$

which immediately leads to (4.2).
For $\lambda=\mu+m+1$ and $\alpha=1$, (4.2) reduces to the result on $L_{n}{ }^{\beta}(x)$ due to Al-Salam [1] proved by using an operator $x(1+x D)$.
(4.2) can also be proved directly by the use of Kummer's transformation $[3 ; 6.3(7)]$. We owe this remark to the referee. We are, indeed extremely grateful to the referee for several valuable comments and suggestions which have helped us improve the paper.

References

1. W. A. Al-Salam, Operational representations for the Laguerre and other polynomials, Duke Math. J. 31 (1964), 127-142.
2. A. Erdélyi, Transformation of hypergeometric integrals by means of fractional integration by parts, Quart. J. Math. 10 (1939), 176-189.
3. A. Erdélyi, et al., Higher transcendental functions, Vols. 1-3, McGraw Hill, New York: 1953, 1955.
4. J. D. E. Konhauser, Biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 21 (1967), 303-314.
5. T. R. Prabhakar, On a set of polynomials suggested by Laguerre polynomials, Pacific J. Math. 35 (1970), 213-219.
6. T. R. Prabhakar and Suman Rekha, On a general class of polynomials suggested by Laguerre polynomials, Math. Student 40 (1972), 311-317.
7. G. Sansone, Orthogonal functions, Interscience publishers, Inc., New York: 1959.
8. H. M. Srivastava, Finite summation formulas associated with a class of generalized hypergeometric polynomial, J. Math. Anal. Appl. 23 (1968), 453-458.
9. \qquad On the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials, Pacific J. Math. 49 (1973), 489-492.

University of Delhi, Delhi-110007, India

