ENTIRE FUNCTIONS WITH PRESCRIBED ASYMPTOTIC BEHAVIOR

GERD H. FRICKE

Abstract. A sufficient condition for a canonical product to be of bounded index is given, from which most of the well known results can be obtained as easy corollaries. Let \(f \) be an entire function of exponential type with order \(\rho \) and lower order \(\lambda \). If \(\rho - \lambda < 1 \) then there exists an entire function \(g \) of bounded index such that \(\log M(r,f) \sim \log M(r,g) \). This solves a conjecture of S. M. Shah except for the extremal case of \(\rho = 1 \) and \(\lambda = 0 \).

1. Introduction. An entire function \(f(z) \) is said to be of bounded index if there exists a non-negative integer \(N \) such that

\[
\max_{0 \leq i \leq N} \left\{ \frac{|f^{(i)}(z)|}{i!} \right\} \leq \frac{|f^{(n)}(z)|}{n!} \quad \text{for all } n \text{ and all } z.
\]

The least such integer \(N \) is called the index of \(f \) (see [4]).

It is well known that a canonical product having geometrically increasing zeros is of bounded index. We now prove a strong generalization of this result.

Theorem 1. Let \(f(z) = \prod_{j=1}^{\infty} (1 + \{z/t_j\}^q) \) be an entire function with \(t_j \in \mathbb{C} \setminus \{0\} \), \(q_j \in \mathbb{N} \) and \(\sum_{j=1}^{\infty} (q_j/|t_j|) < \infty \). If \(\sum_{j=n}^{\infty} 1/|t_n - t_j| = o(1) \) as \(n \to \infty \), then \(f \) is of bounded index.

The condition \(\sum_{j=1}^{\infty} (q_j/|t_j|) < \infty \) can be replaced by \(\limsup_{j \to \infty} (Q_j/|t_j|) < \infty \), where \(Q_j = \sum_{i=1}^{j} q_i \), provided \(f \) is entire, i.e., the infinite product converges uniformly on every bounded region. However let us remark that the conditions in Theorem 1 are only sufficient and not necessary, (see [2], Theorem 3).

As a direct consequence we obtain the following result of B. S. Lee and S. M. Shah [3].

Corollary 2. Let \(f(z) = \prod_{n=1}^{\infty} (1 - z/a_n) \), where \(a_n \in \mathbb{R}^+ \) and \((a_{n+1}/a_n) \geq \alpha > 1 \), then \(f \) is an entire function of bounded index.

In 1970 W. J. Pugh and S. M. Shah [5] showed that for any transcendental entire function \(f \) of finite order it is always possible to
find an entire function \(g \) of unbounded index such that
\[
\log M(r, f) \sim \log M(r, g) \quad (r \to \infty).
\]

In [6] S. M. Shah conjectured: If \(f \) is an entire function of exponential type then there exists an entire function \(g \) of bounded index such that \(\log M(r, f) \sim \log M(r, g) \). We now prove this conjecture for functions of exponential type with non-extremal asymptotic behavior.

Theorem 3. Let \(f \) be an entire function of exponential type with order \(\rho \) and lower order \(\lambda \). If \(\rho - \lambda < 1 \), then there exists an entire function \(g \) of bounded index such that
\[
N \left(r, \frac{1}{g} \right) \sim \log M(r, g) \sim \log M(r, f) \quad (r \to \infty).
\]

Theorem 4. Let \(\phi(t) \) be an increasing, positive function of \(t \geq 1 \) with \(\lim_{t \to \infty} \phi(t)/t < \infty \). If there exists an integer \(n > 0 \) such that \(\phi(t + 1) - \phi(t) \leq \phi(t)^{(n-1)/n} \) for \(t \) sufficiently large, then there exists an entire function \(f \) of bounded index such that
\[
N \left(r, \frac{1}{f} \right) \sim \log M(r, f) \sim \int_{1}^{r} \frac{\phi(t)}{t} dt \quad (r \to \infty).
\]

As a straightforward consequence we have

Corollary 5. Let \(0 \leq \lambda \leq \rho \leq 1 \) be given. Then there exists an entire function \(f \) of bounded index and order \(\rho \) with lower order \(\lambda \).

2. **Proof of Theorem 1.** Let \(q \) be a positive integer and let \(t \) be a complex number with \(|t| > q \).

