LATTICE-VALUED BOREL MEASURES

S. S. KHURANA

Abstract. A Riesz representation type theorem is proved for measures on locally compact spaces, taking values in some ordered vector spaces.

In a series of papers ([4], [5], [6]), J. M. Maitland Wright has established, among other things, some Riesz representation type theorems for positive linear mappings from $C(X)$ to E, X being a compact Hausdorff space and E a complete (or σ-complete) vector-lattice. In this paper we prove these results (Theorem 4) by using the properties of order convergence in vector lattices.

We shall use the notations of ([2], [3]). For a compact Hausdorff space X, we denote by $C(X)$ the vector space of all continuous real-valued functions on X with sup norm, by $L(X)$ and $M(X)$ the dual and bidual of $C(X)$, respectively, and by $\beta(X)$ and $\beta_1(X)$ the sets of all bounded Borel and Baire measurable real-valued functions on X, respectively. In the natural order $C(X)$ is a vector lattice and $\beta(X)$ and $\beta_1(X)$ are boundedly σ-complete lattices. Also $L(X)$ and $M(X)$ are boundedly complete vector lattices and $C(X)$ is a sublattice of $M(X)$. Let $S(X)$ be the subspace of $M(X)$ generated by those elements of $M(X)$ which are suprema of bounded subsets of $C(X)$.

Let E be a vector lattice (always assumed to be over the field of real numbers). Order convergence, order closure (σ-closure), order continuity (σ-continuity) in vector lattices are taken in the usual sense ([1], [2], [3]). If A is a subset of E, let A_1 be the set of order limits, in E, of sequences in A, A_2 be the set of order limits of sequences in $A \cup A_1$ (= A_1), and so on. Continuing this process transfinetly, if necessary, and taking the union of all these subsets, we get the order σ-closure of the set A. A vector subspace B of E we shall call monotone order closed (σ-closed), if for any net (sequence) $\{x_\alpha\}$, such that $x_\alpha \uparrow x$ in E, $x \in B$ ($x_\alpha \uparrow x$ means $\{x_\alpha\}$ is increasing and its sup is x). Now if A is a vector sublattice of a boundedly σ-complete vector lattice E, E_1 a monotone order σ-closed vector subspace of E, and $E_1 \supset A$, then $E_1 \supset A_1$ (A_1 as defined above); since A_1 is also a vector sublattice of E, $E_1 \supset A_2$, and so continuing this (transfinetly if necessary) we get $E_1 \supset$ order σ-closure of A. This result will be needed later. Monotone order continuity (σ-continuity) can be defined between ordered...
vector spaces in a similar way. For any real-valued function on a topological space \(Z \), \(\sup f = \text{closure of } \{ z \in Z : f(z) \neq 0 \} \) in \(Z \).

The order \(\sigma \)-closure of \(S(X) \) (\(C(X) \)), in \(M(X) \), will be denoted by \(\beta(X) \) (\(\beta_1(X) \)). We denote by \(B(X) \) the set of all bounded real-valued functions on \(X \) with the natural point-wise order. \(\beta_1(X) \) is the order \(\sigma \)-closure of \(C(X) \) in \(B(X) \), and \(\beta(X) \) is the order \(\sigma \)-closure of the vector space generated by bounded lower semicontinuous functions on \(X \). If \(X \) is Stonian (\(\sigma \)-Stonian), \(C(X) \) is a boundedly complete (\(\sigma \)-complete) vector lattice, and in this case \(H = \{ f \in B(X) : \exists g \in C(X) \text{ such that } f = g \text{ except on a meagre subset of } X \} \supseteq \beta(X) \cap \beta_1(X) \); this gives a mapping \(\psi : \beta(X) \to C(X) \) (\(\psi_1 : \beta_1(X) \to C(X) \)). We prove first the following simple lemmas.

Lemma 1. There exists a 1-1, onto, linear, both way positive, mapping \(\varphi : \beta(X) \to \beta(X) \) (\(\varphi_1 : \beta_1(X) \to \beta_1(X) \)), such that

(i) \(\varphi(f) = f(\varphi_1(f) = f) \), \(\forall f \in C(X) \);

(ii) \(\varphi, \varphi^{-1}, \varphi_1, \varphi_1^{-1} \) are all order \(\sigma \)-continuous;

(iii) for any increasing net \(\{ f_a \} \) in \(C(X) \), \(\varphi(\sup f_a) = \sup \varphi(f_a) \), and \(\varphi^{-1}(\sup f_a) = \sup \varphi^{-1}(f_a) \).

