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FIXED POINT THEOREMS FOR CONTRACTION MAPPINGS 
WITH APPLICATIONS TO NONEXPANSIVE AND 

PSEUDO-CONTRACTIVE MAPPINGS 
JUAN A. GATICA AND W. A. KIRK1 

ABSTRACT. The principal result states that if H is a closed 
and convex subset of a Banach space X, G a subset of H open 
relative to H with the origin 0 in G, and if U : G—» H is a 
contraction mapping satisfying (i) U(x) = ax implies a ^ I for 
x j= 0 in the boundary of G relative to the closed subspace Ji 
of X spanned by H, then U has a fixed point in G. This result 
is then used to obtain some fixed point theorems for non-
expansive and pseudo-contractive mappings. It may be com
pared with a recent result of W. V. Petryshyn for "condensing 
mappings," a class of mappings more general than the con
traction mappings. Petryshyn has shown that if G is bounded 
with 0 in the interior of G and if U : G—> X is a condensing 
mapping satisfying U(x) = ax implies a ^ 1 for x on the 
boundary of G, then U has a fixed point in G. This paper 
shows that for contraction mappings G need not be bounded, 
and under certain circumstances, 0 may be on the boundary of 
G. 

1. Introduction. Although we restrict our attention in this 
paper to contraction, nonexpansive, and pseudo-contractive mappings, 
we will compare our principal results with a recent theorem of W. V. 
Petiyshyn for "condensing mappings." We begin with a description of 
Petryshyn's result. 

For a bounded subset A of a real Banach space X, let y (A) denote 
the measure of noncompactness of A [17], that is, 

y (A) = inf{d : A can be covered by a finite number 
of sets each of diameter ^ d}. 

Following [22] we say that a continuous mapping T : G —» X, 
G C X, is condensing if for every bounded set A C G such that y (A) ^ 0 
it is the case that y(T(A)) < y (A). This class of mappings includes 
mappings of the form T = S -f C where S is a contraction mapping (i.e., 
there exists k < 1 such that ||S(x) — S(t/)|| = k\\x — y\\ for all x, 
y G G) and C a compact mapping of G into X. 
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It has been shown independently by Furi and Vignoli [8] and by 
R. D. Nussbaum [20] that if T is a condensing mapping of a 
bounded closed convex subset of X into itself then T has a fixed point. 
More recently, using the theory of topological degree developed for 
condensing mappings by Nussbaum in his University of Chicago 
thesis [ 19], Petryshyn has obtained the following result (here G 
and dG denote, respectively, the closure and boundary of G). 

PROPOSITION 1.1 (PETRYSHYN [22]). If G is a bounded open sub
set of a Banach space X with 0 in G and if T is a condensing mapping 
of G into X which satisfies 

(i) T(x) = ax for x G dG^>a ^ 1, 

then the fixed point set ofTin G is nonempty and compact. 

The very mild boundaiy condition (i) is equivalent to the Leray-
Schauder condition imposed by F. E. Browder in his study [6] of 
semicontractive mappings. For convex G it is much weaker than the 
frequently used assumption T : dG —» G. 

The two principal observations of this paper are contained in Sec
tion 2. One consequence of Theorem 2.1, the main result of this section, 
is that Proposition 1.1 remains true for contraction mappings without 
the assumption of boundedness of G (although boundedness of G is 
essential when T is merely assumed condensing). A second conse
quence of this theorem is even more significant. We see that it is per
missible under certain circumstances for the origin 0 to be on the 
boundaiy of G. Our conditions permit the mapping, for example, to 
have for its domain the intersection of a ball centered at the origin 
with a cone, with suitable conditions imposed on the boundary imply
ing existence of a fixed point. 

The results of Section 2 are used in Section 3 to obtain some new 
theorems for nonexpansive mappings. In Section 4 we obtain a much 
more general version of the principal result of Gatica-Kirk [9] for 
pseudo-contractive mappings, and then we formulate a theorem which 
may be viewed as an analogue of Borsuk's Antipodal Theorem for 
these mappings. 

2. Contraction Mappings. In this section we establish our principal 
result (Theorem 2.1). The proof of Proposition 1.1 given in [22] 
amounts to a simple application of Nussbaum's degree theory, an 
approach which will yield only a special case of our theorem. We give 
a direct proof patterned after an argument of Browder (cf. [6, Theorem 
5]). 
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To establish notation used below, let H be a closed subset of the 
Banach space X and let A be a subset of the closed subspace Ji of X 
spanned by H. We will use the symbols d^ A and A ^ °, respectively, 
to denote the boundary of A relative to J / and the interior of A relative 
to J/. 

