EXTREMAL PROPERTIES OF A SUBCLASS **OF CLOSE-TO-CONVEX** FUNCTIONS

H. SILVERMAN AND D. N. TELAGE

ABSTRACT. Denote by *H* **the subclass of close-to-convex** functions $f(z)$ for which there exists a starlike function $g(z)$ satisfying $Re\{z(f'(z))\}'/g'(z)\} > 0$ ($|z| < 1$). We find distortion **theorems, coefficient bounds, and the closed convex hull of** *H.* **We also give a necessary intrinsic condition for a function to be inH.**

1. **Introduction.** Let S denote the class of functions of the form

(1)
$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
$$

that are analytic and univalent in the disk $|z| < 1$. A function $f(z) \in S$ is said to be *starlike* if $\text{Re}\{zf'(z)/f(z)\} > 0(|z| < 1)$, is said to be *convex* if Re{ $1 + zf''(z)/f'(z)$ } > 0(|z| < 1), and is said to be *close-toconvex* if there exists a starlike function $g(z)$ such that $Re\{zf'(z)|g(z)\}$ $> 0(|z| < 1)$. These classes are denoted respectively by S^*, K , and C.

We denote by *H* the class of functions of the form (1) for which there exists a function $g(z) \in S^*$ such that

(2)
$$
\operatorname{Re}\left\{\frac{\left[zf'(z)\right]'}{g'(z)}\right\} > 0(|z| < 1).
$$

In [5] Sakaguchi shows for $g(z) \in S^*$ that $\text{Re}\left\{ [zf'(z)]' \middle| g'(z) \right\} > 0$ implies $\text{Re}\{zf'(z)|g(z)\} > 0$. Thus $H \subset C$. Moreover if $\tilde{f}(z) \in K$, then $\text{Re}\{[\,zf'(z)]\,$ $'\!|f'(z)\} = \text{Re}\{1 + zf''(z)|f'(z)\} > 0.$ Hence we may take $g(z) = f(z)$ in (2) to show that $f(z)$ is also in *H*. Thus $K \subset H$.

It is well known that $K \subset S^* \subset C$. Since we also have the inclusion relations $K \subset H \subset C$, it is of interest to inquire as to the relationship between S^* and H . In the next section, we shall show that S^* is neither contained in nor contains *H.*

Note that the result of Sakaguchi yields a quick proof that $K \subset S^*$, for Re{ $\{z f'(z)\}$ '/ $f'(z)$ } > 0 implies Re $\{zf'(z)f(z)\}$ > 0.

Received by the editors on March 29, 1976.

AMS (MOS) 1970 *Subject Classifications.* **Primary 30A32; 30A40.**

Key words and phrases: **univalent, starlike, convex, close-to-convex, extreme points.**

2. Distortion and Coefficient Bounds for H.

THEOREM 1. If $f(z) \in H$, then $(3 + r^2)/3(1 + r)^3 \le |f'(z)| \le$ $(3 + r^2)/3(1 - r)^3$ $(|z| = r)$, with equality only for functions of the form

(3)
$$
f(z) = \frac{2}{3} \frac{z}{(1 - xz)^2} - \frac{1}{3} \bar{x} \log(1 - xz)(|x| = 1).
$$

PROOF. We may write $[zf'(z)]' = g'(z)p(z)$, where $p(z)$ is a function of positive real part with $p(0) = 1$. It is well known that

(4)
$$
\frac{1-r}{(1+r)^3} \le |g'(z)| \le \frac{1+r}{(1-r)^3} (|z|=r)
$$

and

(5)
$$
\frac{1-r}{1+r} \leq |p(z)| \leq \frac{1+r}{1-r}(|z|=r).
$$

Hence

(6)
$$
\frac{(1-r)^2}{(1+r)^4} \leqq |[zf'(z)]'| \leqq \frac{(1+r)^2}{(1-r)^4}(|z|=r).
$$

