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CONTINUITY OF STABILITY GROUPS AND CONJUGATION 
I. SCHOCHETMAN* AND Y.-C. WU 

ABSTRACT. Given a transformation group, we consider the 
question of when the stability groups vary continuously. There 
exist two notions of continuously varying stability groups which 
are shown to be equivalent. It is also shown that a direct 
product of transformation groups will have this property if and 
only if each factor does. 

We then consider certain classes of transformation groups 
where the action involves the conjugation operation of the 
group. Specifically, we show that the natural action of a group 
on any of its (locally compact) coset spaces has continuously 
varying stability groups. On the other hand, the conjugation 
operation of a group on itself or on its space of closed sub
groups seldom has this property. This is exhibited by different 
types of examples. 

Introduction. Suppose G X X—» X is a transformation group where 
G (resp. X) is a second countable locally compact Hausdorff group 
(resp. space). Let the group action be denoted by (g, x) —» gx. Then 
for each x in X the stability group S(x) at x is the closed subgroup of 
G consisting of those g for which gx = x. Thus, if 9{(G) denotes the set 
of closed subgroups of G, we have a mapping S : X—» 5((G) given by 
x-* S(x). In [4, § 2] J. Glimm defined the stability groups to be con
tinuous at x in X if for every sequence {xn} in X converging to x and 
for each g in S(x), there is a sequence {gn} such that gn belongs to 
S(xn) and gn—»g- Shortly thereafter, J. M. G. Fell introduced a 
topology [3] in ÏK(G) making it a second countable compact Haus
dorfT space (see also [2] ). Thus, there exist two possible meanings for 
the continuity of the mapping S. This is not so; in § 1 we show these 
are the same. Although the mapping S is Borei measurable in general 
[1, p. 69], it need not be continuous [4]. Thus, we may ask when 
S is continuous. There is another reason for asking this question which 
is related to induced representations. 

Let T be a unitary representation of G and F a system of imprim-
itivity for T based on X [5, p. 889]. Such a pair {T,P) is called a 
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representation of (G, X). In Theorem 2.1 of [5], Glimm was able to 
determine the topology of the space of equivalence classes of 
irreducible induced representations of (G, X) under the assumption 
that the stability groups of the given action vary continuously. It is 
this result which led the first author to consider the continuity ques
tion for S in the particular case where X = 5((G) and the action is 
conjugation. In this case, the stability groups are the normalizers and 
it was originally expected that Glimm's theorem would be useful in 
handling some difficulties encountered in the study of representations 
induced from non-normal subgroups. Unfortunately, this is not so (see 
Theorem 5). 

For convenience we will say that a transformation group (G, X) has 
property (S) if its stability group mapping S is continuous. Our main 
concern here is to investigate the extent to which this property is true. 
Although this paper contains new results, it is basically expository in 
nature. We consider property (S) for certain special cases and its 
behavior under the formation of products and extensions, particularly 
in the context of conjugation. In § 1 we show that a direct product of 
transformation groups has property (S) if and only if each factor does. 
In § 2 we consider three types of transformation group involving con
jugation. First, if H is a closed subgroup of G, then we have the 
canonical (transitive) action G X G/H-^> GIH. We show that 
(G, GIH) has property (S). Second, if we consider G by itself, we can 
construct two canonical transformation groups based on conjugation. 
Letting X = G (resp. X = lK(G))y we have the action G X X-* X 
defined by (g ,*) -* gxg"1 (resp. (g, K)-* gKg~l [1, p. 68]). Here, 
the stability group S(x) (resp. S(K)) is simply the centralizer C(x) of 
x in G (resp. normalizer N(K) of K in G). In this way, we obtain the 
centralizer mapping C : G-> ^K(G) (resp. normalizer mapping 
N : :*((G)-> IK(G)) of G We call G a C-group (resp. N-group) if the 
mapping C (resp. N) is continuous. In § 2 we show that very few 
groups have these properties. Specifically, we exhibit a compact 
group which is not a C-group, a C-group extension of a C-group which 
is not a C-group, discrete and compact groups which are not N-groups 
and a finite product of N-groups which is not an N-group. 

In what follows, all spaces will be second countable and locally 
compact Hausdorff. The first assumption is made solely for the sake 
of convenience and we know of no reason to doubt that it can be 
omitted. All group identities will be denoted by 1. 