THEOREM 2.1. Let H be a closed and convex subset of a Banach 
space X, G a subset of H open relative to H, and suppose 0 is in G 
(although possibly 0 G dM G). Let U : G -* H be a contraction map
ping satisfying 

(i) U(x) = ax for xEd^G.x^ 0, =^>a ^ 1. 

Then U has a fixed point in G. 

We obtain Theorem 2.1 from the following theorem. 

THEOREM 2.2. Let G be a subset of a Banach space with O E G , 
U : G —» X a contraction mapping satisfying 

(i) U(x) = axforxE a G , x / 0 , = > a g l , 

Suppose further that for some ß G (0,1], ßU has a fixed point in G. 
Then U has a fixed point in G. 

PROOF. Let k < 1 be a Lipschitz constant for U. If U(x) = Xx for 
A > 1 then 

IN II = IMI 
S | | A x - f / ( 0 ) | | + | | t 7 ( 0 ) | | 

= | | t / (x) - f7(0) | |+ | | t / (0) | | 

gfc||x||+||C7(0)||. 

Hence (1 - fc)||x|| g ||C/(0)|| and thus the set 

E= {xGG: U(x) = Ax for some A > 1} 

is bounded. Choose M() so that ||x|| < M0 if x G E and let 

B= { x G X : ||x|| < M0}. 

Letting D = B fi G, clearly D is bounded and U : D —» H. Suppose 
x G dDwith U(x) = ax. Then either x G dB, in which case ||x|| = M0, or 
x G dG. If ||z|| = M0 then x $ E so a ^ 1. On the other hand, if x G dG 
and x / 0 then a = 1 by (i). It follows that D satisfies all the assump
tions of G in the theorem and in addition D is bounded. Thus there 
is no loss in generality in assuming G is bounded. 
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Since the interior G° of G is open, (I — U)(G°) is open and 
d[(I- U)(G0)] C ( Z - U)(BG), (cf. [6]). Also, for each tŒ [0,1], 
Ut = tU is a contraction mapping of G —» X so Gt = (/ — Ut)(G°) is 
open and dGt C (/ - l/t)(dG). Thus if 0 G <9G, for * G (0,1), then 
(i) implies [7(0) = 0. 

Noa; assume that U has no fixed point in G. Let M > 0 be chosen 
so that \\U(x)\\ ^ M for x G G, and let 

T = {£G [0,1] : 0 G Q } . 

Observe that if t G (0,1] then by (i)_either t G T or 0 $ Q. Also, for 
j8 G (0, 1] ,ß t /has a fixed point x0 G G. Since C/(x0) = jS_1x0, (i) implies 
x0 G G° and thusß G T. Therefore T f 0 and sup T > 0. 

The argument is completed by successively establishing sup T = 1 
and I G T , thus contradicting our assumption. 

Suppose a = sup T < 1. Let {c^} be a sequence of points of T chosen 
so that an —» a, and for each n let xn G G be such that xn — an U(xn) 
= 0. Then 

^\an- a j M + a J t a - xm||. 

Hence (1 — a)||xn — xm|| -^Oasn, m —> oo and since a < 1 there exists a 
point x G H such that xn —•» x. Further, since G is bounded, the se
quence of functions {a^C/} converges uniformly to aU on G, and 
hence 

aU(x) = limanU(xn). 

This implies x — aU(x) = 0 and thus 0 G Ga which, because of (i) 
and the fact that 0 is not a fixed point of U, in turn implies 0 G Ga. 
Thus a G T. 

Therefore there exists x0 G G° satisfying x0 — aU(x0) = 0. Then for 
t G [0,1], 

||*o - tU(x0)\\ = ||x0 - tU(x0) - x0 + aU(xo)\\ 

= | t -a | | |C7(*o)| | 

^ |* - OL\M. 

Now, 0 $ Gt for all t such that a < t ^ 1. Hence 0 $ Q for these *. 
We may choose t0 G (a, 1) and a sequence {£n} such that tn I a and 
tn < t0 for all n. Further, since 0 (f Gtn and x0 — £n^(xo) ^ Q„ 
the segment joining 0 and x0 — tnU(x0) must intersect dGtn yielding 
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a point yn G dGtn such that \\yn\\ 7â \tn — a\M, n = 1, 2, • • •. Now 

dG,M C (/ — tnU)(dG) so there exists xn G 5G such that xn — 

k ^ C Ü = yn; thus 

II*» - tnU(xn)\\ ^ |*n - a|M. 

