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QUASILINEAR EQUATIONS AND EQUATIONS WITH 
LARGE NONLINEARITIES1 

JANE CRONIN 

1. Introduction. Two kinds of equations studied in nonlinear 
functional analysis are: (i) quasilinear equations, i.e., equations which 
differ from a linear equation by a small nonlinear term, usually a non­
linear expression multiplied by a parameter JJL which is restricted to 
small values and (ii) nonlinear equations with well-behaved but "large" 
nonlinearities. These two kinds of equations are usually treated by 
different methods, and different kinds of results are obtained. (More 
extensive and detailed results can be obtained for the quasilinear 
equations.) Our purpose here is to study nonlinear equations with 
large nonlinearities by regarding them as quasilinear equations in 
which the parameter JJL is allowed to take "large" values, i.e., we let 
/A €E [0, 1]. We will study the equations with large nonlinearities by 
obtaining results about the quasilinear systems which are valid if the 
parameter /x is allowed to take "large" values. We study an equation 
in a linear space of the form 

(E) L(x) + fi T(x, fi) = 0, 

where L is linear and T is a compact transformation which satisfies 
a uniform Lipschitz condition and a condition on the rate of growth 
of \\T(x, fi)\\ as ||x|| increases. In this paper, we consider only the case 
in which L has an inverse. (In a later paper, a different hypothesis 
will be used). By using Brouwer degree or Leray-Schauder degree 
theoiy, we obtain a theorem concerning solutions of equation (E). 
This theorem is then applied to obtain results on the existence of 
periodic solutions of ordinary differential equations, periodic solutions 
of functional differential equations, solutions of the Dirichlet problem 
for nonlinear elliptic equations and solutions of the Dirichlet problem 
for nonlinear parabolic equations. 

In Section 2, we obtain the abstract theorem. In Section 3, we 
apply the theorem to obtain periodic solutions for nonlinear systems of 
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ordinary differential equations. The systems studied are of the form 
x' = A(t)x + fJif(t, x, fi) where /x G [0,1] and where A and / are 
periodic in t. The result obtained is related to work of Barbalat and 
Halanay [3 ] , Pliss [21] , Reissig [22,23] and Güssefeldt [12] , 
(Giissefeldt's result has also been obtained by Mawhin [18] by using 
a different method), and is closest to that of Reissig and Güssefeldt. 
The difference between our result and those of Reissig and Güssefeldt 
is that we impose a hypothesis on the f which implies the existence 
of an a priori bound on the periodic solutions whereas Reissig and 
Güssefeldt assume the existence of an a priori bound on the periodic 
solutions. Also we use finite-dimensional techniques whereas Reissig 
and Güssefeldt use Leray-Schauder techniques. 

In Section 4, the same abstract theorem is applied to obtain periodic 
solutions of functional differential equations with large nonlinearities. 
The essential difference between finding periodic solutions of ordi­
nary differential equations and periodic solutions of functional dif­
ferential equations is that in the case of ordinary differential equations 
it is only necessary to study an equation in a finite-dimensional space, 
i.e., Eucl idean n-space, whereas in the case of functional differential 
equations, it is necessary to study an equation in an infinite-
dimensional space, i.e., a space of continuous functions. Periodic 
solutions of nonlinear functional differential equations have been 
studied in recent years by a number of writers. Periodic solutions of 
quasilinear equations have been studied by Halanay [13] , Perelló 
[20] , and Aizengendler and Vainberg [1 ] . Periodic solutions of 
nonlinear systems have been obtained by Jones [15] by using 
fixed point theorems. Periodic and almost periodic solutions have been 
studied by Hale [14] , and Leray-Schauder degree has been used by 
Mawhin [18] . (For further references on periodic solutions of 
functional differential equations, see [19].) Only a result in [19] 
is related to the result here. Mawhin obtains an extension to functional 
differential equations of the result of Güssefeldt. He makes essentially 
the assumption that the degree considered is actually defined whereas 
we obtain an a priori estimate from the properties of the equation 
studied. 

In Section 5, the abstract theorem is applied to solve the Dirichlet 
problem for a class of nonlinear elliptic equations. The result obtained 
is an extension of a well-known result. (Courant and Hilbert [7, pp . 
369-372].) 

In Section 6, the Dirichlet problem for a class of nonlinear para­
bolic equations is studied. 
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2. An Abstract Theorem. Let X be a normed linear space and con­
sider the equation in X: 

(2.1) L(x) + /xT(x, /x) - 0, 

where /x G [0, 1], x G X and 
(i) L is a linear continuous map from X into X with a linear con­

tinuous inverse L ' from X into X; 
(ii) T is a continuous map from XX [0, 1] into X such that 

T(x, /x) is continuous in fx uniformly on bounded sets in X, i.e., 
given e > 0 and M > 0 then there exists Ô > 0 such that if \ni — ix2| 
< d and if Ijx|| < M, then ||T(x, ixj - T(x, xi2)|| < e. 

