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RECESSION OF SOME RELATIVISTIC MARKOV PROCESSES1 

R. M . DUDLEY 

1. Introduction. This paper is intended to be expository. Most of 
the precise formulations and all the proofs are to be published else
where [5]. 

Before taking up relativistic processes let us consider random mo
tions in ordinary Euclidean spaces Rk. For simplicity let xt be the 
standard Brownian motion with values in Rk, 0 S t < °°, i.e. the 
coordinates of xt are independent 1-dimensional Wiener processes. 
Then for k = 1, 2, xt is recurrent, i.e. it returns to any non-empty open 
set for arbitrarily large times with probability 1. For k = 3, xt is no 
longer recurrent, and \xt\-* oo as t—» oo (Ito and McKean [7], p. 236). 

However, the angular or directional part xtl\xt\ is recurrent in the 
unit sphere Sk~l for all k. I will give a proof of this known fact, to 
contrast it with the relativistic situation in which it fails, as will be 
seen. 

For a fixed, even if large, time T, the asymptotic behavior of xj\xt\ 
as t-± oo is independent of xs for s^ T, since \xt\-* oo. Thus the 
probability that xtl\xt\ visits a non-empty open set U C S*-1 for arbi
trarily large t is at least a(C/)/2 where <r is the normalized ortho
gonally invariant Borei measure on Sk~1. This is true even if we condi
tion the probability on any values of xs for s^ T. Thus there exist 
times Tn -» oo fast enough so that 

Pr{*r/KI $ C/for Tm § t < Tm+l7 m = ry • • -, n} 

g (1 - <j(t/)/4)n-r-H> 0 as n - » oo. 

The proof just concluded makes no use of the Gaussian distribution 
or other special properties of Brownian motion. We used an isotropic 
property to bring in (r(U), but the same conclusion holds for a broad 
class of motions in Rk, for which (r(U) can be replaced by some fixed 
positive number depending on U, a condition we might call "quasi-
isotropic." We also used the facts that \xt\-+ oo and that xt has in
dependent increments. 

Thus, recurrence of xtl\xt\ in Sk~l can be considered typical of 
reasonable random processes xt in Rk. The main point of this paper is 
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that if we replace Newtonian space R3 by the relativistic velocity space 
or Lobachevsky space 7/, then recurrence of the direction of motion 
becomes far from typical. In fact, for reasonable random processes the 
direction converges as t-* <» . The reasons have to do with the metric 
structure of ^U, which is homeomorphic to R3 but metrically very dif
ferent, especially in the neighborhood of «>. 

2. Relativity and the Markov property. Now let us consider what 
random motions are allowed by relativity theory together with the 
Markov property. The two basic principles of special relativity are: 

(1) Physical motions faster than the speed c of light are 
impossible (we assume henceforth units chosen so that c = 1), 
and c is an absolute constant. 

(2) The laws of physics are the same in any two inertial co
ordinate systems (both in a state of uniform, unaccelerated 
motion). 

In our inertial frames we have ordinary orthonormal space co
ordinates (x, y, z) and a time t. Because of (1) and (2), it turns out that 
the transformation of co-ordinates between inertial systems affects not 
only the space variables but also the time. Thus, events can be called 
simultaneous only in a particular coordinate system. 

Given a trajectory (in space-time) with speeds less than 1 every
where, we can carry a clock along it and parametrize it by the time 
T shown by the clock as it passes each point. Thus, on such a tra
jectory we have a time measurement which does not depend on the 
coordinate system. Given an inertial system (x, y, z, t), it turns out that 

(3) dr = (dt2 - dx2 - dy2 - dz2)"2 

([2] , p. 44; [10], pp. 99-102). This r is called the proper time on the 
trajectory. 

As a side remark, we note that Arens [ 1] has classified certain sets 
of relativistic "particles." From his viewpoint, the kinds of particles we 
consider are just the "familiar point particles." He gives eight other 
types of particles, of which only one has speeds less than 1. 

Now we consider random processes £(t, co), where CÜ GE fi for some 
probability space (fi, S, P). The Markov property asserts that condi
tional on £(t, co), for each fixed t, the families {£(s, co) : s < t} and 
{£(u, co) :u> t) are independent. 

If we let £ = (x, y, z) and consider processes in R3, we find that the 
existence of finite velocities d£ldt imposed by (1) gives a dependence 
between past and future which conflicts with the Markov property, 
except under special conditions such as flows along fixed trajectories, 
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where €(t, o>) determines dÇ(ty <o)ldt. These seem uninteresting as 
random motions since there is not much room for randomness. 

One way around this difficulty, which we will use, is to enlarge the 
state space of the processes to include a velocity component. Thus we 
might consider processes of the form (£(t), d£(t)ldt) in R6. There is a 
large class of such processes satisfying (1) and the Markov property. 
Actually it is more convenient to reparametrize processes by proper 
time, giving us space-time functions 

P ( T ) = (x(r)yy(r\z(r),t(r)) 

and trajectories (p(T),pf(r)) in phase space. By (3), p'{r) always be
longs to the 3-dimensional hyperboloid 

m = {(*, y,z,t):t = (x2 + y2 + z2 + 1)1/2}. 

Since we can recover p(r) from p'(•) and p(0), we may as well re
strict attention to the process p '(T)(O>) in7^. 

Let X be the group of proper Lorentz transformations of R4, each 
taking one inertial frame into another ([10], p. 41). This group acts 
on <7/. We can represent ^U as the homogeneous, symmetric space XlK 
where K is the maximal compact subgroup of £ leaving the point p = 
(0,0,0,1) fixed. Thus K is an orthogonal group 0(3). 

