SOME DISCRETE SUBSPACES OF βm

J. A. GUTHRIE

ABSTRACT. By considering some discrete subspaces of the Stone-Čech compactification βm of a discrete space, we show that a nondiscrete door space which is not maximal door can be embedded in βm for every infinite discrete space m. This provides a counterexample to the converse of a theorem of Y. Kim. Maximal door spaces are characterized in terms of their embedding in βm.

By a space we shall mean a Hausdorff topological space. An infinite cardinal number m and a discrete space of cardinality m will be denoted by the same symbol, and βm will represent its Stone-Čech compactification. The cardinality of a set A will be denoted by $|A|$, $\text{Cl}_X A$ is the closure of A in X, and \mathbb{N} is the set of natural numbers. See [1] for a general reference.

A door space is a space in which every subset is either open or closed. A nondiscrete door space is called maximal door if the only finer door topology for the set is discrete. Kim [2] characterized nondiscrete door spaces and maximal door spaces as follows. A Hausdorff space X is nondiscrete door (maximal door) if and only if $X = S \cup \{p\}$ where S is an infinite discrete set and p is a point such that the restriction of its neighborhoods to S forms a filter (an ultrafilter) in S. Kim also showed that for every maximal door space X there is a discrete space m such that X can be embedded in βm; and, furthermore m may be taken to be $|X|$. He left open the question of whether every door space which can be embedded in βm for some m must be maximal door. We answer this question in the negative, and supply a stronger condition which does characterize maximal door spaces.

Theorem 1. For every infinite cardinal m there exists a nondiscrete door space X with $|X| > m$ so that X can be embedded in βm, but X is not maximal door. In particular, there is a nondiscrete door space of cardinality 2^{\aleph_0} which is not maximal door, but can be embedded in $\beta \aleph_0$.

Proof. We first construct for each infinite cardinal m a certain discrete subspace of βm which is of cardinal $n > m$. When $m = \aleph_0$, we have $n = 2^{\aleph_0}$. By [1; 12B] every m can be taken to be the union of a

Received by the editors on March 28, 1975, and in revised form on September 15, 1975.

AMS Subject Classification: Primary 54D35, 54G99; Secondary 54C25, 54F65.

Copyright © 1976 Rocky Mountain Mathematics Consortium
collection \(\{ A_\alpha \mid \alpha \in I \} \) where \(|A_\alpha| = m \) for each \(\alpha \in I \), \(|I| > m \), and \(|A_\alpha \cap A_\beta| < m \) for \(\alpha \neq \beta \). It follows from [1; 6.9(a)] that for each \(\alpha \), \(\text{Cl}^\beta_m A_\alpha = \beta A_\alpha \), which is homeomorphic to \(\beta m \). By [1; 121] we may choose \(x_\alpha \in \text{Cl}^\beta_m A_\alpha \) such that every neighborhood of \(x_\alpha \) intersects \(A_\alpha \) in a set of cardinality \(m \). Now by [1; 6.9(c)] \(\text{Cl}^\beta_m A_\alpha \) is open in \(\beta m \) and is therefore a neighborhood of \(x_\alpha \). Suppose \(x_\beta \in \text{Cl}^\beta_m A_\alpha \) for \(\alpha \neq \beta \). Then \(x_\beta \in \text{Cl}^\beta_m A_\alpha \cap \text{Cl}^\beta_m A_\beta \) which must be a neighborhood of \(x_\beta \) in the relative topology on \(\text{Cl}^\beta_m A_\beta \). But \(A_\beta \cap \text{Cl}^\beta_m A_\alpha \cap \text{Cl}^\beta_m A_\beta = A_\alpha \cap A_\beta \) is a neighborhood of \(x_\beta \) in \(A_\beta \) which has cardinality less than \(m \), contradicting the choice of \(x_\beta \). Hence \(S = \{ x_\alpha \mid \alpha \in I \} \) is a discrete collection. In case \(m = \aleph_0 \) we may choose \(|I| = 2^{\aleph_0} \) by [1; 6Q.1].

For each \(p \in \text{Cl}^\beta_m S \setminus S \) we see that \(S \cup \{ p \} \) is a nondiscrete door space embedded in \(\beta m \). We now show that not every such \(S \cup \{ p \} \) can be maximal door. Suppose \(S \cup \{ p \} \) is maximal door for each \(p \in \text{Cl}^\beta_m S \setminus S \). Consider the extension \(f : \beta S \rightarrow \text{Cl}^\beta_m S \) of the inclusion map of \(S \) into \(\text{Cl}^\beta_m S \). We shall now show that \(f \) is one-to-one and onto, and hence a homeomorphism.