Integrating along the straight line segment from the origin to $z = re^{i\theta}$ in the right inequality of (6) we obtain $|zf'(z)| \leq \int_0^r ((1+t)^2 |(1-t)^4) dt$ $=(3r + r^3)/3(1 - r)^3$, which proves the right inequality in the theorem. We now prove the left inequality. For every *r* choose z_0 , $|z_0| = r$, such that $|f'(z_0)| = \min_{|z|=r} |f'(z)|$. If $L(z_0)$ is the pre-image of the segment $\{0, z_0 f'(z_0)\}$, then

$$
|zf'(z)| \ge |z_0 f'(z_0)| = \int_{L(z_0)} |[zf'(z)]'| |dz|
$$

$$
\ge \int_0^r \frac{(1-t)^2}{(1+t)^4} dt = \frac{3r + r^3}{3(1+r)^3}
$$

The result now follows. Equality in (4) holds for $g(z) = z/(1 - xz)^2$ $(|x| = 1)$ and in (5) for $p(z) = (1 + xz)/1 - xz(|x| = 1)$ from which the functions in (3) may be obtained.

THEOREM 2. If $f(z) \in H$, then

$$
\frac{2}{3}\frac{r}{(1+r)^2} + \frac{1}{3}\log(1+r) \le |f(z)| \le \frac{2}{3}\frac{r}{(1-r)^2} - \frac{1}{3}\log(1-r).
$$

Equality holds only for functions defined by (3).

PROOF. The result follows from the bounds of Theorem 1 just as Theorem 1 followed from the bounds in (6).

COROLLARY. If $f(z) \in H$, then $f(z)$ maps the disk $|z| < 1$ onto a *domain that contains the disk* $|w| < (1 + \log 4)/6$.

PROOF. Let $r \rightarrow 1$ in the left inequality of Theorem 2.

THEOREM 3. If $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in H$, then $|a_n| \leq (2/3)n +$ l/3n. This result is sharp, with equality only for functions defined by (3).

PROOF. Our proof is similar to Reade's proof of the Bieberbach conjecture for C [4]. Suppose $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$ and $p(z) = 1 + \sum_{n=2}^{\infty} a_n z^n$ $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \alpha_n z^n$. Then $[zf'(z)]' = \sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \alpha_n z^{n-1} = [\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} n b_n z^{n-1}]$ $\overline{[1 + \sum_{n=1}^{\infty} \alpha_n z^{n-1}]}$, and $n^2 a_n = n \overline{b}_n + \sum_{k=1}^{n-1} (n-k) \overline{b}_{n-k} \alpha_k$. It is well known that $|\bar{b}_n| \leq n$ and $|\alpha_n| \leq 2$ for all n. Hence $n^2 |a_n| \leq n^2$ $+ 2\sum_{k=1}^{n-1}(n-k)^2 = n^2 + n(n-1)(2n-1)/3$, which simplifies to $|a_n| \leq (2/3)n + 1/3n$. Once again equality holds only for functions of the form (3).

Since the bounds for the starlike Koebe function $z/(1-z)^2$ exceed those of Theorems 1, 2, and 3, we see that $S^* \not\subset H$. Moreover $H \not\subset S^*$, as will be seen by showing that $f(z) = (2/3)z/(1 - z)^2 - (1/3) \log(1 - z)$ $E \$ S^{*}. We have

(7)
$$
\frac{zf'(z)}{f(z)} = \frac{3z + z^3}{(1-z)[2z - (1-z)^2 \log(1-z)]}.
$$

Multiplying numerator and denominator in (7) by the conjugate of the denominator, the real part of the numerator at $z = e^{i\theta}$ becomes

$$
n(\theta) = 6 - 8 \cos \theta + 2 \cos 2\theta + (\sin 3\theta - 3 \sin \theta) \tan^{-1} \left(\frac{\sin \theta}{1 - \cos \theta} \right)
$$

$$
+ \frac{1}{2} (10 - 15 \cos \theta + 6 \cos 2\theta - \cos 3\theta) \log [2(1 - \cos \theta)].
$$

Thus $n(\pi/3) = 1 - 3 \cdot 3^{1/2}/2 \tan^{-1} 3^{1/2} < 0$, which means there is a $\delta > 0$ such that $\text{Re}\{zf'(z)|f(z)\} < 0$ ($z = \text{re}^{\pi i/3}, 1 - \delta < r < 1$).

Since the functions defined by (3) are the only functions extremal for Theorems 1, 2, and 3, they must also be extreme points of the closed convex hull of *H.* We now determine this closed convex hull.

