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SINGULAR PERTURBATIONS FOR DIFFERENCE 
EQUATIONS 

CRAIG COMSTOCK AND GEORGE C. HSIAO* 

ABSTRACT. This paper discusses singular perturbations for 
second-order linear difference equations with a small param­
eter. It is found that there exhibits boundary layer behavior 
for the two-point boundary-value problem as well as for the 
final-value problem, but not for the initial-value problem. In 
contrast to problems for differential equations, a boundary 
layer exists only at the right end point. By virtue of a stretch­
ing transformation, a formal procedure is developed for treat­
ing such problems, and the justification of this procedure is 
established through a discrete maximum principle. 

1. Introduction. We consider here the singular perturbation for the 
second-order linear difference equations. More precisely we consider 
the boundaiy value problem (Pe) defined by 

(1.1) eYk+2 + akYk+l + bkYk = 0 (k = 0,1,2, • • -, N - 2), 

and 

(1.2) Y« = «, YN = ß. 

Here e > 0 is a small parameter; ak and bk are non-zero discrete func­
tions which are assumed to be bounded; a and ß are given constants. 
We shall study the asymptotic behavior of the solution when € ap­
proaches zero. By analogy with the ordinary differential equations 
[2], the problem (PJ is said to be singular in the sense that the degen­
erate problem (or the reduced problem) (P0), 

(1.3) akYk+l + bkYk = 0 (k = 0 ,1 , 2, • • -, N - 2) 

together with (1.2) has no solution. 
Our goal here is to develop a procedure for treating such problems. 

In particular, we are interested in the boundary layer behavior as well 
as the feasibility of applying the method of inner and outer expansions 
to singular perturbation problems for the difference equations. We 
will see that in contrast to the differential equation problem, 

cy" + ay ' + by = 0 (x0 < x < xN) 
(lA) , , , , , 

y(x0) = a and y(xN) — ß 
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there is a "boundary layer" only at the right end point, regardless of 
the sign of the coefficient ak in (1.1) (this discrepancy will be explained 
in § 5). In fact, the initial value problem for the difference equation 
(1.1) together with Y0 = a and Yx = ß is unstable with no boundary 
layer, while the final value problem, (1.1), YN = ß and YN_l = a, is 
quite stable with a boundary layer on the right. For both problem 
(P€) and final value problem there are maximum principles available 
which we use to establish our boundary layer results. 

In order to gain some insight of the singular behavior of the solution 
of (Pe), we first consider the special case of (1.1) where ak and bk are 
non-zero constants. In this case the problem (Pe) may be solved ex­
plicitly, and hence one can easily obtain the asymptotic development 
of the solution. Based on this simple illustrative example, we then 
establish a general procedure for treating the case of non-constant 
coefficients. It is our hope that the present investigation may shed 
some light on the development of asymptotic analysis as well as on the 
numerical treatment for the nonlinear difference equations, whose 
solutions in general cannot be found explicitly. 

2. A Simple Example. We begin with the simple problem: 

eYk+2 + aYk+l + bYk = 0 (k = 0 ,1 , 2, • • -, N - 2) 

Y0 = a and YN = ß, 

where a j^ 0, b j^ 0 are constants. The solution in this case can be 
obtained explicitly as 

Yk = {(om2
N - ß)mY

k + (ß - oml
N)m2

k}(m2
N - mY

N)-\ 

where mx and m2 are the roots of the characteristic equation em2 + 
am 4- b = 0. To obtain the asymptotic expansion of Yk, one has to 
examine the behavior of the m/s for small e : 

mx = = f ' { 1 + VI - fcfc/fl*} = - J- {a - e Ì - ^ + 0(«3)}, 

m2 = ^ {1 - V l - 4 * 6 / a * } = - { | + ~T * + ° ( e 2 ) } • 

From these expansions, it is clear that one should write the solution 
of (2.1) in the form: 

(2 2) Yk = {{a ~ ßm^N)m*k + ( /3 " «TO2NK-<"-*>} 
{ 1 - [m2lml]

N}~1. 

Note that from the definition of mx and m2, mr~
l and m2ml~

l are both 
of O(e). Hence for small e, we have 
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Yk - (ß - cxm2
N)m1-

{N-k) + om2
k = a [ - — 1 + O(e) 

(2.3) 

for it / N. 