(iii) for each fixed xt G [0, 1], T( , xt) is a compact map from X 
into X (Conditions (ii) and (iii) imply that T takes bounded sets into 
bounded sets, i.e., given M > 0 there exists Mx > 0 such that if 
||x|| < M, then for all /x G [0, 1], ||T(x, /x)|| < Mi). 

(iv) There exist positive constants R, A, B, C and e G (0,1) such 
that if ||x|| g R, then for all xt G [0, 1] 

| |T(x,M) | |< A ( B + C | | x | | ) i -

THEOREM 1. For each JX G [0, 1], equation (2.1) has a solution x. 

PROOF. Instead of (2.1), we solve the equivalent equation 

(2.2) x-f txLlT(x, /x) = 0. 

Since for each xt G [0,1], T(, xt) is compact, the Leray-Schauder 
degree of / + xtL_1T(,xt) where I denotes the identity map, 
can be investigated. (If X is finite-dimensional, then instead of 
the Leray-Schauder degree, we consider the Brouwer degree.) 

Now suppose x0 / 0 is a solution of (2.2) for some /x G [0,1] 
and suppose ||x0|| ^ R. Then 

||*o|| < xxllL-il l^B+Cllxoll)1-

or 

M , / (1-
B + C ||x01| 

Then either ||x0|| < B or 

<(fi\\L~l\\A) l / d - 6 ) 

INI""- ' <; \M\Wl~€> 

(1 + C7)||xol| B + Cllxoll 
<(H|L-1 | |A) 1/d-e) 
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or 

| |ac0 | |«"i-«»<(H-C)(M | |L-' | |A)""-«'. 

Thus, we can conclude that the solutions of (2.2) for /x G [0, 1] 
satisfy an a priori estimate, i.e., there is a closed ball B0 such that 
all solutions of (2.2) for fi G [0, 1] are in B0. Thus 

deg( /+ tiLlT( ,xx),B0,0), 

where deg(/, S7 p) denotes the degree (Brouwer or Leray-Schauder) 
of the map f at the point p and relative to the set S, is defined and 
has the same value for all /x G [0,1]. Since deg(Z, B0, 0) = + 1 , we 
have for all xt G [0,1] 

deg( I+ iiL-*T( , /x) ,B 0 ,0)= + 1 , 

and by a basic property of degree theory, the conclusion of the theorem 
follows. 

3. Application to periodic solutions of ordinary differential equa­
tions. We study the n-dimensional system 

(3.1) x' = A(t)x+ iLf(t,x,iL) 

in which the following hypotheses are satisfied: 
(1) M £ [0,1]; 
(2) the elements of matrix A(t) and the components of / are de­

fined for all real t, all x G Rn and all /x G [0,1] ; 
(3) the elements of A(t) and the components of / have continuous 

first derivatives in t for all real t and the components of f have 
continuous first derivatives with respect to JJL G [0, 1] and continuous 
first derivatives with respect to the components of x for all x G Rn; 

(4) matrix A(t) and function f(t, x, JJL) have period T in t; 
(5) the equation x' = A(t)x has no nontrivial solutions of period T; 
(6) there exist positive constants Kb N and e G (0, 1) such that if 

H ^ f l ! , then for all /x G [0, 1] and all * E [0, T], \\f(t,x, xt)|| 
< N(||jc||)1_e; also the number N is chosen large enough so that 
M < MRO1"«, where 

M= max \\f(t,x,iL)\\; 
l lxl l^R, 

(7) f satisfies a Lipschitz condition in x uniformly in t and tx, 
i.e., there is a positive constant L such that for all t G [0; T], all 
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fi G [0, 1] and ali x b x2 G R", ||/(f, x1? fi) - f(t, x2, M ) | | < 
L\\xl - x2 | |. 

L E M M A 1. There exists e > 0 such that for t G (~~€, T 4- e), 
fi G [0,1] and for given t0 G ( —€, T + e) and given x0 G Rn there 
is a unique solution x(t, fi, t{h x0) of (3.1) on the interval (—€, T -I- e) 
and x(£, /LI, £0>

 xo) is a continuous function of(t, fi, t0, x0). 

(We are actually interested in the solution only on the interval 
[0, T ] . W e consider intervals of the form ( — e, T + e) in order to 
avoid consideration of one-sided derivatives at t = 0 and t = T.) 

PROOF. Most of this statement is contained in s tandard existence 
theorems (see Coddington and Levinson [6, Chapter 1] ). The only 
exceptional par t lies in the fact that we are considering a "large" 
interval for the values fi. However, because of the hypotheses on f 
it is easy to show that the sequence 

x0(t, t0y x0), • • -, 

s n + i(*, fi, t0, x()) = ~x0 + J)o f[s, xn(s, fi, t0, x0), fi] ds, 

where x0(t, t0, x0) is the solution of x' = A(t)x which is equal to x0 

at t = t(h converges uniformly for t G [— €, T + €] (where e is any 
fixed positive number) , fi G [ 0 , 1 ] , £0 G [—€, T + c] and x0 in a 
bounded set in Rn. Hence the solution x(t, fi, t0, x0) exists and has 
the desired properties. 