Therefore 

| |*n -̂ -n H 

= K - * n ^ ( * n ) || + | K ^ ( * n ) ~ *m| | 

^ |*n - a\M + ||*nI/(xn) - tmC/(xn)|| + ||tmC/(xn) - xw | | 

g \tn - a\M + |*n - U M + ||*m(7(xn) - tmU(xm)\\ + \\xm - tmU(xm)\\ 

^ (\tn - a\ + |tn - fm |)M + £m||xn - xm | | + |*m - a\M 

^ (|tn - a | + |*n - tm | + \tm - a\)M + *0||*n - xm | |. 

Thus: 

(1 - £0)||xn - xm | | - * 0 as n,m -+ oo 

and we conclude that {xn} is a Cauchy sequence of points of dG. 
Lett ing limn^ooXn = x G dG one has, as before, x — aU(x) = 
limn_*oo(xn — tnU(xn)) = 0 and this contradicts (i). Therefore the 
assumption a < 1 leads to a contradiction. 

To complete the proof we need only show I G T . Suppose the 
contrary. Then there exists r > 0 such that if ||z|| = r then z (f Gx 

(because 0 (£ GL under the assumption (7 has no fixed point in G). 
Select an G T such that a n Î 1. Then for each n there exists xn G G 
such that xn — a n ^(x n ) = 0. Further , an integer N can be chosen so 
that 1 — aN < r/M. Thus 

||% - U(xN)\\ = \\aNU(xN) - U(xN)\\ 

= (Ì - aN)\\U(xN)\\ 

< r. 

This contradicts xN — U(xN) G Gx. Therefore I G T , completing the 
proof. 

PROOF OF THEOREM 2.1. As before G may be assumed to be bounded. 
Since 0 is an interior point of G relative to H, for ß G (0, 1) sufficiently 
small, ßU : G —> G. Hence by the Contraction PrincipleßU has a fixed 
point in G. The proof is completed by applying Theorem 2.2 with the 
subspace J / taken as the setting. 

By taking H = X in Theorem 2.1 we obtain the following: 
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COROLLARY 2.3. Let G he an open subset of X with 0 G G and let 
U : G —» X he a contraction mapping satisfying (i) of Proposition 1.1 
on dG. Then U has a fixed point in G. 

As we remarked in the introduction, boundedness of G is essential 
in Proposition 1.1 for condensing mappings. In fact, this is easily veri
fied by considering a translation of the plane. 

Corollary 2 of Assad-Kirk [1] states that if H is a closed convex 
subset of X, K a closed subset of H, and F : K —» H a contraction map
ping which maps the relative boundary of K in H back into K, then F 
has a fixed point in K. This, with Theorem 2.2, yields: 

COROLLARY 2.4. Let G he a subset ofX with 0 G G, and U : G —> X 
a contraction mapping of G —» X satisfying (i) of Theorem 2.2. Sup
pose that for some ß G (0,1], ßL/ : 5G —> G. TTien (7 /ias a fixed point 
in G. 

We might remark that the results of this section guarantee only 
existence of a (unique) fixed point, and the question of how one might 
approximate this fixed point is left open. In contrast to this, the result 
of Assad-Kirk referred to above describes an iterative procedure for 
approximating the point in question. 

3. Nonexpansive mappings. A mapping T : K —> X is called non-
expansive if ||Tx — Ty\\ â ||x — y\\ for all x,y G K. Extensive study 
of fixed point theory for nonlinear nonexpansive mappings was initiated 
in 1965 with the proof that if X is uniformly convex and T : K —» K 
is nonexpansive, where K is a nonempty, bounded, closed and convex 
subset of X, then T has a fixed point in K (cf. F. E. Browder [3], D. 
Göhde [10], W. A. Kirk [13]). Since that time a number of papers 
have been published by several authors treating analogues, generaliza
tions, and applications of the above result, as well as certain iterative 
procedures for approximating the fixed point when its existence is 
known. 

In this section we obtain a new fixed point theorem for nonexpansive 
mappings by applying Theorem 2.1 of the preceding section. Notice 
that assumption (ii) below, suggested by the proof of Theorem 2.2, 
always holds if the range of the mapping is bounded. Also, as before, 
cH denotes the closed subspace of X spanned by H. 

