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CERTAIN INVARIANCE AND CONVERGENCE PROPERTIES 
OF THE PADÉ APPROXIMANT* 

GEORGE A. BAKER, JR.f 

We define the Padé approximant, invented by Jacobi [ 12], to the 
formal power series /(x), by the equations 

rr,w, _ W 
\1) 

(2) 

(3) 

L 1 ^ 1 J "• QM(X) 

QM(x)f(x) - PL{x) = 0(x « 

QM(0) = 1 

where PL and QM are polynomials of degree L and M respectively. 
This definition differs from the classical one of Frobenius [9] and 
Padé [14], in the use of (3). Under our definition the Padé approxi-
mants do not always exist, but an infinite number on each row, column, 
and diagonal of the Padé table always do exist [4]. 

The diagonal, L= M, Padé approximants satisfy the following in
variance theorem, 

THEOREM (INVARIANCE). If PM(X)IQM(X) is the [M/M] Padé approxi
mant to f(x), and C + Df (0) ^ 0, then 

(4) '-"[MrfcJMTfc)] 
c+D['«(7fV)M-Tf^)] 

is the [ MIM] Padé approximant to 

(5) {A + Bf[ayl(l + ßy)] }/{C + Df[ayl{\ + ßy)] }. 

The proof of this theorem is easily constructed by multiplying 
numerator and denominator by (1 + ßy) M QM(ayl(l + ßy)). This 
operation reduces form (4) to the ratio of two polynomials of degree 
M, and thus the invariance theorem can be made to follow from the 
uniqueness theorem: 
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THEOREM (UNIQUENESS). When it exists, the [L/M] Padé approxi
mant to any formal power series is unique. 

The proof of this theorem consists of assuming that there are two 
[LIM] Padé approximants and showing, by means of (2), that they 
are the same. 

Next we will consider the geometrical significance of the invariance 
theorem. We seek a measure of the "distance" between two Padé's 
which is likewise invariant. Since the Padé approximant is invariant 
under the linear fractional group, let us remind ourselves of some of 
its properties. If 

<» "-wire-
then to insure that (6) is not degenerate so that all z map into a single 
w, we specify that (B, A) not be simply proportional to (D, C). This 
condition is most conveniently imposed as 

(7) BC - AD = 1 

The law of composition of two successive transformations is given by 

w = TMz)) = T3(z) 

(B3 A3\ / B 2 A 2 \ /Bl A, \ 
\D3 C3 / \ D 2 CJ \DX Cx I 

where ordinary matrix multiplication is implied, and (7) implies that 
we have the subgroup of two-by-two matrices with unit determinant. 
Now any complex matrix can be factored in the form 
(9) T=UXDU2 

where Ul and U2 are unitary and D is diagonal. However, refering to 
(6) and (8), we see that a diagonal matrix corresponds to 

/im B g + ° B 

(10) w = ~Wc=-cz 

or an uninteresting multiplication by a constant factor. Thus from our 
present point of view it is not unreasonable to confine our attention to 
the unitary subgroup of 2 X 2 matrices, i.e. 

(») T- (-1* ; • ) • 
Let us introduce Riemann's spherical representation of the complex 

numbers. This representation follows by imagining a unit sphere 
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FIGURE 1. A cross-section of the Riemann sphere and the complex plane. The 
points Ä and B are projections on the sphere of points A and B in the plane 
using vertex N. 

centered at the origin with its equatorial plane the intersection with 
the complex plane. If we now project a line from the north pole 
of the sphere to any point in the complex plane, we intersect the 
sphere in one and only one point. The north pole corresponds to the 
point at infinity. This intersection (see Fig. 1) is Riemann's spher
ical representation. It is not hard to show that 2 X 2 unitary transfor
mations (11) correspond exactly to rotations of the Riemann sphere. 
Thus any measurement on the sphere will be invariant under the 
unitary group of transformations and a satisfactory distance between 
two Padé approximants. We pick the chord length, which is easily 
calculated as 

(12) D*M = 4 ^ W Ì 2 

|1 + Z*W\2+ \Z-W\2 

and introduce the 

DEFINITION. A sequence of complex numbers wn is said to 
converge on the sphere, if for any € > 0, there exists an N such that 

(13) D*(wwwm)^c* 

for all n,ra ^ N. 