The degenerate equation for (2.1) reads 

azk+l + bzk = 0 
which has the solution in the form: 

zk = c(— bla)k 

for arbitrary constant c. From (2.3) it indicates that if one chooses 
c = a, that is, if zk is the solution of the reduced boundary value 
problem: 

(2.4) azk + l + bzk = 0 and z0 — Y0, 

then it is clear that Yk—> zk as e—» 0+ . But the convergence is non­
uniform at k = N. This non-uniform convergence is due to the fact 
that the term ml~

iN~k) in (2.3) is small only for k ^ N. By analogy 
with singular perturbation problems for differential equations [2], we 
may refer to the point k = N as the boundary-lay er point. Our goal 
now is to develop a procedure for obtaining a correction term say wk> 

so that zk -f wk can be used to approximate the exact solution Yk at 
the boundary-layer point as well as other points. 

REMARK. It is interesting to point out that the boundary-lay er point 
is always at k = N whether a > 0 or a < 0, while in the case of dif­
ferential equation problem (1.4), the boundary layer occurring in the 
neighborhood of different boundary points depends generally upon 
the sign of a. However, this is not really surprising, as we will see the 
explanations in § 5. 

Before we discuss how to obtain the correction term, let us for the 
moment study the initial value problem: 

eYk+2 + aYk+l + bYk = 0 (* = 0,1, • • •) 
(2.5) 

Y0 = a and Yl = ß. 

The solution is obviously 

(2.6) Yk = {(ß - om2)ml
k-' + (a - ßm^m^} {1 - mJm^-K 

Using our expansions of mx and m2 for small €, (2.6) becomes 

(2 7) Y * ~ t ( / 8 + a fe /aX-afe)*"1 

+ (a + ße/a)(-bla)k} {1 - efc/a2}"1. 
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For k > 1 this solution grows without bound as e —> 0 + (unless a, ß, a, 
b are just right). On the other hand, suppose we consider the "final 
value" problem, 

€Y,+2 + aYk+l + bYk = 0 (k = N - 2, N - 3, • • •) 

YN = ß and YN_l = a. 

Now the solution is 

Yk = {(ß - cm2)m^ 

(2.9) + (a - ßml-
i)m2

k-N+l} {1 - r^Mix}-1 

= {(ß + abla)(-ale)k-N - (ebla2)(aale 

+ ß)(-bla)k~N} {1 - ebla2}-1. 

This exhibits a nice boundary layer behavior as fc—» ]V, and is well 
behaved for all other fc as e—»0+. The reduced problem in this 
case is then defined by 

(2.10) fl2fc+1 + fo^fc = 0 and zN__Y = YN_X. 

Thus our difference equation in (2.1) has a backwards stability, but 
not a forwards stability in some sense like a parabolic equation. How­
ever, as we shall prove, there is an elliptic type of maximum principle 
available by means of which we can show that the boundary value-
broundary layer approach is valid. 

3. Formal Procedure. Now let us continue our discussion on the 
correction term for the problem (2.1). Examining the difference be­
tween the solution Yk in (2.3) and the reduced solution zk in (2.4), one 
expects that a reasonable correction term wk should be deduced from 
the term 

(ß - om2
N)ml-

{N-k) ~ [ß- <*(- bla)N] ( - ale)-™-» 

= €<N-k\YN-zN)(-a)-<«-k\ 

Let us set ibk = (YN — zN)( — a)~lN~k). Then one observes that wk is 
the solution of the problem 

wk+2 + awk+1 = 0 (k= N- 2,N- 1, • • -,0) 

WN ~~ *N ZN> 

A simple comparison of (2.1) and (3.1) shows that if we introduce Yfc? 

(3.2) Yfc = e"-«Yk, 

as the stretched variable, then (2.1) can be rewritten in the form: 
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î*+2 + aîk+l + ebîk = 0 

% = e-Na, YN = / 3 = Y N . 

Note that the difference equation in (3.3) assumes a similar form as the 
"boundary layer equation" for the differential equation in (1.4). It is 
easy to see that wk is the solution of the corresponding reduced prob­
lem of (3.3) with ß replaced by ß — zN; namely the problem defined by 
(3.1). Thus we arrive at the following formal procedure for construct­
ing the solution of (2.1). That is, one can approximate the solution of 
(2.1) by 

Y f csz f c + €<"-*>tSfc. 

More precisely we have proved the following theorem: 

THEOREM 1. Let Yk be the solution of the boundary value problem 
(2.1). Then Yk can be represented in the form 

(3.4) Yk = zk + €N~kwk + 0(e) as e -» 0+, 

uniformly for fc = 0, 1, 2, • • -, IV, where zk and wk are solutions of 
BVP's defined by (2.4) and (3.1) respectively. 