Proof. On \(B(X) \), the space of all bounded, real-valued functions on \(X \), we take the topology of point-wise convergence. Since the identity map \(i : (C(X), \| \cdot \|) \to B(X) \) is a weakly compact linear operator, its second adjoint \(i^{**} : (M(X), \sigma(M(X), L(X))) \to B(X) \) is continuous, and so is order continuous, since order convergence in \(M(X) \) implies \(\sigma(M(X), L(X)) \)-convergence. This means that for an increasing net \(\{ f_a \} \) in \(C(X) \), \(\varphi(\sup f_a) = \sup \{ \varphi(f_a) \} \) in \(B(X) \). This proves that \(i^{**} \cap \beta(X) \supseteq \beta_1(X) \) and is order \(\sigma \)-closed, and so \(i^{**} \cap \beta_1(X) \supseteq \beta(X) \); similar results hold for \(\beta_1(X) \). Let \(\varphi = i^{**} \mid \beta_1(X) \) (\(\varphi_1 = i^{**} \mid \beta_1(X) \)). Then \(\varphi : \beta(X) \to \beta(X) \) (\(\varphi_1 : \beta_1(X) \to \beta_1(X) \)). If \(f \in \beta(X) \) and \(f \geq 0 \), then there exists a net \(\{ f_a \} \subset C(X) \) such that \(f_a \to f \) (i.e., order converges to \(f \) in \(M(X) \)) \[2\]. This means \(f_a \to \varphi(f) \) which means that \(\varphi(f) \geq 0 \). Now suppose that for some \(f \in \beta(X) \) \(\varphi(f) = 0 \). Take \(\{ f_a \} \subset C(X) \) such that \(f_a \to f \) and so \(f_a \to \varphi(f) \) which means that \(\varphi(f) = 0 \). This means \(f_a \to 0 \) \(\forall x \in X \), and so \(\langle f, \epsilon_x \rangle = 0 \) \(\forall \) point measure \(\epsilon_x \in L(x) \), which proves that \(f = 0 \) \([2\], p. 83\), and thus \(\varphi \) is 1-1. To prove that \(\varphi^{-1} \) is positive, take \(f \in \beta(X) \), such that \(\varphi(f) \geq 0 \). There exists a net \(\{ f_a \} \subset C(X) \) such that \(f_a \to f \) in \(M \), which means that \(f_a \to \varphi^+ \) and \(f_a \to \varphi^- \). This gives that \(\lim f_a \) (\(x \)) = 0, \(\forall x \in X \), and so \(\langle f^-, \epsilon_x \rangle = 0 \) for any point measure \(\epsilon_x \) in \(L(X) \) which means \(f^- = 0 \) \([2\], p. 83\). This proves \(\varphi^{-1} \) is positive. To prove that \(\varphi \) is onto, take a lower semi-continuous function \(f \) in \(B(X) \). Then there exists an increasing net \(\{ f_a \} \) in \(C(X) \) such that \(f_a \to f \). Taking
g = \sup\{f_n^-\} in M(X), we get f = \varphi(g). Also if an increasing sequence \(h_n \uparrow h\) in \(B(X)\), by positivity of \(\varphi^{-1}\), \(g_n = \varphi^{-1}(h_n)\) is increasing in \(M(X)\); and so \(\varphi(g) = h\), where \(g = \sup\{g_n\} in M(X)\). This proves \(\varphi\) is onto. The order \(\sigma\)-continuity and other properties of \(\varphi^{-1}\) are easily verified. Similar arguments prove the corresponding results for \(\varphi_1\). This completes the proof.

Lemma 2. If \(X\) is Stonian (\(\sigma\)-Stonian), the mapping \(\psi : \beta(X) \to C(X)\)
\((\psi_1 : \beta_1(X) \to C(X))\) is a positive order \(\sigma\)-continuous linear mapping. Also if \(\{f_n\}\) is an increasing net in \(C(X)\) such that \(\sup f_n = f\) in \(\beta(X)\), then \(\psi(f) = \sup \psi(f_n), if X\) is Stonian.