1. Continuity of Stability Groups. We first describe the topology of 
(Ä(G) and establish two useful lemmas. Let Q be a compact subset of 
G and 0/ a finite family of non-empty open subsets of G. Then the 
topology of IK(G) is generated by sets of the form 
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WQ* 0/) = {K G%(G) : K n Q = 0 , K n V / 0 , V G <V }. 

LEMMA 1. / / {K„} is a sequence in ^K(G), K G ^((G) and £„—• K, 
£ften K is £/ie se£ o/ aZZ g in G for which there exists a subsequence 
{Km} of {Kn} and a corresponding sequence {gm} such that gm is in 
Kmandgm-* g. 

PROOF. This follows directly from the results of [2]. 

LEMMA 2. Suppose {xn} is a sequence in X converging to x. Then 
there exists K in fJ{(G) and a subsequence {xm} of {xn} such that 
S(xm) -*Kin 1K(G) and K C S(x). 

PROOF. This is a consequence of the compactness of ^K(G) and 
Lemma 1. 

Now we show that Glimm-continuity and topological continuity are 
the same for the stability groups. 

THEOREM 1. The mapping S is Glimm-continuous at x if and only 
if it is topologically continuous at x. 

PROOF, It suffices to prove the forward implication since the reverse 
implication follows directly from Lemma 1 above and Lemma 4 of 
[4]. Suppose S is Glimm-continuous at x. Let {xn} be a sequence in 
X converging to x. A basic open neighborhood of S(x) in (Ä(G) is then 
of the form ^ ( Q , c^) a s above. Letting <V = {V1? • • -, Vr}, we know 
that S(x) PI Q = 0 and S(x) Pi Vk fi 0 , 1 ^ k g r. Let gk G S(x) 
H Vk. By hypothesis, for each l ^ ) : § f , there exists a sequence 
{gn

k} such that gn
k G S(xn), all n, and gn

k—> gk. Since each Vk is an 
open neighborhood of gfc, there exists M such that n i^ M implies 
gn

k G S(xn) H Vfc, i.e., S(xn) H Vk fi 0 , l § ü g r . We now show 
that M may also be chosen so that S(xn) H Ç = 0 , for n ^ M. If not, 
then there exists a subsequence {xm} of {xn} for which S(xm) O Ç 
fi 0 , all m. Let hm G S(xm) H Ç. By the compactness of Q, the 
sequence {hm} has a subsequence {hj} converging to some element h 
of Q. Since hj G S(xJ), we have hpcj = xj3 ally, so that hx = h (note that 
x,-* x, hjXj—> hx and X is Hausdorff). Thus, ft G S(x) H Q, which is a 
contradiction. We therefore see that for sufficiently large n, 
S(xn) GT/(C,0/), i.e., S(xn) -» S(x) topologically in I/( (G). 

The next theorem tells us how to construct non-trivial transforma
tion groups having property (S). 

THEOREM 2. Let GaX Xa —» Xa, a S A, be a family of transforma
tion groups for which the product G z=:Y\Ga (resp. X = f j XJ is a 
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second countable locally compact group (resp. Hausdorff space). Then 
the mapping G X X—» X, where ( (gj , (xa))-> (gaxJ> defines a trans-
formation group and (G, X) will have property (S) if and only if each 
(Ga, XJ does. 

PROOF. The restrictions on G and X imply that A is essentially 
countable [6] and the first part of the theorem is routine. Suppose 
each (Ga, Xa) has property (S). Let {xn} = {xa

n} be a sequence in X 
converging to x = (xa) and assume S(xn)-fi S(x) in iK(G). Then by 
Lemma 2, we may assume (passing to a subsequence) that there exists 
K in tK(G) such that KQ S(x), S(xn)—> K and there exists a neighbor
h o o d s of S(x) in 3((G) disjoint from all the S(xn). Let B be the set of 
all g = (g j in S(x) for which ga = 1, except for finitely many a. We 
now show that B Ç K 

Let g G B with ga i , • • *,gam not equal to 1. Since S(x) = J | Sa(xa) 
(where Sa is the stability group mapping for (Ga. XJ), it follows that 
ga G Sa(xJ, all a. Also, since xa

n —> xa, for each a, it follows from our 
hypothesis that Sa.(xjf)—> Saj(xa), for l ^ j ' ^ m . Applying Lemma 1 
to gai in SQi(xai) and passing to a subsequence, we get a sequence 
{/i^ } such that hn

ax G S(x^) and h^ —> gai. Thus, successively apply
ing Lemma 1 (and passing to a subsequence each time), we eventually 
obtain sequences {h%} for which fej. G S(x2.) and ÄJJ.-frg*., for 
1 ^ j ^ m. Now let hn = (/ia

n), where /ia
n = /#., if a = a,, and /ia

n = 1, 
otherwise. Then {S(xn)} is a subsequence of the original one, each 
hn G S(xn) and hn -» g. Thus, B C K by Lemma 1. 