If \(p \in \text{Cl}^\beta_m S \setminus S \), then \(p \) is a cluster point of the ultrafilter \(\mathcal{G} \) of the restrictions of its neighborhoods to \(S \). This ultrafilter is a z-ultrafilter, and so has a unique limit \(x \) in \(\beta S \), and \(f(x) = p \).

On the other hand, \(\mathcal{G} \) is the only ultrafilter in \(S \) of which \(p \) is a cluster point. For suppose \(\mathcal{G} \) is a filter in \(S \) which clusters to \(p \) in \(S \cup \{ p \} \). Then each element of \(\mathcal{G} \) intersects \(S \), and \(\mathcal{G} \) must be in \(\mathcal{G} \) for each \(G \in \mathcal{G} \). But each \(x \in \beta S \setminus S \) is the limit of an ultrafilter in \(S \), so \(f(x) = p \) for only one \(x \in \beta S \setminus S \).

Thus \(\text{Cl}^\beta_m S = \beta S \). But \(|\text{Cl}^\beta_m S| \leq |\beta m| < |\beta n| = |\beta S| \). Hence there must exist some \(p \in \text{Cl}^\beta_m S \setminus S \) such that \(S \cup \{ p \} \) is not maximal door.

A subset of \(S \) of \(\beta m \) is said to be strongly discrete if for each \(s \in S \) there is a neighborhood \(U_s \subset \beta m \) of \(s \) such that if \(s \neq t \), then \(U_s \cap U_t \cap m = \emptyset \). This definition is equivalent to that in [3].

Theorem 2. A nondiscrete door space \(S \cup \{ p \} \) is maximal door if and only if it can be embedded in some \(\beta m \) in such a way that \(S \) is strongly discrete.

Proof. Kim [2] showed that every maximal door space could be embedded in such a way.

Suppose, then, that \(S \cup \{ p \} \) can be embedded in \(\beta m \) for some \(m \) and that \(S \) is strongly discrete in \(\beta m \). Let \(f \) be a continuous function from \(S \) to \([0, 1]\). We shall show that \(f \) can be extended to \(\beta m \), so that \(\text{Cl}^\beta_m S = \beta S \). For each \(s \in S \) let \(U_s \) be a neighborhood of \(s \) so that the \(U_s \)'s illustrate that \(S \) is strongly discrete. Extend \(f \) to \(S \cup m \) by defining \(f(x) = f(s) \) if \(x \in U_s \), and \(f(x) = 0 \) otherwise. Now \(f \) is a continuous
function on \(m \), and hence it has a unique extension \(F \) to \(\beta m \). But \(m \) is dense in \(S \cup m \), and \(f \) and \(F \) agree on \(m \). Thus \(f \) and \(F \) must agree on all of \(S \cup m \) and, in particular, on \(S \). Therefore \(S \) is \(C^* \) embedded in \(\text{Cl}_{\beta m} S \), so \(\text{Cl}_{\beta m} S = \beta S \) [1; 6.9]. Now \(p \in \beta S \setminus S \) and, since \(S \) is discrete, the unique \(z \)-ultrafilter \(\mathcal{G} \) in \(S \) which converges to \(p \) is an ultra-filter of open subsets of \(S \). Thus \(F \cup \{ p \} \) is open in \(S \cup \{ p \} \) for each \(F \in \mathcal{G} \), and \(\mathcal{G} \) is exactly the restriction to \(S \) of the neighborhoods of \(p \). Hence \(S \cup \{ p \} \) is maximal door.

In light of Theorem 1 it is natural to ask whether a countable non-discrete door space which is embedded in \(\beta m \) must be maximal door. Theorem 4 gives an affirmative answer to this question.

Lemma 3. Every countable discrete subset of \(\beta m \) is strongly discrete.

Proof. Let \(S = \{ x_i \mid i \in \mathbb{N} \} \) be a countable discrete subset of \(\beta m \), and let \(U_i \) be an open set which contains \(s_i \) but not \(s_j \) for \(i \neq j \). By the regularity of \(\beta m \), for each \(i \) there is an open set \(V_i \) such that \(s_i \in V_i \subset \text{Cl}_{\beta m} V_i \subset U_i \).

We now define a neighborhood \(W_i \) for each \(i \) so that \(\{ W_i \mid i \in \mathbb{N} \} \) illustrates that \(S \) is strongly discrete. Let \(W_1 = V_1 \), and for each \(i > 1 \), let \(W_i = V_i \setminus \bigcup_{j=1}^{i-1} \text{Cl}_{\beta m} V_j \). It is clear that each \(W_i \) is an open neighborhood of \(x_i \), and that \(W_i \cap W_j = \emptyset \) when \(i \neq j \).

Theorem 4. Every countable nondiscrete door space which can be embedded in \(\beta m \) is a maximal door space.

Proof. This follows directly from Theorem 2 and Lemma 3.

References

University of Texas at El Paso, El Paso, Texas 79968