(i) Let \(z \in \mathbb{C} \) with \(|z| = |t| + a, a > 0 \). Then,
\[
\frac{|qz^{q-1}|}{|z|^q + |z|^q} \leq \frac{|qz|^{q-1}}{|z|^q - |t|^q} = \frac{q}{|z|(1 - (|t|/|z|)^q)}
\]
\[
\leq \frac{q}{(|t| + a)(1 - |t|^q/|t|^q + aq|t|^{q-1})}
\]
\[
= \frac{|t| + qa}{(|t| + q)a} \leq \frac{1}{a} + \frac{q}{|t| + a} = \frac{1}{a} + \frac{q}{|z|}.
\]

(ii) Let \(z \in \mathbb{C} \) with \(|t| = |z| + b, b > 0 \). Then,
\[
\frac{|qz^q - 1|}{|z^q + t^q|} \leq \frac{q|z|^q - 1}{(|z| + b)^q - |z|^q} \leq \frac{q|z|^q - 1}{bq|z|^q - 1} = \frac{1}{b}.
\]

(iii) Let \(z \in \mathbb{C} \) such that \(|t| - 1 < |z| \leq |t| + 1 \). Furthermore let \(a_1, \ldots, a_q \) denote the zeros of \(z^q + t^q \) then

\[
\frac{qz^q - 1}{z^q + t^q} = \sum_{n=1}^{\infty} \frac{1}{z - a_n}.
\]

Clearly there exists \(z' \) such that \(|z'| + 1 = |t| \) and \(|z' - z| \leq 2 \). Thus, by (iii), \(|1/(z' - a_n)| \leq 1 \).

Let \(d > 0 \) be given and let \(|z - a_n| \geq d \) for \(n = 1, 2, \ldots, q \). Obviously the length of the arc from \(a_n \) to \(a_{n+1} \) for the circle of radius \(|t|\) is exactly \(2\pi |t|/q \). The distance of two points on a circle is at least the shortest arc length between those points divided by \(\pi \). Thus, by renumbering the \(a_i \)'s (so that \(a_1 \) is closest to \(z \)), we have,

\[
|z - a_n| \geq |a_n - a_2| \geq \frac{(n - 2)|t|}{q} \geq 2(n - 2) \text{ for } 2 < n \leq (q + 1)/2
\]

and

\[
|z - a_n| \geq |a_n - a_q| \geq \frac{(q - n)|t|}{q} \geq 2(q - n) \text{ for } (q + 1)/2 < n < q.
\]

The same result holds for \(z' \) and therefore,

\[
\left| \sum_{n=1}^{q} \frac{1}{z - a_n} \right| \leq \left| \sum_{n=1}^{q} \frac{z - z'}{(z - a_n)(z' - a_n)} \right| + \left| \sum_{n=1}^{q} \frac{1}{z' - a_n} \right|
\]

\[
\leq \sum_{n=1}^{q} \frac{2}{|z - a_n| |z' - a_n|} + 1
\]

\[
\leq \frac{6}{d} \sum_{n=3}^{q-1} \frac{2}{|z - a_n| |z' - a_n|} + 1
\]

\[
\leq \frac{6}{d} \sum_{j=1}^{(q+1)/2} \frac{4}{j^2} + 1
\]

\[
\leq \frac{6}{d} + \sum_{j=1}^{\infty} \frac{4}{j^2} + 1 = M.
\]

Obviously, \(M = M(d) \) is independent of \(t \) and \(q \).
We now proceed with the proof of Theorem 1.

For \(f(z) = \prod_{j=1}^{\infty} (1 + \{z/t_j\}^{q_j}) \) we have,

\[
\left| \frac{f'(z)}{f(z)} \right| = \left| \sum_{j=1}^{\infty} \frac{q_j z^{q_j-1}}{t_j^{q_j} + z^{q_j}} \right| \leq \sum_{j=1}^{\infty} \frac{q_j |z|^{q_j-1}}{|z^{q_j} + t_j^{q_j}|}.
\]