Since B is dense in S(x) = Y\ S«(xa), we have B~ = K = S(x). Hence, 
S(xn)—> S(x), i.e., {S(xn)} is eventually in ll, which is a contradiction. 

Conversely, suppose (G, X) has property (S). Here it suffices to 
assume A = {1,2} and show (G2, X2) has property (S). Let z be a 
fixed arbitrary element of Xx. If t/ G X2, then S(z,y) = S1(z) X S2(t/). 
Now let t/n-» t/ in X2 so that (z, t/„)—> (z, y) in X and S(z, f/n)-» S(z, y) 
in !X(G) by hypothesis. LetcU2(Q> CV) be a basic open neighborhood 
of S2(y) in 3((G2) withO/ = {Vl9 • • -, Vr}. Define W, = Gx X Vi? 

l^j^r> and <11' = {W1? • • -, Wr}. Also define C = {1} X Ç. 
Then ^ ( C , n^ ) is a basic open neighborhood of S(z,y) in 5((G), so 
that for sufficiently large n, S(z, yn) G ^ C , Hf). This implies that 
{S2(t/n)} is eventually inS2(C), <7/ ) which completes the proof. 

2. Conjugation Transformation Groups. Let H be a closed sub
group of G, Gl H the space of left cosets and p : G-+ Gl H the canonical 
projection. Then the mapping G X GIH^> GIH defined by (y,r) 
—> yr, where yr = j/x/f for x in G such that p(x) = r, defines a trans
formation group. The stability group S(r) is xHx - 1 . 
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THEOREM 3. The transformation group (G, GIH) has property (S). 

PROOF. Let rn-+ r in GIH and suppose S(rn)-fi S(r). Then there 
exists a neighborhoods of S(r) in *J{(G) and a subsequence {rm} of 
{rn} such that S(rm) ^ S , all m. Let x É G b e such that p(x) = r. 
Then the openness of p implies that there exists a subsequence {rk} 
of {rm} and a corresponding sequence {xfc} in G such that xfc—» x and 
p(*fc) ^ rfc- Thus, xkHxk~

1-* xHx~l, i.e., S(rfc)—» S(r) which is a con
tradiction. 

COROLLARY. If the transformation group G X X—» X is transitive 
and either X is discrete or G is compact, then (G, X) has property (S). 

PROOF. In this case, (G, X) is equivalent to (G, S(x)), for each x in 
X. 

COROLLARY 2. If K is a closed subgroup of G and either H or K is 
open, then the canonical action K X GIH^> GIH has property (S). 

PROOF. If H is open then GIH is discrete. If K is open then S is 
continuous since S(r) = xHx~l H K (for p(x) = r) and intersection by 
an open subgroup is a continuous mapping of Ç-K(G) into itself. 

Now let G X G—» G be the conjugation transformation group de
fined in the introduction and consider the centralizer mapping 
C : G-> KJ{{G). It is obvious that discrete and abelian groups are C-
groups as are direct products of C-groups. 

THEOREM 4. There exist groups of the following types which are not 
C-groups: 

(i) Compact groups. 
(ii) C-group extensions of C-groups. 

PROOF, (i) Let {bn} be a sequence of real numbers such that 
0 < bn < 1 and fcn-> 0. Let an = (1 - bn

2)1/2 so that 0 < an < 1, 
an

2 + fon
2 = 1 andan—> 1. Define 

( an -bn 0 

bn an 0 

0 0 1 
Then xn -* 1 in G = Lf(3). We may also verify directly that C(xn) is 
the proper subgroup of all matrices of the form 

b 0 
0 



314 I . SCHOCHETMAN AND Y.-C. WU 

where a, b and c are arbitrary complex numbers, i.e., C(xn) does not 
depend on n. However, C(l) = G, so that {C(xn)} does not converge 
to C(l). 