This definition allows sequences which tend to infinity to be 
treated on the same basis as sequences tending to any other limit 
point. For, we can rewrite (12) as 

file:///Z-W/2
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(14) D%z,w) = 
4\z- w -112 

|1 + z-1*w~l\2+ \z-

which converts the problem of z —» °° into z~l —» 0. We can now 
treat convergence of Padé approximants at a pole in a much more 
convenient manner. 

Next we will review, consolidate and extend the known theorems 
on the convergence of vertical (degree of the denominator fixed) 
sequences in the Padé table. These are due to Montesuss [ 13], 
Wilson [18], [19], and Baker [4], [5]. They treat "smooth" series 
and we will describe them generally rather than state them in detail. 
The underlying feature is, if there is an unambiguous location for 
each pole to converge to, then the Padé approximants converge on 
the sphere, inside the radius of convergence of the Taylor series to 

(15) B(z)=f(z) f i (I-ziti) 
i = l 

where the z{ are the n locations of convergence of the poles and m{ 

are the multiplicities of the converging poles. The theorems then 
make these statements precise. The simplest case is where there 
is a finite number of poles inside a circle of radius R. With no as
sumption on the behavior outside or on \z\ = ft, one can prove that 
the [LIM], M = 2 mi converges on the sphere uniformly in |z| = p < R 
for any such p. When the number of poles in the Padé approximants 
exceeds the number of simple poles closer to the origin than the clos
est non-polar singularity, the theorems involve "smoothness" assump
tions on the coefficients. These conditions are of the sort obeyed by 
the series expansions for algebraic, or logarithmic type singularities. 
Specifically, we assume, over a finite range of n near L after the pole 
contributions are removed, that 

(lejb.-r-flD [ Y «v> ( t - i ) J + o ((^--i)2*)] 

for the [ LIM + fi] Padé approximants and that 

«o ' ' ' (M - 1 ) H - I 

(17) det 

(/* - ljlofc-r • • (2/u - 2)!a^_2 

¥o 
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in the limit as L —> co. Finally, there are results for smooth series for 
entire functions where the form of (16) also includes a factor of 
(n\)~d, 6> 0. In this case, condition (17) is not required. In these 
cases the "extra" poles converge to z = T for form (16) or to (TL6) for 
the case of a "smooth" entire function. 

In the case of several competing non-polar, singularities the "extra" 
poles are distributed in such a way as to represent form (16) with 
minimum error as L goes to infinity using the rule that 1 pole can 
represent a constant, 2 poles a quadratic polynomial in (nIL — 1), 3 
poles a quartic, and so on. When this distribution is unique, that 
vertical sequence of Padé approximants converges. Otherwise, 
examples show that the whole sequence need not. 

Since they satisfy an invariance property, both in their argument 
and in their value, one would expect that the diagonal or near 
diagonal [ LIL + J] sequences would be more powerful methods of 
summing power series than horizontal or vertical sequences. Indeed 
many examples show that this expectation is so. It is however very 
hard to find useful general criteria satisfied by either the functions 
themselves or their series coefficients to imply the convergence of 
diagonal sequences of Padé approximants. In the case where the con
tinued fraction representation of the functions is known, as for the 
continued fraction of Gauss, then as continued fractions are just limits 
of stairstep sequences in the Padé table, the known theorems (dealt 
with in another lecture), involving the coefficients of the continued 
fractions are very satisfactory. Otherwise the theorems involve con
ditions on the Padé approximants themselves (see, for example, the 
reviews [1], [3].) These conditions have to do mainly with the 
location of the poles ([7] , [17], [3]), or the stronger condition of 
boundedness [ 1]. As a sample of this type of theorem, we quote a 
special case of Chisholm's theorem 

THEOREM (CHISHOLM). Let f(z) be analytic in \z\ = R and /(0) ^ 
0). Let [ LIM] be an infinite sequence of Fade approximants to f(z) 
with L —» oo and M —» co in any way, such that they contain no poles 
in \z | S R Then the sequence [ LIM] converges uniformly to f(z) 
in the region 

(18) | s | g ( V 2 - l ) f l - € 

for any e > 0. 