Let \(d > 0 \) be given and let \(z \in \mathcal{C} \) such that \(|z - b_i| \geq d \) for \(i = 1, 2, \ldots \), where the \(b_i \)'s denote the zeros of \(f \). There exists an integer \(n \geq 0 \) such that \(|t_n| \geq |z| < |t_{n+1}| \). Since \(\sum_{j=1}^{\infty} q_j |t_j| < \infty \), there exists an integer \(n_0 > 0 \) such that \(|t_j| > q_j \) for all \(j \geq n_0 \). Let \(\alpha_j = |t_j| - |z| \), then, by (i), (ii), and (iii), we have, for \(|z| \) sufficiently large,

\[
\left| \frac{f'(z)}{f(z)} \right| \leq \sum_{j=1}^{n_0} \frac{q_j |z|^{q_j-1}}{|z^{q_j} + t_j^{q_j}|} + \sum_{j=n_0+1}^{n-1} \frac{q_j |z|^{q_j-1}}{|z^{q_j} + t_j^{q_j}|} + 2(M + 1) + \sum_{j=n+2}^{\infty} \frac{q_j |z|^{q_j-1}}{|z^{q_j} + t_j^{q_j}|}
\]

(2.1)

\[
\leq K + \sum_{j=n_0+1}^{n-1} \left(\frac{1}{\alpha_j} + \frac{q_j}{|t_j| + \alpha_j} \right) + 2(M + 1) + \sum_{j=n+2}^{\infty} \frac{1}{\alpha_j}
\]

\[
\leq K + \sum_{j\neq n} \left| \frac{1}{|t_n| - |t_j|} \right| + \sum_{j=1}^{\infty} \frac{q_j}{|t_j|}
\]

\[
+ 2(M + 1) + \sum_{j\neq n+1} \left| \frac{1}{|t_n| - |t_j|} \right|
\]

\[
\leq T.
\]

Clearly \(f'(z)/f(z) \) is bounded for bounded \(z \) with \(|z - b_i| \geq d \) for all \(i \).

Therefore, for each \(d > 0 \) there exists a constant \(L > 0 \) such that \(|f'(z)| \leq L |f(z)| \), whenever \(|z - b_j| \geq d \) for all \(j \). Hence, by [2, Theorem 2], \(f \) is of bounded index.

Suppose we replace the condition \(\sum_{j=1}^{\infty} (q_j/|t_j|) < \infty \) by demanding the infinite product \(f \) to be entire and by \(\limsup_{z \to \infty} Q_j/|t_j| < \infty \), where \(Q_j = \sum_{i=1}^{j} q_n \). It is well known that \(f(z) \) of bounded index implies \(f(\alpha z) \) is also of bounded index for any \(\alpha \in \mathcal{C} \). Thus, without loss of generality we may assume \(\limsup_{z \to \infty} Q_j/|t_j| < 1 \). Hence, \(a_n \leq Q_n < |t_n| \) for \(n \) sufficiently large and therefore we can use the same argument to obtain the inequality (2.1). Since,
ASYMPTOTIC BEHAVIOR OF ENTIRE FUNCTIONS

we similarly obtain, \(f \) is of bounded index. q.e.d.

3. In this section we assume familiarity with the most elementary results and notations of Nevanlinna's theory of meromorphic functions.

For a transcendental entire function \(f \) we have,

\[
\log M(r, f) = \log M(r_0, f) + \int_{r_0}^{r} \frac{\Psi(t)}{t} \, dt \quad (r \geq r_0),
\]

where \(r_0 > 0 \) and \(\Psi(t) \) is a non-negative, non-decreasing function of \(t \).

A. Edrei and W. H. T. Fuchs [1] proved that given a positive, non-decreasing function \(\Phi(t) \) with \(\int_0^t \Phi(t) \, dt \leq r^K \) (for some \(K > 0 \) and \(r \) sufficiently large), then there exists an entire function \(g \) of finite order such that

\[
N \left(r, \frac{1}{g} \right) \sim \log M(r, g) \sim \int_1^{r} \frac{\Phi(t)}{t} \, dt \quad (r \to \infty).
\]

We will rely heavily on their construction of the function \(g(z) \).

Proof of Theorem 3. Let \(f \) be an entire function satisfying the hypothesis of Theorem 3. It is easy to see that the function \(\Psi(t) \) we obtain from \(f \) according to (3.1) can be replaced by the function \(\Phi(t) \) satisfying,

(i) \(\Phi(t) \) is continuous,

(ii) \(\Phi(1) = 0 \) and \(\Phi(t) \) is strictly increasing and unbounded,

(iii) \(\log M(r, f) \sim \Lambda(r) = \int_1^{r} \Phi(t) \, dt \quad (r \to \infty) \).