3. Convex **Hull** of **H.** In this section we determine the closed convex hull of *H*, denoted by cl co *H*. Letting $\tilde{H} = \{h(z) | h(z) =$ $[zf'(z)]'$, $f(z) \in H$, we note that $h(z) \in \tilde{H}$ if and only if there is a $g(z) \in S^*$ for which

 $\pmb{\cdot}$

(8)
$$
\operatorname{Re} \left\{ \frac{h(z)}{g'(z)} \right\} > 0(|z| < 1).
$$

In the theorem that follows, we obtain the ci co *H.*

THEOREM 4. Let \overline{X} be the torus $\{(x, y) \mid |x| = |y| = 1\}$, \mathcal{P} be the set *of probability measures on* \overline{X} *, and let* $k(z, x, y) = ((1 + xz)/(1 - xz))$ $((1 + yz)/(1 - yz)^3)(|x| = |y| = 1, |z| < 1).$ If \Im is the family of func*tions h_u* on $|z| < 1$ defined by $h_n(z) = \int_{\bar{x}} k(z, x, y) d\mu(x, y)(\mu \in \mathcal{D})$, *then*

$$
\mathfrak{D} = \mathrm{cl} \, \mathrm{co} \, \tilde{H}.
$$

PROOF. First suppose $h(z) \in \tilde{H}$. By (8) we may write $h(z)/g'(z) =$ $p(z)$, where $p(z)$ is a function having positive real part with $p(0)$ $= 1$. From the Herglotz representation, there is a probability measure $\mu_1(x)$ on $\Gamma = \{x \mid |x| = 1\}$ such that $\hat{h}(z)/g'(z) =$ $\int_{\Gamma_1} (1 + x^2)/(1 - x^2) d\mu_1(x)$. In addition since $g(z) \in S^*$ we have [1] $g'(z) = \int_{\Gamma} ((1 + yz)/(1 - yz)^3) d\mu_2(y)$, where $\mu_2(y)$ is a probability measure on Γ . Thus by Fubini's theorem, $h(z) = \int_{\overline{x}}((1 + xz)/(1$ $f(xz)((1 + yz)/(1 - yz)^3) d\mu(x,y)(\mu = \mu_1 \times \mu_2)$, which shows that $\overline{H} \subset \mathfrak{S}$ Since \Im is a closed convex family, we have cl co $\tilde{H} \subset \Im$.

Conversely, setting $h(z) = k(z, x, y)$ and $g(z) = z/(1 - yz)^2$ in (8), we see that each kernel function $k(z, x, y)$ is in \tilde{H} . Hence $\tilde{\Theta} \subset \text{cl}$ co H, which proves (9).

REMARK. In view of Theorem 1d of [1], the functions $\{k(z, x, y),\}$ $|x| = |y| = 1$ are the only possible extreme points of eleo*H*. Since any real-valued continuous linear functional on *H* is maximized or minimized at an extreme point of cl co \tilde{H} , denoted $\mathcal{E}(\text{cl co }\tilde{H})$, the bounds in (6) enable us to show that the functions $\{k(z, x, x)\}\)$ are in $\mathcal{E}(\text{cl co } H)$. On the other hand $k(z, x, -x) = 1/(1 + xz)^2 = (zf'(z))'$ for some $f(z) \in H$. Since $f(z) = \overline{x} \log(1 + xz)$ is in *K* but not in \mathcal{E} (cl co K), $f(z)$ cannot be an extreme point of the larger family \tilde{H} . Hence $k(z, x, -z) \notin \mathcal{E}(\text{cl co }\tilde{H})$. We are not able to determine if the functions $k(z, x, y), x \neq \pm y$, are in $\mathcal{E}(\text{cl co }\tilde{H})$.

THEOREM 5. Let \overline{X} be the torus $\{(x, y) | |x| = |y| = 1\}$, \mathcal{P} be the set *of probability measures on* X, *and let*

$$
f(z, x, y) = \int_0^z \left[1/\xi \int_0^s ((1 + xw)/(1 - xw))((1 + yw)(1 - yw)^3)\right] d\xi
$$

$$
(|x| = |y| = 1, |z| < 1).
$$

If \Im *is the family of functions of the form* $\int_{\overline{x}} f(z, x, y) du(x, y)(u \in \mathcal{P})$, *then* $\Theta = \text{cl } \text{co } H$.

PROOF. Since the operator *L* defined by

$$
L(h(z)) = \int_0^z \left[1/\xi \int_0^{\xi} h(w) dw \right] d\xi
$$

is a linear homeomorphism of \tilde{H} onto H , the result follows from Theorem 4.