REMARK. The procedure for the construction of outer and inner 
expansions should now be straightforward. 

4. Main Theorem. We return now to the problem (Pe). Clearly we 
wish to establish a similar result (3.4) for (P6). In this case zk and wk 

are the unique solutions to the boundary value problems: 

(4.1) akzk + l + bkzk = 0 (k = 0 ,1 , • • -, N - 1); z0 = a. 

and 

wk+2 + akwk+l = 0 (k = N - 2, N - 3, • • -, 0); 
(4.2) 

WN = (ß - %)• 

In order to show that 

(4.3) Yk = zk + €"-*tBfc + 0(€), 

one needs some a priori estimates for the solution of the problem 
(Pe). Before we pursue the idea, let us first consider the error term 
Rk defined by 

(4.4) Rk = Yfc - (zk + €"-*0fc). 

A simple computation then shows that Rk satisfies the following 
problem: 
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eRk+2 + akRk+ì + bkRk = fk(e) (k = 0 ,1 , 2, • • - , N - 2 ) 
(4.5) 

Ho = -eNw0, RN = 0, 

where /fc(e) = — {ezfc+2 + eN~kbkwk}. Clearly from the definition of 
zk and wk it follows that fk(e) = O(e) uniformly for k = 0, 1, 2, 
N — 2. Hence a suitable a priori estimate of Rk in terms of fk(e), RQ 
and fìN is desirable in order to establish the result (4.3) in this case. 
For this purpose, we need the following lemma, a sort of maximum 
principle (in [1], a discrete maximum principle is available for the 
positive type difference operator): 

LEMMA 1. Let Uk be the solution of the following problem: 

€Uk+2 + akUk+l + bkUk=fk (k = 0,1,2, • • -, N - 2) 

U0 and UN are prescribed, 

where the coefficients ak, bk are bounded non-zero discrete functions. 
Then for e sufficiently small there exists a constant y > 0 such that 

(4.7) \\U\\N^y{\U0\+e\UN\ + | | / | | w _ 2 } , 

where the notation | | g | | n ~ maxfc =0,1,2, -,n {lg/cl}/or any discrete func­
tion g. 

The proof of the lemma, an induction argument, is tedious but 
straightforward. We omit the proof in order to save space. 

From Lemma 1, one can easily show that Rk = 0(c) uniformly for 
k = 0,1, 2, • • ',N. We thus prove the main theorem: 

THEOREM 2. Under the assumptions of Lemma 1 on ak and bk, 
the solution Yk of(P€) has the representation form: 

(4.8) Yk = zk + eN~kwk + 0(e) as e -* 0 + 

uniformly for k — 0, 1, 2, • • -, N. The functions zk and wk are 
defined by (4.1) and (4.2) respectively. 

Similar theorems are available for the final value problem, the 
details of which are left to the reader. 

5. Concluding Remarks. The results in this paper may shed some 
light on the difference between various finite difference schemes. That 
the boundary layer for (1.1) is always at the right end point has a 
simple explanation. The fact is that the difference equation (1.1) is 
not always a discrete analog of the differential equation (1.4). If the 
centered difference approximation is used for the second derivative 
and the backward difference approximation is used for the first deriva­
tive in (1.4), then indeed a difference equation of the form (1.1) can 
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be obtained (assuming that the mesh size is much bigger than e). If 
instead, the forward difference approximation is used for the first 
derivative in (1.4), one will obtain a difference equation öf the form: 

(5.1) bkYk+2 + akYk+1 + eYk=0 

with suitable discrete functions ak and bk. Then it can easily be de­
duced from our results that the difference equation (5.1) always has a 
boundary layer at the left end point. In [ 1], it has been observed 
that (1.1) is a good approximation to (1.1) for small € when a in (1.4) 
is negative, and that (5.1) is the correct approximation to (1.4) when a 
is positive. In this sense it shows that the results for the difference 
equations (1.1) and (5.1) are indeed consistent with those for the dif­
ferential equation (1.4). 

Finally it would be worthwhile to note that although one may also 
approximate both the first and the second derivatives in (1.4) by using 
centered difference, yet the corresponding difference equation 
obtained does not fall into the general type of equations considered 
here; moreover, the corresponding difference equation oscillates 
rapidly for small e, and hence, it is not a good approximation to (1.4). 

The authors wish to thank the reviewer for his suggestions concern­
ing this section. 
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