Let us now define the function \(B(r) \) by the condition \(B(r) = \Lambda(r)/\log r \) for \(r > 1 \) and \(B(1) = 0 \). Since \(B'(r) = \Phi(r) \log r - \Lambda(r)/r(\log r)^2 > 0 \) we have \(B(r) \) is continuous and strictly increasing. Furthermore, \(f \) transcendental implies \(B(r) \) is unbounded.

Let \(\eta \) be a fixed constant with \(0 < \eta < 1/2 \) and define a sequence of positive numbers \(\{r_n\}_{n=1}^{\infty} \) by

\[
n = B^2 \eta(r_n) \log r_n \quad \text{for } n = 1, 2, \ldots.
\]

Since \(B^2 \eta(x) \log x \) is continuous, strictly increasing, and unbounded and since \(B^2 \eta(1) \log 1 = 0 \), the sequence \(\{r_n\}_{n=1}^{\infty} \) is uniquely determined, strictly increasing, and unbounded.

Now set

\[
k_j = \exp \left(\frac{j}{B^\eta(r_j)} \right) = \exp(B^\eta(r_j) \log r_j),
\]
and notice that the sequence \(\{k_j\}_{j=1}^{\infty} \) is increasing and unbounded, whereas the sequence \(\{k_j\}_{j=1}^{\infty} \) is decreasing and
\[
\lim_{j \to \infty} k_j = 1.
\]

Denoting by \([y]\) the greatest integer not exceeding \(y\), we define the sequence \(\{q_j\}_{j=1}^{\infty} \) by
\[
q_j = [2jk_1k_2k_3 \cdots k_j] + 1, \quad \text{for} \quad j = 1, 2, \ldots.
\]

It is easily shown that the \(q_j\)'s satisfy the four following relations:

(3.2) \[q_j > k_j \geq \exp(\sqrt{j}) \quad (j \geq 1), \]

(3.3) \[q_{j+1} > q_j \quad (j \geq 1), \]

(3.4) \[\lim_{j \to \infty} \frac{q_{j+1}}{q_j} = 1, \]

(3.5) \[\lim_{j \to \infty} \frac{q_j}{Q_j} = 0, \text{where} \ Q_j = \sum_{i=1}^{j} q_i. \]

Define the sequence \(\{t_j\}_{j=1}^{\infty} \) of positive, strictly increasing numbers by
\[
\Phi(t_j) = Q_j = \sum_{i=1}^{j} q_i \quad (j = 1, 2, \ldots).
\]

The existence and uniqueness of \(\{t_j\}_{j=1}^{\infty} \) is assured by (ii).

Set \(s_j = t_j + j(j - 1)/2 \) and define \(n_1(t) \) and \(n(t) \) by
\[
n_1(t) = \begin{cases}
0 & \text{for} \ 0 \leq t < t_1 \\
Q_j & \text{for} \ t_j \leq t < t_{j+1}, \ j = 1, 2, \ldots,
\end{cases}
\]
\[
n(t) = \begin{cases}
0 & \text{for} \ 0 \leq t < s_1 \\
Q_j & \text{for} \ s_j \leq t < s_{j+1}, \ j = 1, 2, \ldots.
\end{cases}
\]

Clearly,
\[
1 \leq \frac{\Phi(t)}{n_1(t)} < 1 + \frac{q_{j+1}}{Q_j} \text{for} \ t_j \leq t < t_{j+1}, j \geq 1,
\]

and therefore, by (3.4) and (3.5),
\[
\lim_{t \to \infty} \frac{\Phi(t)}{n_1(t)} = 1.
\]

Hence,
\[\int_1^r \frac{n_1(t)}{t} \, dt \sim \Lambda(r) \quad (r \to \infty). \]

We will now show that under the hypothesis of Theorem 3 we also have,

\[\int_1^r \frac{n(t)}{t} \, dt \sim \Lambda(r) \quad (r \to \infty). \]

Since \(f \) is of exponential type we have, for some \(A > 0 \),

\[n(t) \leq n_1(t) \leq \Phi(t) < At \quad \text{for} \quad t \geq 1. \]

Thus, \(t_j > 1/A q_j \geq 1/A \exp(\sqrt{j}) \) and for \(\gamma > 0 \),

\[j^2 = o(t\gamma) \quad (j \to \infty). \]

