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P-FRACTIONS AND THE PADÉ TABLE1 

ARNE MAGNUS 

The regular continued fraction of a positive real number x0 is 
obtained by writing x0 as the sum of the greatest integer [x0] in 
x0 and a remainder r b 0 ^ rx < 1, that is, x0 = [x0] + rx. If 
Ti > 0 we replace the "small" number rx by the "large" one litx = 
*! and repeat the process with xl9 that is; 

*o= [*o] + fi = [*o] + ^ r 

- w + ̂ - w + j^Vi;-
Continuing in this fashion and setting [xj = foi? i = 0,1,2, • • -, 
we arrive at the finite or infinite regular continued fraction for x0 

*o= bo+yi+J2+ .... 

We follow an analogous procedure for the power series 

/ = i On*» 
n=-N0 

= a-Nox~No + • • • + a . !* - 1 ' + a0 + a ^ + 

The "small" part of / is the series ^ " anx
n whose first non-

vanishing term we denote by aNlx
Ni and formally write 

(aNlx* + aNl + lx
N*+i+ ••••)(aLNlx-*+aLNl + 1x-Ni + i+ •••) = !, 

where a'_Nl+n is uniquely determined by aNl, • • % aNl +n, for n = 0, 
1, 2, • • •. We set ^ °NQ anx

n = b0 and have 

n = -N0 n=-Nt 

The process is continued to produce a finite or infinite continued 
fraction, called the principal part expansion off, 
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bY + b2 + 

where bn is a polynomial in 1/x of degree Nn and Nn = 1, 
n = 1, 2,3, • • -, b0 may be a constant, including zero. 

A P-fraction is defined to be any continued fraction 

where the fon's are polynomials in 1/x of degrees 2Vn with Nn è 1 
for n = 1, 2, 3, • • \ We denote its nth approximant by AJBn 

and state some theorems [ 1,2, 3] . 

THEOREM 1. To each P-fraction corresponds a unique power 
series, f= ^n = -N0 an

xU> sucn that the power series expansion of 
An/Bn agrees with f up to but not including the term of degree 
2N, + • • • + 2Nn + Nn+l. 

THEOREM 2. To different P-fractions correspond different power 
series. 

THEOREM 3. A power series ^ -N0 an
x n corresponds to its own 

principal part expansion. 

THEOREM 4. A P-fraction is finite if and only if the corresponding 
series is a rational function. 

Regular C-fractions are not F-fractions but some other C-fractions 
are. The F-fraction of a series ^ o cnxn (without principal part) is 
identical to its associated continued fraction when it exists, that is, 
when all the persymmetric determinants <£m = \ci+j_i\, i,j = 1, 2, • • -, 
m, m = 1, 2, • • • are different from zero. We set <f>0 = 1. 

If, on the other hand, <f>m ^ 0 if and only if m = Mn, n = 0, 1, 2, 
• • • and 0 = M0 < Mx < M2 < * % then the degree of bn in the 
principal part expansion of / is Nn = Mn — Mn_1? n = 1, 2, • • -, 
and b0 = c0. It is easy to show that by making arbitrary small 
perturbations of the coefficients, from cn to cn*, we can assume that 
the corresponding determinants <f>n* are all different from zero, so that 
the series ^ Ô cn*xn has an associated continued fraction. This fact 
is used to establish the connection between an arbitrary F-fraction and 
associated continued fractions [4]. 

THEOREM 5. Let / = 2 3 cn%n be a power series with P-fraction 
P for which the determinants <f>m differ from zero if and only if 
m= Mn, n = 0 ,1 , 2, • • -, 0 = M0 < Ml < M2 • • \ Let f* = 
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5) Ô cn*xn be such that \cn - cn*| < € and <£n* ̂ 0 , n = 0, 1,2, 
• • -, and let the associated continued fraction of f* be A with 

approximants KJLm. Then that contraction P* of A whose approxi
mants are those KJLm where m = Mn, n = 0, 1, 2, • • • approaches 
P as e -» 0 in the sense that, after a possible equivalence transforma
tion, the elements of P* approach those of P and the coefficients of 
KMIJLMH approach those of AJBn. 

P-fractions are related to the Padé table as follows. 

THEOREM 6. Let / = 5) o cnxn be any power series with c0 j ^ 0, 
s any fixed integer (s = 0, ± 1, ± 2 , • • •) and 

U (s) _i_ L_ 1 
0 &!<*> + 62w + • • • 

with approximants An
(5)/Bn

(*) be the P-fraction of xsf = ^oCnx
n+s, 

then {Ani8)lxsBn
is)} is the sequence of consecutive distinct fractions 

down diagonal numbers s, [m,m — s] or [m + s,m], of the Padé 
table off In particular (s = 0), the approximants of the P-fraction of 
fare the distinct fractions of the main diagonal. 
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