Proof. The linearity and positivity of \(\psi\) are obvious. Also if \(\{f_n\}\)
is an increasing net in \(C(X)\), then pointwise \(\sup\{f_n\} = f\) and \(\sup\{f_n\} = h^*\) in \(C(X)\) are equal except on a meagre subset of \(X\) [4], and so \(\psi(f) = h = \sup \psi(f_n). If \{h_n\}\) is an increasing sequence in \(\beta(X)\) such that \(h_n = f_n \in C(X)\) on \(X\setminus A_n, A_n\) being meagre for every \(n, and h_n \uparrow h\) in \(\beta(X)\), then \(f = \sup f_n^-\) in \(C(X)\), and \(g = \) pointwise \(\sup\{f_n\}\) are equal on \(X\setminus A\) being a meagre subset of \(X\). This proves \(\psi(h_n) \uparrow \psi(h)\), and so \(\psi\) is order \(\sigma\)-continuous. The corresponding results for \(\psi_1\) can be proved in a similar way.

Lemma 3. Let \(X\) and \(S\) be compact Hausdorff spaces with \(S\) also a Stonian (\(\sigma\)-Stonian) space, and \(\mu : C(X) \to C(S)\) a positive linear mapping. Then \(\mu\) can be uniquely extended to a positive linear mapping \(\bar{\mu} : \beta(X) \to C(S)\)
\((\bar{\mu} : \beta_1(X) \to C(S))\), satisfying the following conditions.

(i) \(\bar{\mu}\) is order \(\sigma\)-continuous;
(ii) for any increasing net \(\{f_a\} \subset C(X), with sup f_a = f in \beta(X), \bar{\mu}(f) = sup \bar{\mu}(f_a), in case X\) is Stonian.

Proof. Assume first that \(S\) is Stonian. The second adjoint of \(\mu : C(X) \to C(S)\), \(\mu'' : M(X) \to M(S)\), is an order-continuous positive linear mapping ([3], p. 525), and so \(\mu''^{-1} \circ Bo(S) \subseteq Bo(X)\). Using Lemmas 2 and 3 we get a mapping \(\bar{\mu} : \beta(X) \to C(S)\), satisfying the conditions of the lemma. If \(\nu\) is another extension satisfying the conditions of the theorem, then \(\bar{\mu}\) and \(\nu\) are equal on the subspace generated by l.s.c. bounded functions on \(X\), and so by order \(\sigma\)-continuity, they are equal on \(\beta(X)\). The \(\sigma\)-Stonian case can be dealt with in a similar way.

Let \(Y\) be a locally compact Hausdorff space, \(\beta'(Y) (\beta_1'(Y))\) all bounded Borel (Baire) measurable functions with compact supports, \(B'(Y)\) all bounded real-valued functions on \(Y\) with compact supports, and \(K(Y)\) all continuous real-valued functions on \(Y\) with compact supports. For any open (open \(F_\sigma\)) relatively compact subset \(V \subset Y\), let
$\beta'(Y, V) = \{ f \in \beta'(Y) : f \equiv 0 \text{ on } Y \setminus V \}$ \(\beta_1'(Y, V) = \{ f \in \beta_1'(Y), f \equiv 0 \text{ on } Y \setminus V \} \). If \(K(Y, V) = \{ f \in K(Y), \sup f \subset V \} \) and \(S'(Y, V) \) is the subspace of \(B'(Y) \) generated by \(\{ f \in B'(Y) : \exists \text{ an increasing net } \{ f_\alpha \} \subset K(Y, V), \text{ with } \sup f_\alpha = f \} \), then \(\beta'(Y, V) = \text{order } \sigma \)-closure of \(S'(Y, V) \) \(\beta_1'(Y, V) = \text{order } \sigma \)-closure of \(K(Y, V) \). Also \(\beta'(Y) = \bigcup \{ \beta'(Y, V) : V \text{ open relatively compact in } Y \} \) \(\beta_1'(Y, V) = \bigcup \{ \beta_1'(Y, V) : V \text{ open relatively compact in } Y \} \).