(ii) Consider the general linear group GL(2, C) where C is the 
complex numbers. Let N be the closed abelian subgroup of all 
matrices of the form 

( - « «) 
and denote by a the particular matrix 

(Ó - < ) . 
Then a^.N and a4 = 1, so that the closed subgroup G of GL(2, C) 
generated by N U {a} is a finite extension of abelian N. Now if we let 

\ - f o n a n / , 

with an and fon as in (i) above, then xn—» 1, C(xn) = N, all n, so 
{C(xn)} can't converge to C(l) = G. 

REMARK. It follows from the results of [4] that there exists a dense 
open subset of (7(3) on which the mapping C is continuous. Thus, in 
view of the proof of Theorem 3(i), this is essentially the best possible 
general result. 

Now let G X I/((G)-» 9{(G) be the other conjugation transforma
tion group defined in the introduction and consider the normalizer 
mapping N : lK(G)—> *-K{G). Clearly, finite and abelian groups are 
N-groups; however, this is true of very few others. 

THEOREM 5. There exist groups of the following types which are 
not N-groups. 

(i) Compact groups. 
(ii) Infinite discrete groups. 

(iii) Finite direct products of N-groups. 

PROOF, (i) Let S3 be the symmetric group on three elements and 
Z3 the cyclic group of order three. Let a be the element (123) of S3, 
c the element (12) of S3 and b any generator for Z3. Define H = 
S3 X Z3. We may verify that the subgroup (a) = {I, a, a2} of S3 is 
normal and if p G S3, then pap~1 = a if and only if p G (a). Note that 
c $ (a). Now let G = n Gh where Q = H, i = 1, 2, • • •. For each 
n = 1, 2, • • -, let gn = (gin) be the element of G defined by g{

n = (a, 1), 
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if 1 :g i :g n, and gf1 = (1, b), if n < i. Denote the (closed) subgroup 
{hfAg^iofGbyKn. Similarly, let g = (g<) be defined by g< = (a, 1), 
all i, and denote the subgroup {1, g, g2} by K. We may then show that 
K^-^ K in iK{G). However, the sequence {IV^KJ} does not converge 
to N(K) for the following reasons. If it does, let h = (hi) be the ele
ment of G defined by hi = (c, 1), all i. Since (a) is normal in S3, we 
have h G. N(K) and we may apply Lemma 1 to get a subsequence 
{Knm} of {Kn} and a corresponding sequence {km} such that 
fcm G N(KnJ, all ra, and fcm-» k. Now let V = II V* be the neighbor
hood of h defined by V\ = {(c, 1)} and V* = Gf = H, otherwise. For 
sufficiently large m, we have fcm GÈ V, i.e., fe^ = (c, 1). Furthermore, 

Thus, in order that km G N(KnJ, it must happen that ^ » ( H 1 » ) - 1 

= gnw; in particular, for i = 1, we must have (c, I) (a, l)(c~\ 1) = 
(a, 1), i.e., cac~l = a, for m sufficiently large. This is a contradiction. 

(ii) Let G be the direct product Z X S3 with Z the integers and 
let a and c be as in (i) above. Define Kn to be the (closed) subgroup 
{(kn, ak) : k G Z}, n = 1,2, • • -, and let K = {(0,1), (0, a), (0,a2)}. 
Then IQ—» K and N(K) = G, i.e., K is normal in G. Hence, in par
ticular, ( l ,c) G N(K). If N(K„)-* N(K), then by Lemma 1 and the 
discreteness of G, there exists a subsequence {Kn } of {£„} such 
that (1, c) G N(Kn), all m. However, (nm,a)É.Knm and so 
(1, c)(nm, a)(l, c"1) = (nm, cac~l) must belong to K„m. The only way 
this can happen is iîcac~l = a, which is again a contradiction. 

(iii) The example in (ii) above satisfies this part as well. 

REMARK. At first glance, Theorem 2 and Theorem 5 (iii) seem to 
contradict each other. However, if G : and G2 are groups with corre
sponding normalizer transformation groups G; X 9((Gi) —> V{(Gi), 
i = 1, 2, then the transformation space in Theorem 2 is 9((Gx) X 9((G2) 
while that of Theorem 5 (iii) is %{GY X G2), which is of course larger. 
This distinction does not occur in the centralizer case. 
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