REMARK. It is interesting to note that the functions $f(z, x, x)$, extreme points of the closed convex hull of *H,* are actually a linear combination of extreme points taken from the closed convex hulls of starlike functions and functions convex of order 1/2. See [2].

4. A Necessary **Intrinsic Condition** for *H.* Kaplan [3] found a necessary and sufficient intrinsic condition for functions to be close-toconvex. Following his lead, we give a necessary intrinsic condition for a function to be in *H.* We do not, however, have a sufficient condition.

LEMMA. If $f(z) \in H$, then there exists a function $\phi(z) \in K$ such *that h(z) defined by*

(10)
$$
h'(z) = \frac{(zf'(z))'}{1 + \frac{z\phi''(z)}{\phi'(z)}}
$$

is in C.

PROOF. For $f(z)$ defined by (2), choose $\phi(z) = \int_0^z g(\xi) / \xi \, d\xi$. Since $g'(z) = \phi'(z)\{1 + (z\phi''(z)/\phi'(z))\}$, (2) is equivalent to Re $h'(z)/\phi'(z)$ > 0 .

THEOREM 6. Let $f(z)$ be in H, and set $F(z) = zf'(z)$. Then

$$
\int_{\theta_1}^{\theta_2} \text{ Re } \left\{ 1 + \frac{zF''(z)}{F'(z)} \right\} d\theta > -2\pi
$$

$$
(0 \le \theta_1 < \theta_2 \le 2\pi, z = re^{i\theta}).
$$

PROOF. By the lemma $h(z)$, given by (10), is in C and hence

$$
\int_{\theta_1}^{\theta_2} \text{ Re } \left\{ 1 + \frac{zh''(z)}{h'(z)} \right\} d\theta > -\pi
$$

$$
(0 \le \theta_1 < \theta_2 \le 2\pi, z = re^{i\theta}),
$$

or equivalently

(11)
$$
\int_{\theta_1}^{\theta_2} \text{Re} \left\{ 1 + \frac{zF''(z)}{F'(z)} \right\} d\theta
$$

\n
$$
> \int_{\theta_1}^{\theta_2} \text{Re} \left\{ z \frac{d}{dz} \log \left[1 + \frac{z\phi''(z)}{\phi'(z)} \right] \right\} d\theta
$$

\nSince $\phi(z) \in K$, Re{1 + $z\phi''(z)/\phi'(z)$ } > 0(|z| < 1), so that
\n
$$
\int_{\theta_1}^{\theta_2} \text{Re} \left\{ z \frac{d}{dz} \log \left[1 + \frac{z\phi''(z)}{\phi'(z)} \right] \right\} d\theta
$$

$$
= \left| \arg \left[1 + \operatorname{re}^{i\theta_2} \frac{\phi''(\operatorname{re}^{i\theta_2})}{\phi'(\operatorname{re}^{i\theta_2})} \right] \right|
$$

-
$$
\arg \left[1 - \operatorname{re}^{i\theta_1} \frac{\phi''(\operatorname{re}^{i\theta_1})}{\phi'(\operatorname{re}^{i\theta_1})} \right] \Big| < \pi.
$$

The theorem follows upon substituting the last inequality into (11).

REFERENCES

1. L. Brickman, T. H. MacGregor, and D. R. Wilken, *Convex hulls of some classical families of univalent functions,* **Trans. Amer. Math. Soc. 156 (1971), 91 -** 107.

2. L. Brickman, D. J. Hallenbeck, T. H. MacGregor, and D. R. Wilken, *Convex hulls and extreme points of families of starlike and convex mappings,* **Trans. Amer.** Math. Soc. **185** (1973), 413-428.

3. W. Kaplan, *Close-to-convex schlicht functions,* Michigan Math. J. 1 (1952), 169-185.

4. M. O. Reade, *The coefficients of close-to-convex functions,* **Duke Math. J.** 23 (1956), 459-462.

5. K. Sakaguchi, *On a certain univalent mapping,* J. Math. Soc. Japan, **11** (1959), 72-75.

COLLEGE OF CHARLESTON, CHARLESTON, SOUTH CAROLINA 29401 UNIVERSITY OF KENTUCKY, LEXINGTON, KENTUCKY **40506**