Markov processes i n ^ with stationary, ./-invariant transition proba
bilities were treated in [3] and [4] and classified by a generalized 
Lévy-Khinchin formula due to Tutubalin [11] and Gangolli [6]. Ex
cept in the trivial case p'(r) = constant, the ^-invariant processes are 
all transient, i.e. p'(r) goes to oo in Vi as r—» oo almost surely ([3] , 
Theorem 9.2). Actually, for any compact K C ^ , Pr(p'(r) G K) -»0 
exponentially fast as T—> oo [3, Lemma 9.3], unlike the case of homo
geneous stationary processes X in Rk where Pr(X(t) G K) is often of 
the order oît~kl2 as £—» oo . 

A further difference in the relativistic case is that as shown in [5, 
Theorem 3] and further discussed below, the direction of p'(r) con
verges as T—» oo? for any of the Lorentz-invariant processes men
tioned above. When this happens, we shall say that the process re
cedes. 

To understand why processes in ^ tend to recede, we consider the 
metric structure of (7i. For each u G 11 we can choose an inertial 
frame in which u represents rest. Then the usual Euclidean metric in
duces a Riemannian metric on the tangent space to 7/ at u. This Rie-
mann structure defines a metric p onlx. 

For any w 6 ^ and r > 0, the sphere 

Sr(w)= {qG^U:p(u,q)=r} 
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is isometric to an ordinary Euclidean sphere, but of radius sinh r 
[3, p. 257]. Thus the circumference of such a sphere grows ex
ponentially as r—» oo . Hence a randomly moving point i n ^ , if it has 
no particular preference for any direction but moves through on the 
average about the same Riemann distance in different directions, will 
tend to move outward to larger spheres much more easily than it will 
circumnavigate spheres. 

Recession holds not only for the invariant processes of [3] and [4] 
([5] , Theorem 3) but also for any process such that the transition 
probabilities starting from each point u are invariant under the or
thogonal group leaving u fixed [5, Corollary of Theorem 2]. The 
hypotheses can be weakened substantially further. Instead of in
variance we only need a partial balancing of transition probabilities in 
different directions, as follows. 

Let PT(f, t i ,A)= Pr{p'(T) G A | p(0) = £p ' (0 ) = u}, where the 
conditional probability is more precisely a transition probability as
sociated with the Markov process (p(r), p ' (T ) ) . We always have a de
composition 

PT(£u, • ) = I" QT(tu,r, -)PT'(tu,dr) 
JO 

where PT ' (£ w, [a, b)) = PT(f, u9 {w G<U : a g p(u, w) < b}\ and QT is 
a probability measure on the sphere Sr(w). 

We shall use the following three assumptions: 
(I) Each QT has a density gT(£ u, r, •) with respect to the rotationally 

invariant Borei probability measure da on Sr(u)9 and qT is strictly 
positive and bounded away from 0 for u in bounded sets. 

(II) Let q{p) = sup{<7T(£u? r, a): r ^ 0, { G R4, p(w, p) ^ p, 
r § 0, a G Sr(u)}. Then limp^ „e-f>q(p) = 0. 

(III) There is some ß > 0 such that for any r è O , f G f i 4 , and 
M Ë ' I i , letting L be any 3-dimensional linear subspace of R4 contain
ing 0, p and u, and either closed half-space H of R4 bounded by L, we 
h a v e P T ( £ u , H n ^ ) e 0 . 

A proof that (I), (II) and (III), together with standard regularity 
conditions for Markov processes, imply convergence of velocities 
P'(T) as r—» oo ? is given in [5, Theorem 2]. Here is a sketch of the 
proof. 

Either p'(r) converges to a finite limit as r—» °°, in which case of 
course its direction also converges, or it moves through some positive 
p-distance infinitely often. In the latter case, (I) implies that p ' does 
not remain bounded as r —» °o, since it always has a positive chance 
to change in any direction, including directions which carry it out 
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toward oo. Then (II) is used to show that p '(r) —» <», without returning 
infinitely often into compact sets. One might say that the space ̂ U has 
an exponential bias toward recession, and (II) says that the transition 
probabilities are less than exponentially biased, so they cannot over
come the inherent tendency toward recession. Finally, (III) is used to 
show that p ' does not spiral around as it goes to o°. 

Here is a further explanation of what (III) says. If we use a co
ordinate system in which we start from rest, and later we have reached 
some velocity, then we may have some bias toward turning left rather 
than right, or up rather than down, but this bias must remain uni
formly bounded. We may prefer deceleration to acceleration as long 
as the preference is less than exponential, according to (II). 

3. Motion of galaxies. It is known that galaxies are receding from 
each other, with relatively few exceptions. It seems natural to suppose 
that galaxies, perhaps especially in their formative periods, are subject 
to influential random influxes of new matter. The process of accretion 
of matter into galaxies is apparently continuing up to the present [9]. 
It is also known that on occasion galaxies collide. These effects make 
it at least conceivable that the observed recession of galaxies need not 
be extrapolated all the way back to the extreme of a closely packed 
fireball. Since recession in a limiting direction is the natural mode of 
behavior for relativistic random processes under reasonable conditions, 
we may well ask whether such conditions may hold for the galaxies. 
We would need to consider general relativity, i.e. global gravitational 
effects, which are not yet included in this treatment. 

If an infinite space were on the average uniformly filled with a gas 
of positive, finite density, in equilibrium, then the velocities of the 
particles in the gas should have a relativistic Maxwell-Boltzmann dis
tribution [8]. At times far enough apart to allow for many collisions 
on the average for one particle, its velocities would be nearly in
dependent. Thus, for positive density we do not have recession. To 
allow for recession, then, it seems reasonable to suppose that the 
density of mass approaches zero as we consider larger and larger 
regions, as is true to the best of our knowledge [ 12]. 
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