THEOREM 3.1. Let H be a closed and convex subset of a Banach 
space X, G a subset of H open relative to H, and suppose 0 is in 
G. Let T : G —» H be a nonexpansive mapping satisfying: 

(i) Tx= a x / o r x G < ^ G , x ^ 0 , = > a ^ 1. 
(ii) The set E = {x G G : Tx = \xfor some \> 1} is bounded. 

file:///xfor
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(iii) (I - T)(G) is closed. _ 
Then T has a fixed point in G. 

PROOF. Since E is bounded and T nonexpansive, T(E) is bounded. 
Let M > 0 be such that \\T(x)\\ g M for all x G E and let f ^ } be a 
sequence of numbers in the interval (0,1) such that a^ —* 1. Then for 
each n there exists, by Theorem 2.1, an element xn G G such that 
xn = anT(xn). Since o„ G (0, 1), 11 o^ > 1 and thus xn G E for all n. 
Hence 

Ik - T(xn)\\ = |K(Txn) - T(xn)\\ 

^ k-l|M. 
Therefore xn - T(xn) -* Ojielding 0 G (I - T)(G) by (iii). It follows 
that T has a fixed point in G. 

A Banach space is said to satisfy Opiaïs condition [18] if when
ever a sequence {xn} converges weakly to x0 G X then it is the case 
that 

lim inf ||xn — x|| > lim inf ||xn — x0|| 

for all x G X, x / x 0 . (Opial has shown [21] that if X satisfies this 
condition and if C is a weakly compact subset of X with T : C —» X 
nonexpansive, then I — T is demiclosed.) 

COROLLARY 3.2. Suppose X is a reflexive space that satisfies Opial's 
condition, with subsets G and H as in the preceding theorem. If 
T : G —» H is a nonexpansive mapping with bounded range which 
satisfies (i) on dH G, then T has a fixed point in G. 

PROOF. Select o^ G (0, 1) so that c^ —> 1. For each n, o^T satisfies 
all the assumptions of Theorem 2.1 so there exists xn G G such that 
anT(xn) = xn. Furtheimore, because X is reflexive and the range of T 
bounded it may be assumed that the sequence {T(xn)} converges 
weakly, say to y. Since o^ —> 1 it follows that anT(xn) —» y weakly 
and thus xn —» y weakly. As in Theorem 3.1 one sees that xn — T(xn) 
—> 0 strongly. Thus 

lim inf ||x„ - y\\ g lim inf ||T(xn) - T(y)\\ 
n — • °o n — • °° 

= lim inf ||xn - T(y)\l 
n-> °° 

and by Opial's condition T(y) = y. 
Spaces known to satisfy Opial's condition include all reflexive spaces 

which possess weakly continuous duality maps ([11]), in particular 
the Hilbert spaces and the£p spaces for 1 < p < oo ( [4] ). 
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Finally, we remark that the hypotheses of Theorem 3.1 and Corol
lary 3.2 may be modified in the obvious ways if Theorem 2.2, Corollary 
2.3, or Corollary 2.4 is used instead of Theorem 2.1. For example, 
Theorem 2.2 yields; 

THEOREM 3.3. Let G be an open subset of a Banach space X with 
0 G G,~and let T : G —» X be a nonexpansive mapping satisfying (i), 
(ii), (iii) of Theorem 3.1. If ßT has a fixed point in G for some ß Eï 
(0,1], then T has a fixed point in G. 

PROOF. The same as the proof of Theorem 3.1, except that for 
otn —» 1, On E (0, 1), one is only assured that ot^T satisfies the hypo
thesis of Theorem 2.2 for n sufficiently large. 

4. Pseudo-contractive mappings. A mapping U : D —> X is said to 
be pseudo-contractive [5] if for each r > 0 and u, v G D, 

\\u - v\\ ^ ||(1 + r)(u - v) - r(U(u) - U(v))\\. 

These mappings, easily seen to be more general than the nonexpansive 
mappings, are of interest because of their close connection with 
"accretive" operators, a class of operators important in the study of 
certain nonlinear differential equations. Specifically, a mapping 
U : D —»X is pseudo-contractive if and only if (I — U) is accretive 
(see Browder [5], Kato [12] ). 

Fixed point theorems for pseudo-contractive mappings may be 
found in [1,5,9,15,23]. 