Theorem 4. Let \(E \) be a boundedly monotone complete \((\sigma\text{-complete})\) ordered vector and \(\mu : K(Y) \to E \) a positive linear map. Then \(\mu \) can be uniquely extended to \(\tilde{\mu} : \beta'(Y) \to E \ (\tilde{\mu} : \beta_1'(Y) \to E) \) with the properties that (i) \(\tilde{\mu} \) is monotone \(\sigma \)-continuous, (ii) for any increasing net \(\{ f_\alpha \} \) in \(K(Y) \) with \(\sup f_\alpha = f \in \beta'(Y) \), \(\tilde{\mu}(f) = \sup \mu(f_\alpha) \), in \(\beta_1'(Y) \), \(\tilde{\mu}(f) = \sup \mu(f_\alpha) \), in \(\beta_1'(Y) \).

Proof. Let \(V \) be an open relatively compact subset of \(Y \). Take \(\{ g_\alpha \} (\alpha \in I) \), an increasing net in \(K(Y) \), with \(\sup g_\alpha \subset V, 0 \leq g_\alpha \leq 1, \forall \alpha \), and \(\sup \{ g_\alpha \} = x_V \). Also take \(g \in K(Y), 0 \leq g \leq 1, \) and \(g = 1 \) on \(V \). Assuming \(E \) to be boundedly monotone complete, let \(e = \sup \{ \mu(g_\alpha) : \alpha \in I \} \) (note \(\mu(g_\alpha) \) is increasing and \(\mu(g_\alpha) \leq \mu(g), \forall \alpha \)). For any \(f \in K(Y) \), with \(\sup f \subset V \), and \(f \equiv x_V \) \((= \sup g_\alpha) \), we first prove that \(\mu(f) \leq e \). Let \(C = \sup f \subset V, n \) any positive integer and \(V_\alpha = \{ x \in V : f(x) < g_\alpha(x) + 1/n \} \). Using the facts that \(\{ V_\alpha \} \) is increasing and \(\bigcup V_\alpha \subset C \), a compact set, we get \(V_{\alpha(n)} \subset C, \) for some \(\alpha(n) \in I \). Thus \(f < g_{\alpha(n)} + (1/n)g \) and so \(\mu(f) \leq e + (1/n) \mu(g), \forall n \), which gives \(\mu(f) \leq e, \) since \(\inf \{ (1/n)\mu(g) : n, \text{ a positive integer} \} = 0 \), (note \(\mu(g) \geq 0 \)).

Let \(E_0 = \{ p \in E : -\lambda e \leq p \leq \lambda e, \text{ for some real } \lambda > 0 \} \). Then \(E_0 \) is a boundedly monotone complete, directed, integrally closed, ordered vector subspace of \(E \) ([1], p. 290; to prove the integral closedness of \(E_0 \), we need the boundedly monotone \(\sigma \)-completeness of \(E \). Thus the completion by non-void cuts of \(E_0 \), say \(E_1 \), will be a boundedly complete vector lattice ([1], Theorem 9, p. 357). Let \(E_2 = \{ p \in E_1 : -\lambda e \leq p \leq \lambda e, \text{ for some } \lambda > 0 \} \). This means \(E_2 \) is a boundedly complete vector lattice with a strong unit \(e \) and so there exists a compact Hausdorff Stonian space \(S \), such that \(E_2 \) and \(C(S) \) are vector lattice isomorphic (i.e., there exists a 1-1, onto, both-way positive linear map from \(E_2 \) to \(C(S) \) which preserves arbitrary suprema and infima). Let \(V' = V \cup \{ x_0 \} \) be the Alexandroff one point compactification of the locally compact space \(V \) (if \(V \) is compact, we take \(V' = V \), and \(A \) the subspace of \(C(V') \) generated by constant functions and \(K(Y, V) \). Any element of \(A \) can be uniquely written in the form \(\lambda + f \), where \(\lambda \in \mathbb{R} \).
Define a linear mapping $f^\land: A \to C(S)$ as $(X + f)^\land = Xe + f(x)$. We first prove that f^\land is positive. Suppose first that $X > 0$ and $X + f \geq 0$ on V'. This gives $1 + (1/X)f \geq 0$, and so $-((1/X)f) \leq \sup g_x$. From what is proved above it follows that $-((1/X)f) \leq e$, and so $Xe + f \geq 0$. If $X = 0$, there is nothing to prove. If $X < 0$ and V is not compact, take $x \in V \setminus \sup f$. Then $f(x) = 0$ and $X + f(x) < 0$, a contradiction. If $X < 0$ and V is compact, then $x_V \in K(Y, V)$, $x_V \geq g_x$, $\forall \alpha$, and $x_V \leq \sup g_x$. So from what is proved above it follows that $\mu(x_V) = e$. Now $X + f \geq 0$ on $V = V'$ implies that $x_V + f \geq 0$, and so $\mu(x_V + f) \geq 0$, which gives $Xe + f \geq 0$. This proves f^\land is positive.

