P-FRACTIONS AND THE PADÉ TABLE ${ }^{1}$

ARNE MAGNUS

The regular continued fraction of a positive real number x_{0} is obtained by writing x_{0} as the sum of the greatest integer $\left[x_{0}\right.$] in x_{0} and a remainder $r_{1}, 0 \leqq r_{1}<1$, that is, $x_{0}=\left[x_{0}\right]+r_{1}$. If $r_{1}>0$ we replace the "small" number r_{1} by the "large" one $1 / r_{1}=$ x_{1} and repeat the process with x_{1}, that is;

$$
\begin{aligned}
x_{0} & =\left[x_{0}\right]+r_{1}=\left[x_{0}\right]+\frac{1}{1 / r_{1}} \\
& =\left[x_{0}\right]+\frac{1}{x_{1}}=\left[x_{0}\right]+\frac{1}{\left[x_{1}\right]+r_{2}}
\end{aligned}
$$

Continuing in this fashion and setting $\left[x_{i}\right]=b_{i}, i=0,1,2, \cdots$, we arrive at the finite or infinite regular continued fraction for x_{0}

$$
x_{0}=b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots
$$

We follow an analogous procedure for the power series

$$
\begin{aligned}
f & =\sum_{n=-N_{0}}^{\infty} a_{n} x^{n} \\
& =a_{-N_{0}} x^{-N_{0}}+\cdots+a_{-1} x^{-1}+a_{0}+a_{1} x+\cdots
\end{aligned}
$$

The "small" part of f is the series $\sum_{1}^{\infty} a_{n} x^{n}$ whose first nonvanishing term we denote by $a_{N_{1}} x^{N_{1}}$ and formally write
$\left(a_{N_{1}} x^{N_{1}}+a_{N_{1}+1} x^{N_{1}+1}+\cdots\right)\left(a_{-N_{1}}^{\prime} x^{-N_{1}}+a_{-N_{1}+1}^{\prime} x^{-N_{1}+1}+\cdots\right)=1$, where $a_{-N_{1}+n}^{\prime}$ is uniquely determined by $a_{N_{1}}, \cdots, a_{N_{1}+n}$, for $n=0$, $1,2, \cdots$ We set $\sum{ }_{{ }_{-}^{0}}^{0}{ }_{0} a_{n} x^{n}=b_{0}$ and have

$$
f=\sum_{n=-N_{0}}^{\infty} a_{n} x^{n}=b_{0}+1 / \sum_{n=-N_{1}}^{\infty} a_{n}^{\prime} x^{n}
$$

The process is continued to produce a finite or infinite continued fraction, called the principal part expansion of f,

[^0]$$
b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots
$$
where b_{n} is a polynomial in $1 / x$ of degree N_{n} and $N_{n} \geqq 1$, $n=1,2,3, \cdots, b_{0}$ may be a constant, including zero.

A P-fraction is defined to be any continued fraction

$$
b_{0}+\frac{1}{b_{1}}+\frac{1}{b_{2}}+\cdots
$$

where the b_{n} 's are polynomials in $1 / x$ of degrees N_{n} with $N_{n} \geqq 1$ for $n=1,2,3, \cdots$. We denote its nth approximant by A_{n} / B_{n} and state some theorems $[1,2,3]$.

Theorem 1. To each P-fraction corresponds a unique power series, $f=\sum_{n=-N_{0}}^{\infty} a_{n} x^{n}$, such that the power series expansion of A_{n} / B_{n} agrees with f up to but not including the term of degree $2 N_{1}+\cdots+2 N_{n}+N_{n+1}$.

Theorem 2. To different P-fractions correspond different power series.

Theorem 3. A power series $\sum_{{ }_{-}{ }_{0}}^{\infty} a_{n} x^{n}$ corresponds to its own principal part expansion.

Theorem 4. A P-fraction is finite if and only if the corresponding series is a rational function.