By following the argument given for Theorem 1 of Gatica-Kirk 
[9] (but using Theorems 2.1 and 3.1 of this paper instead of Petry-
shyn's Theorem 7 of [22] ) one can obtain the following result for 
mappings which include the lipschitzian pseudo-contractive mappings. 
This theorem generalizes Theorem 1 of [9] in several ways. 

THEOREM 4.1. Let H be a closed and convex subset of a Banach 
space X, G a subset of H open relative to H, and suppose 0 is in G. 
Let U : G —» H be>. a lipschitzian mapping with Lipschitz constant k, 
and suppose U satisfies: 

(i) U(x) = axforxG ^ G, x ^ 0=>a^ 1. 
(ii) The set E = {x G G : U(x) = kx for some X > 1} is bounded. 

(iii) (Z — U)(G) is closed. 
(iv) For some r E (0,1) such that rk < 1, 

||x - y\\ ^ ||(1 + r)(x - y) - r(U(x) - U(y))\\, x,yEG. 

Then U has a fixed point in G. 
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OUTLINE OF PROOF. With r determined by (iv), rU is a contraction 
mapping. Define mappings S, T of G into Ji by S = (1 — r)I and 
T= I -jU. Then T ( G ^ ) is open in J/, d, T(G) = T{dM G), and 
thus T(G) = T(G). Also, since rU satisfies (i) on dM G, by Theorem 
2.1 there exists x £ G such that x = rU(x). Furthermore, (i) implies 
x £E G^° and thus 0 €E (̂Ç^_î!)i_L?-> 0 is an interior point, relative to 
Ji, of the set B = T(G) = T(GJI °). To complete the proof one shows 
that the mapping H = ST~l is a nonexpansive mapping of B —» Ji 
satisfying 

(i)' H(x) = ax for x G < ^ B = > a ^ 1. 
(ii) ' The set { x G B : //(JC) = AX for some A > 1} is bounded. 

(iii)' ( / - H)(B) is closed. 
The details of showing that H is nonexpansive and satisfies (i) ' 

and (iii) ' are found in [9], and (ii) ' is established in the same way as 
(i) '. We include the proof of (ii) ' here because it is not explicitly indi
cated in [9]. 

Observe that if H(x) = AX, X > 1, then ST- 1 ^) = Xx so (1 - r)T-l(x) 
= Xx yielding T(Xx/(l — r)) = x. This implies 

x — rU I x ) = x 
1 — r \ 1 — r / 

and thus 

\ 1 — r I r(l — r) 

= M(737*) 
where JX = (X — 1 + r)l\r > 1. By (ii) there exists M > 0 such that 
||x|| S M if (7(x) = /Ltx, /x > 1. Thus 

||x|| ^ ||Xx|| g (1 - r)M 

and we see that (ii) ' follows from (ii). 
Having established (i) ', (ii) ', (iii) ' for H, it follows from Theorem 3.1 

that H has a fixed point y G B. As in [9] we have, upon letting 
x = T~l(y\ S(x) = ST~l(y) = H(y) = y = T(x) and thus (1 - r)x = 
x — rU(x) yielding U(x) = x. 

Because Opial's condition is satisfied in Hilbert space, the following 
theorem extends a theorem of Browder [2]. 

THEOREM 4.2. Let G be an open subset of X containing 0 such that 
if x EL 3G then — x G G. Suppose U : G —» X is a lipschitzian map-
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ping with Lipschitz constant k satisfying U(x) = — U( — x) for x G dG. 
In addition, suppose assumptions (ii), (iii), (iv) of Theorem 4.1 are 
satisfied. Then U has a fixed point in G. 

PROOF. In order to apply Theorem 4.1 we need only show that 
U(x) ^ Xx if x G dG and X > 1. If U(x) = Xx, X > 1, then 

\\U(x)-U(-x)\\ = 2X\\x\\ 

^k\\x- (-x)ll 

= 2fc||x|| 

yielding \=k. On the other hand, by (iv), 

2||x|| = ||x - (-x)ll 

^ ||(1 + r ) ( x - ( -x)) - r(U(x) 

= ||2(1 + r)x - 2rXx|| 

= 2|1 + r — Xr| ||x||. 

This implies |1 + r — Xr| = 1. Since 1 + r — Xf = 1 is impossible 
(because X > 1) we must have 1 + r — Xr^i— 1, and this implies 
1 — X = — 2/r which in turn implies X > 2/c + 1. This contradicts 
the fact that \=k, completing the proof. 
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