Therefore,

\[\int_{s_j}^{s_{j+1}} \frac{n_1(t)}{t} \, dt = \int_{s_j}^{s_{j+1}-j} \frac{n(t)}{t - j(j - 1)/2} \, dt = \{1 + o(1)\} \int_{s_j}^{s_{j+1}-j} \frac{n(t)}{t} \, dt \quad (j \to \infty). \]

Hence, for \(s_j \leq r < s_{j+1} \) and \(j \to \infty \),

\[\int_1^{r-j^2} \frac{n_1(t)}{t} \, dt \leq \{1 + o(1)\} \int_1^r \frac{n(t)}{t} \, dt \leq \{1 + o(1)\} \int_1^r \frac{n_1(t)}{t} \, dt. \]

This leaves to show,

\[\int_{r-j^2}^r \frac{n_1(t)}{t} \, dt = o \left(\int_1^r \frac{n_1(t)}{t} \, dt \right) \quad (j \to \infty). \]

(a) Suppose \(f \) is of lower order \(\lambda > 0 \) then, since \(\Lambda(r) \sim \int_1^r n_1(t)/t \, dt \), we have for \(r \) sufficiently large,

\[\int_1^r \frac{n_1(t)}{t} \, dt > r^{\lambda/2}. \]

Thus, by (3.6) and (3.7),

\[\int_{r-j^2}^r \frac{n_1(t)}{t} \, dt \leq j^2 A = o(r^{\lambda/2}) = o \left(\int_1^r \frac{n_1(t)}{t} \, dt \right). \]

(b) Suppose \(f \) is of order \(\rho < 1 \), then there exists \(\gamma, 0 < \gamma < 1 - \rho \) such that, for \(t \) sufficiently large,

\[\frac{n_1(t)}{t} \leq \frac{\Phi(t)}{t} < t^{-\gamma}. \]
Therefore, by (3.7), we have for \(s_j \leq r < s_{j+1} \)

\[
\int_{r-j}^{r} \frac{n_1(t)}{t} \, dt = o(1) \quad (j \to \infty).
\]

Hence, since \(f \) is either of order \(\rho < 1 \) or of lower order \(\lambda > 0 \),

\[
\int_{1}^{r} \frac{n_1(t)}{t} \, dt \sim \int_{1}^{r} \frac{n(t)}{t} \, dt \sim \Lambda(r) \quad (r \to \infty).
\]

We consider next the infinite product

\[
g(z) = \prod_{j=1}^{\infty} \left(1 + \left\{ \frac{z}{s_j} \right\}^{q_j} \right).
\]

Let \(|z| = r \) with \(r < R \) and define \(p \) by \(s_p \leq R < s_{p+1} \).

By (3.3), \(q_m - q_n \geq m - n \) and therefore,

\[
\sum_{s_j > R} \left| \frac{z}{s_j} \right|^{q_j} \leq \sum_{s_j > R} \left\{ \frac{r}{R} \right\}^{q_j} < \sum_{j=p}^{\infty} \left\{ \frac{r}{R} \right\}^{q_j} \leq \left\{ \frac{r}{R} \right\}^{q_p} \frac{R}{R-r}.
\]

This shows that the infinite product in (3.9) converges uniformly in every bounded region. Hence \(g(z) \) is an entire function.

Now, \(n(r, 1/g) = n(r) \) and therefore by (3.8),

\[
N\left(r, \frac{1}{g} \right) = \int_{1}^{r} \frac{n(t)}{t} \, dt \sim \Lambda(r) \quad (r \to \infty).
\]

For \(r < R \) and \(s_p \leq R < s_{p+1} \),

\[
\log M(r, g) = \sum_{s_j \leq r} q_j \log \frac{r}{s_j} + \sum_{s_j \leq r} \log \left(1 + \left\{ \frac{s_j}{r} \right\}^{q_j} \right) + \sum_{r < s_j \leq R} \log \left(1 + \left\{ \frac{s_j}{r} \right\}^{q_j} \right) + \sum_{s_j > R} \log \left(1 + \left\{ \frac{s_j}{r} \right\}^{q_j} \right) \leq N\left(r, \frac{1}{g} \right) + p \log 2 + \sum_{s_j > R} \left\{ \frac{r}{s_j} \right\}^{q_j}.
\]