Also considering A as a subspace of $C(V')$, with sup norm topology, f^\land is also continuous and as such has a unique extension $\mu_V: C(V') \to C(S)$, since, by the Stone-Weierstrass approximation theorem, A is dense in $C(V')$. It is easy to verify that this extension is also a positive linear operator. By Lemma 3, μ_V can be uniquely extended to $\bar{\mu}_V: \beta(V') \to E_1$, which is order σ-continuous, and if $\{f_a\}$ is an increasing net in $C(V')$ with $\sup f_a = f \in \beta(V')$, then $\bar{\mu}_V(f) = \sup \mu_V(f_a)$. It immediately follows that $\bar{\mu}_V(x_{(x)}) = 0$, i.e., $\bar{\mu}_V(f) = \bar{\mu}_V(f)_{i}$ if $f \in \beta(V')$ $(i = 1, 2)$ and $f_{1|V} = f_{2|V}$. We define $\bar{\mu}_V: \beta'(Y, V) \to E_1$ as: for any $f \in \beta'(Y, V)$, $\bar{\mu}_V(f) = \bar{\mu}_V(f')$, where $f = f'$ on V, and $f'(x_0) = 0$: this mapping is positive, linear and order σ-continuous and has the property that for any increasing net $\{f_a\} \subset K(Y, V)$ with $\sup f_a = f \in \beta(Y, V)$, $\bar{\mu}_V(f) = \sup \mu_V(f_a)$. Now $\bar{\mu}_V^{-1}(E_0) \supset K(Y, V)$, and so, by bounded monotone completeness at E_0, $\bar{\mu}_V^{-1}(E_0) \supset S(Y, V)$.

Since $\bar{\mu}_V^{-1}(E_0)$ is a boundedly monotone order σ-closed (since $\bar{\mu}_V$ is order σ-continuous) subspace of $B'(Y, V)$, and $S(Y, V)$ is a vector sub-lattice of $B'(Y, V)$, $\bar{\mu}_V^{-1}(E_0) \supset S(Y, V) = \beta'(Y, V)$. Thus $\bar{\mu}_V: \beta'(Y, V) \to E (E \supset E_0)$ is a positive, linear, and monotone order σ-continuous map, and for any increasing net $\{f_a\} \subset K(Y, V)$ with $\sup f_a = f \in \beta'(Y, V)$, $\bar{\mu}_V(f) = \sup \mu_V(f_a)$. Now define $\bar{\mu}: \beta'(Y) \to E$ as: For any $f \in \beta'(Y)$, $f \in \beta'(Y, V)$ for some open relatively compact subset V of Y. We define $\bar{\mu}(f) = \bar{\mu}_V(f)$. To see that this mapping is well-defined, let $f \in \beta'(Y, V_i)$ $(i = 1, 2)$; this means $f \in \beta'(Y, V_1 \cap V_2)$. Since $\bar{\mu}_V = \bar{\mu}_V$ on $K(Y, V_1 \cap V_2)$, they are equal on $S'(Y, V_1 \cap V_2)$ and so are equal on $\beta'(Y, V_1 \cap V_2) = \beta'(Y, V_1) \cap \beta'(Y, V_2)$ (using σ-continuity of these measures). This proves $\bar{\mu}$ is well-defined. Also it is easily verified that μ is linear, positive, monotone order σ-continuous, and for any increasing net $\{f_a\}$ in $K(Y)$ with $\sup f_a = f \in \beta'(Y)$, $\bar{\mu}(f) = \sup \mu(f_a)$. Uniqueness of $\bar{\mu}$ is easily verified. Also the case when E is boundedly monotone σ-complete can be proved in a similar way. This completes the proof.
Remark. For compact Y, this result is proved in [6] by an entirely different method.

REFERENCES