The proof of this theorem involves constructing bounds for the 
numerator of [ LIM] — f(z). There are a number of general 
theorems on convergence in measure, but, as they are being treated 
in a separate lecture, I will not discuss them here. 
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For one class of function very complete results are available. Those 
are the series of Stieltjes. Let 

(19) 
d4(u) *>-£«->'-££ uz 

where dtf> = 0. It is necessary and sufficient for f(z) to be of form 
(19) that 

(20) C(LIM) = det 

fi L-Af+1 k 

k k+ A / - 1 

ê o 

for all L ^ M — 1. We will hear from other speakers of some of 
the examples of functions of this structure which appear in physics. 

For series of Stieltjes one can prove that all the poles lie on the 
negative real axis and have positive residue. This result serves effec
tively to control the location and strength of the singularities. For z 
real and positive, the Padé approximants obey (J è — 1) 

(21) 

(-l)l+J{[M+ 1 + / / M + 1] - [M + / / M ] } ^ 0 , 

(-l)l+J{[M + JIM] - [M + / + l / M - l ] } è O , 

[MIM] ^f(z)^ [M- I/M], 

[MIM] ' ^ / ' ( * ) ^ [ M - I/M] '. 

For z complex, one can give lens shaped error inclusion regions for 
the Padé approximants. [Pfluger and Henrici [15], Gargantini 
and Henrici [11], Common [8], Baker [2].] If the radius of 
convergence is known all these estimates can be sharpened up. 

Even if the radius of convergence is zero, it can be proved that the 
diagonal sequences of Padé approximants sum series of Stieltjes. 
If the series diverges less rapidly than about (fP) ~ (2P)! so that the 
determinate case holds, then every diagonal sequence tends to the 
same limit. 

In order to fill partially the gap between what can be proved about 
diagonal sequences and what seems to hold true for examples, Baker, 
Gammel and Wills [6] proposed the following conjecture (slightly 
modernized): 

PADE CONJECTURE. If P(z) is a power series which is regular for 
\z\ = 1, except for m poles within this circle and except for z = + 1 , 
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at which point the function is assumed continuous when only points 
\z\ â 1 are considered, then at least a subsequence of the [MIM] Fade 
approximants converges on the sphere, uniformly for |z| = 1. 

The effect of this conjecture can be greatly extended through the 
use of the invariance theorem. There are examples ([10], [16]) 
which show that the whole sequence of Padé approximants need 
not converge in the pointwise sense. 

Finally I will quote two theorems of a different character. These 
theorems concern the existence of convergent, vertical subsequences 
of Padé approximants [4]. They represent, I think, just a beginning 
for theorems of this character. 

THEOREM. Let f(z) be an entire function, then there exists an 
infinite subsequence of [L/l] Padé approximants which converges 
uniformly in any closed bounded region of the complex plane to the 
junction defined by the power series. 

The proof follows simply from a few observations. First, 

(22) [L/l]= i f fjz>+ ff . 
.7=0 L JL+IIJLZ 

Since 

(23) J5 = /O l ì Mk-il 
k = l 

and fj goes to zero faster than any geometric progression, as f(z) is 
an entire function, one can prove that there must exist an infinite 
sequence of ratios which go to zero. Thus the pole term, by the 
convergence off(z) can be made negligible. 

THEOREM. Letfiz) be an entire function, which satisfies 

oo 

(24) / ( * ) = 1 fjzJ, \fj\^KI[(j)\]° 
j=o 

for some K > 0, 6 > 1. Then there exists an infinite subsequence of 
[L/2] Padé approximants which converge uniformly in any closed 
bounded region of the complex plane to the entire function defined 
by the power series. 

The proof of this theorem is more difficult. It is based on the fact 
that the absolute value of the determinant of the coefficients C(L/2) 
of the Padé equations going uniformly to zero with L faster than 
fjLis inconsistent with restriction (24). 
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These theorems indicate, I think, that while convergence in mea
sure is the best that can be proved for the sequence as a whole, there 
is much more to be said about subsequences. The theorems on 
"smooth" series are reasonably complete for vertical and, by duality, 
horizonal sequences, the only major gap is for additional subsequence 
type theorems for the cases where the sequences as a whole do not 
converge. These theorems seem likely to be provable, although 
there may be a fair number of cases to consider. 

As far as the Padé conjecture is concerned, all the possible counter 
examples I know of have been checked and found not to be. There
fore, the Padé conjecture remains today, unproved and uncontradicted. 
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