Regular C-fractions are not P-fractions but some other C-fractions are. The P-fraction of a series $\sum{ }_{0}^{\infty} c_{n} x^{n}$ (without principal part) is identical to its associated continued fraction when it exists, that is, when all the persymmetric determinants $\phi_{m}=\left|c_{i+j-1}\right|, i, j=1,2, \cdots$, $m, m=1,2, \cdots$ are different from zero. We set $\phi_{0}=1$.

If, on the other hand, $\phi_{m} \neq 0$ if and only if $m=M_{n}, n=0,1,2$, \cdots and $0=M_{0}<M_{1}<M_{2}<\cdots$, then the degree of b_{n} in the principal part expansion of f is $N_{n}=M_{n}-M_{n-1}, n=1,2, \cdots$, and $b_{0}=c_{0}$. It is easy to show that by making arbitrary small perturbations of the coefficients, from c_{n} to $c_{n}{ }^{*}$, we can assume that the corresponding determinants $\boldsymbol{\phi}_{n}{ }^{*}$ are all different from zero, so that the series $\sum_{0}^{\infty} c_{n}{ }^{*} x^{n}$ has an associated continued fraction. This fact is used to establish the connection between an arbitrary P-fraction and associated continued fractions [4].

Theorem 5. Let $f=\sum{ }_{0}^{\infty} c_{n} x^{n}$ be a power series with P-fraction P for which the determinants ϕ_{m} differ from zero if and only if $m=M_{n}, \quad n=0,1,2, \cdots, \quad 0=M_{0}<M_{1}<M_{2} \cdots . \quad$ Let $\quad f^{*}=$
$\sum_{0}^{\infty} c_{n}^{*} x^{n}$ be such that $\left|c_{n}-c_{n}{ }^{*}\right|<\epsilon$ and $\phi_{n}{ }^{*} \neq 0, \quad n=0,1,2$, \cdots, and let the associated continued fraction of f^{*} be A with approximants K_{m} / L_{m}. Then that contraction P^{*} of A whose approximants are those K_{m} / L_{m} where $m=M_{n}, n=0,1,2$, \cdots approaches P as $\epsilon \rightarrow 0$ in the sense that, after a possible equivalence transformation, the elements of P^{*} approach those of P and the coefficients of $K_{M_{n}} / L_{M_{n}}$ approach those of A_{n} / B_{n}.
P-fractions are related to the Padé table as follows.
Theorem 6. Let $f=\sum{ }_{0}^{\infty} c_{n} x^{n}$ be any power series with $c_{0} \neq 0$, s any fixed integer $(s=0, \pm 1, \pm 2, \cdots)$ and

$$
b_{0}{ }^{(s)}+\frac{1}{b_{1}^{(s)}}+\frac{1}{b_{2}^{(s)}}+\cdots
$$

with approximants $A_{n}{ }^{(s)} / B_{n}{ }^{(s)}$ be the P-fraction of $x^{s} f=\sum_{0}{ }_{0} c_{n} x^{n+s}$, then $\left\{A_{n}{ }^{(s)} \mid x^{s} B_{n}{ }^{(s)}\right\}$ is the sequence of consecutive distinct fractions down diagonal numbers s, $[m, m-s]$ or $[m+s, m]$, of the Padé table of f. In particular $(s=0)$, the approximants of the P-fraction of f are the distinct fractions of the main diagonal.

REFERENCES

1. A. Magnus, Certain continued fractions associated with the Pade table, Math. Zeit. 78 (1962), pp. 361-374.
2. ——, Expansion of power series into P-fractions, Math. Zeit. 80 (1962), pp. 209-216.
3. -_, On P-expansions of power series, Norske Vid. Selsk. Skr. (Trondheim) 1964 \#3, pp. 1-14.
4. The connection between P-fractions and associated fractions, Proc. Amer. Math. Soc. V 25 \#3, pp. 676-679.

Colorado State University, Fort Collins, Colorado 80521

[^0]: Received by the editors February 8, 1973.
 ${ }^{1}$ This paper was written with support from the Air Force Office of Scientific Research Grant No. 70-1922.

