P-FRACTIONS AND THE PADÉ TABLE¹ ARNE MAGNUS

The regular continued fraction of a positive real number x_0 is obtained by writing x_0 as the sum of the greatest integer $[x_0]$ in x_0 and a remainder r_1 , $0 \le r_1 < 1$, that is, $x_0 = [x_0] + r_1$. If $r_1 > 0$ we replace the "small" number r_1 by the "large" one $1/r_1 = x_1$ and repeat the process with x_1 , that is;

$$x_0 = [x_0] + r_1 = [x_0] + \frac{1}{1/r_1}$$
$$= [x_0] + \frac{1}{x_1} = [x_0] + \frac{1}{[x_1] + r_2}$$

Continuing in this fashion and setting $[x_i] = b_i$, $i = 0, 1, 2, \cdots$, we arrive at the finite or infinite regular continued fraction for x_0

$$x_0 = b_0 + \frac{1}{b_1} + \frac{1}{b_2} + \cdots$$

We follow an analogous procedure for the power series

$$f = \sum_{n=-N_0}^{\infty} a_n x^n$$

= $a_{-N_0} x^{-N_0} + \cdots + a_{-1} x^{-1} + a_0 + a_1 x + \cdots$

The "small" part of f is the series $\sum_{n=1}^{\infty} a_n x^n$ whose first nonvanishing term we denote by $a_{N,x} x^{N_1}$ and formally write

 $(a_{N_1}x^{N_1} + a_{N_1+1}x^{N_1+1} + \cdots)(a'_{-N_1}x^{-N_1} + a'_{-N_1+1}x^{-N_1+1} + \cdots) = 1,$ where a'_{-N_1+n} is uniquely determined by $a_{N_1}, \cdots, a_{N_1+n}$, for n = 0,

1, 2, \cdots . We set $\sum_{n=1}^{0} a_n x^n = b_0$ and have

$$f = \sum_{n = -N_0}^{\infty} a_n x^n = b_0 + 1 \int_{n = -N_1}^{\infty} a'_n x^n.$$

The process is continued to produce a finite or infinite continued fraction, called the principal part expansion of f,

Received by the editors February 8, 1973.

¹This paper was written with support from the Air Force Office of Scientific Research Grant No. 70-1922.

$$b_0 + \frac{1}{b_1} + \frac{1}{b_2} + \cdots,$$

where b_n is a polynomial in 1/x of degree N_n and $N_n \ge 1$, $n = 1, 2, 3, \dots, b_0$ may be a constant, including zero.

A *P*-fraction is defined to be any continued fraction

$$b_0 + \frac{1}{b_1} + \frac{1}{b_2} + \cdots,$$

where the b_n 's are polynomials in 1/x of degrees N_n with $N_n \ge 1$ for $n = 1, 2, 3, \cdots$. We denote its *n*th approximant by A_n/B_n and state some theorems [1, 2, 3].

THEOREM 1. To each P-fraction corresponds a unique power series, $f = \sum_{n=-N_0}^{\infty} a_n x^n$, such that the power series expansion of A_n/B_n agrees with f up to but not including the term of degree $2N_1 + \cdots + 2N_n + N_{n+1}$.

THEOREM 2. To different P-fractions correspond different power series.

THEOREM 3. A power series $\sum_{n=1}^{\infty} a_n x^n$ corresponds to its own principal part expansion.

THEOREM 4. A P-fraction is finite if and only if the corresponding series is a rational function.

Regular C-fractions are not P-fractions but some other C-fractions are. The P-fraction of a series $\sum_{0}^{\infty} c_n x^n$ (without principal part) is identical to its associated continued fraction when it exists, that is, when all the persymmetric determinants $\phi_m = |c_{i+j-1}|$, $i, j = 1, 2, \cdots$, $m, m = 1, 2, \cdots$ are different from zero. We set $\phi_0 = 1$.

If, on the other hand, $\phi_m \neq 0$ if and only if $m = M_n$, $n = 0, 1, 2, \cdots$ and $0 = M_0 < M_1 < M_2 < \cdots$, then the degree of b_n in the principal part expansion of f is $N_n = M_n - M_{n-1}$, $n = 1, 2, \cdots$, and $b_0 = c_0$. It is easy to show that by making arbitrary small perturbations of the coefficients, from c_n to c_n^* , we can assume that the corresponding determinants ϕ_n^* are all different from zero, so that the series $\sum_{n=0}^{\infty} c_n^* x^n$ has an associated continued fraction. This fact is used to establish the connection between an arbitrary *P*-fraction and associated continued fractions [4].

THEOREM 5. Let $f = \sum_{n=0}^{\infty} c_n x^n$ be a power series with P-fraction P for which the determinants ϕ_m differ from zero if and only if $m = M_n$, $n = 0, 1, 2, \cdots$, $0 = M_0 < M_1 < M_2 \cdots$. Let $f^* =$

258

 $\sum_{n=0}^{\infty} c_n^* x^n$ be such that $|c_n - c_n^*| < \epsilon$ and $\phi_n^* \neq 0$, $n = 0, 1, 2, \cdots$, and let the associated continued fraction of f^* be A with approximants K_m/L_m . Then that contraction P^* of A whose approximants are those K_m/L_m where $m = M_n$, $n = 0, 1, 2, \cdots$ approaches P as $\epsilon \to 0$ in the sense that, after a possible equivalence transformation, the elements of P^* approach those of P and the coefficients of K_{M_n}/L_{M_n} approach those of A_n/B_n .

P-fractions are related to the Padé table as follows.

THEOREM 6. Let $f = \sum_{0}^{\infty} c_n x^n$ be any power series with $c_0 \neq 0$, s any fixed integer ($s = 0, \pm 1, \pm 2, \cdots$) and

$$b_0^{(s)} + \frac{1}{b_1^{(s)}} + \frac{1}{b_2^{(s)}} + \cdots$$

with approximants $A_n^{(s)}/B_n^{(s)}$ be the P-fraction of $x^s f = \sum_0^{\infty} c_n x^{n+s}$, then $\{A_n^{(s)}/x^s B_n^{(s)}\}$ is the sequence of consecutive distinct fractions down diagonal numbers s, [m, m-s] or [m+s, m], of the Padé table of f. In particular (s = 0), the approximants of the P-fraction of f are the distinct fractions of the main diagonal.

REFERENCES

1. A. Magnus, Certain continued fractions associated with the Padé table, Math. Zeit. 78 (1962), pp. 361-374.

2. —, Expansion of power series into P-fractions, Math. Zeit. 80 (1962), pp. 209-216.

3. —, On P-expansions of power series, Norske Vid. Selsk. Skr. (Trondheim) 1964 #3, pp. 1-14.

4. ____, The connection between P-fractions and associated fractions, Proc. Amer. Math. Soc. V 25 #3, pp. 676-679.

COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO 80521