Hence, by (3.10) and elementary inequalities of Nevalinna's theory
ASYMPTOTIC BEHAVIOR OF ENTIRE FUNCTIONS

(3.11)
\[N\left(r, \frac{1}{g}\right) \leq \log M(r, g) \leq N\left(r, \frac{1}{g}\right) \]
\[+ p \log 2 + \left\{ \frac{r}{R} \right\}^{q_p} \frac{R}{R - r} \quad (r < R). \]

Now, let \(R = 2r \) and \(p \) defined by \(s_p \leq R < s_{p+1} \). Then,
\[q_p \leq Q_p \leq \Phi(2r) < \int_{2r}^{2er} \frac{\Phi(t)}{t} \, dt < \Lambda(2er) \]
and thus, \(q_p = o(r) \) \((p = p(2r), r \to \infty) \).

By (3.2),
\[q_p > k_p = \exp(\Phi(r_p) \log r_p). \]
Hence,
\[B^\eta(r_p) \log r_p = 0(\log r) \quad (r \to \infty), \]
and since \(B^\eta(x) \) is strictly increasing,
\[r_p < r \]
for \(r \) sufficiently large.

Thus, since \(B^{2\eta}(x) \log x \) is strictly increasing,
\[p = B^{2\eta}(r_p) \log r_p \leq B^{2\eta}(r) \log r = \Lambda(r) B^{1-2\eta}(r). \]
Since \(\lim_{r \to \infty} B^{1-2\eta}(r) = 0 \), we have,
\[p = o(\Lambda(r)) \quad (r \to \infty, p = p(2r)). \]
Thus, we obtain for (3.11),
\[N(r, 1/g) \leq \log M(r, g) \leq N(r, 1/g) + o(\Lambda(r)) + o(1) \quad (r \to \infty). \]
Hence,
\[\log M(r, g) \sim N(r, 1/g) \sim \Lambda(r) \sim \log M(r, f) \quad (r \to \infty). \]
Since \(s_{j+1} - s_j \geq j + 1 \), we have
\[\lim_{n \to \infty} \sum_{j \neq n} \left| \frac{1}{s_n - s_j} \right| = 0. \]
Clearly, \(\lim \sup_{t \to \infty} \Phi(t)/t < \infty \) and therefore, by Theorem 1, \(g(z) \) is of bounded index. \text{q.e.d.}

4. Proof of Theorem 4. Without loss of generality we may assume \(\Phi(1) = 0 \), \(\Phi(t) \) continuous, strictly increasing and unbounded. The condition \(\lim \sup_{t \to \infty} \Phi(t)/t < \infty \) assures us that the function \(f \) we are
about to construct is of exponential type. Let $B(r)$, $\{q_j\}_1^\infty$, $\{t_j\}_1^\infty$, and $n_1(t)$ be defined as in the proof of Theorem 3.

Now let $f(z) = \prod_{j=1}^\infty (1 + \{z/t_j\}^{q_j})$, then by the same argument as in the proof of Theorem 3, $f(z)$ is an entire function and

$$N\left(\frac{r}{g} - \frac{1}{g}\right) = \int_1^r \frac{n_1(t)}{t} \, dt \sim \log M(r, f) \sim \int_1^r \frac{\Phi(t)}{t} \, dt \quad (r \to \infty).$$

Then, for $t \geq t_j$ and j sufficiently large,

$$\Phi(t + 1) - \Phi(t) \leq \Phi(t) \Phi(t) - 1/n \leq Q_j^{1/n} \Phi(t) \leq e^{-\sqrt{n} \Phi(t)} \leq 1/j^3 \Phi(t).$$

Hence, for j sufficiently large,

$$\Phi(t_j + j) \leq (1 + 1/j^3) \Phi(t_j) \leq (1 + 1/j) \Phi(t_j).$$

Therefore,

$$\Phi(t_{j+1}) - \Phi(t_j) = q_{j+1} > (1/j)Q_j = (1/j) \Phi(t_j),$$

and thus $t_{j+1} - t_j > j$ for j sufficiently large.

Now, $\sum_{j=n}^{\infty} 1/|t_j - t_j| = o(1)$ and, by Theorem 1, f is of bounded index. q.e.d.

REFERENCES

Wright State University, Dayton, Ohio 45431