Now by using the variation of constants formula it follows that the 
problem of finding periodic solutions of (3.1) becomes the problem of 
solving the equation in Eucl idean n-space 

[ F ( r ) - F ( 0 ) ] x o 

+ F(T) / 0
r [ F(s)] - ' {pf[s, x(s, », 0, x0), v]}ds= 0, 

(3-2) 

where F(t) is the fundamental matrix of x' = A(t)x such that F(0) is 
the identity matrix, for x0 as a function of /x. See [8, pp . 65-66] . 
In order to apply Theorem 1 to equation (3.2), we note first that since 
x' = A(t)x has no nontrivial solutions of period T, the matrix F(T) — 
F(0) is nonsingular (see [8, p. 66]). Next we want to obtain an 
estimate on 

(3.3) | |F ( r ) JoT [F(s)] - ' {M/ [* . X(S> ß> 0, *o). /*] } ds\\> 

in ternis of ||x()||. First, let 

B , = max \\F(t)\\,B2= max | [ F ( i ) ] - 1 | | . 
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Then (3.3) is less than 

(3.4) BYB2T max \\f[s, x(s, tx, 0, x0), xx] 

Now either 

max \\x(s, fi, 0, x0)|| < Ru 

max ||/[s> x(s> M> 0> *o)> M] II < M m a x ||x(5> &> 0, x0||)1_€. 

If x0 is such that 

then 

max ||x(s, /x,0, x0)|| ^ R1; 

(3.5) max | | / [s , x(s, /*, 0, x0), ^] || < N( max ||x(s, /*, 0, Xo)!)1-. 

But 

max ||x(s, /A, 0, x0)|| = max ||x(s, xx, 0, 0)|| 

(3.6) ° * a l 

+ max \\x(s, xx, 0, x0) — x(s, xx, 0, 0)||. 

Let 

(3.7) B = max \\x(s, /x, 0, 0)||. 

Since 

(3.8) max ||x(s, xt, 0, x0) - x(s, /x, 0, 0)|| ^ ||x0|kTL, 

(See Halanay [13, p. 10]), combining (3.3), (3.4), (3.5), (3.6), (3.7), 
and (3.8), we obtain: if x0 is such that 

max ||x(s, fi, 0, x0)|| = Rl9 
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(in particular, if ||x0|| i^ R{) then 

\\F(T) /0
T [F(s)] - ' { / * / [ * x(s, ft, 0, *o), 11] } ds\\ 

^B{B2TN(B+ \\x0\\e
TL)[i*. 

Thus, the hypotheses of Theorem 1 are satisfied by equation (3.2) and 
applying Theorem 1, we obtain: 

THEOREM 2. For each /x G [0, 1 ] , equation (3.1) has a solution of 
period T. 

The conclusion of Theorem 2 does not preclude the possibility that 
the periodic solution obtained is the trivial one, i.e., the identically 
zero solution. 

COROLLARY 2. If fi^ Œ. (0, 1] is such that 

f0
r[F(s)]^f(s,0,^)dsfO, 

then the periodic solution obtained in Theorem 2 for fx = ^ is non-
trivial. 

PROOF. If the condition in the corollary holds, then by the variation 
of constants formula, x(t, /x0, 0, x0) cannot be identically zero. 

Next we consider the autonomous equation 

(3.9) x' = A x + nf(x,iL), 

and assume that the same hypotheses as for equation (3.1) are satis­
fied and that, in addition, A is a constant matrix and f is independent 
of t. Let T > 0 be such that the equation x ' = Ax has no nontrivial 
solutions of period T. W e study the question of whether (3.9) has 
solutions of period T for /LI G (0, 1 ] . 

Before proceeding to this study, we make one comment concerning 
the status of the problem. In the study of quasil inear autonomous 
equations, the classical approach is to assume that as /x is varied, the 
period of the sought after periodic solution also varies. That is, one 
seeks a solution of period T(fi) where T is a continuous function of 
fji. (See, for example, Coddington and Levinson [6, p . 352ff.].) 
This is intuitively reasonable because one would expect that if the 
system described by the differential equation is changed, its "natural 
frequency" will be changed. In the main, the mathematical considera­
tions agree with this because if one at tempts to apply the classical 
Poincaré small parameter method to the autonomous case and if the 
problem is a nonresonance problem, then either no periodic solution 
will exist or if a periodic solution exists, it will most frequently be 
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identically zero. There are, however, exceptions to this. For example, 
if 

f(x, fx) = g(x, /x) -f h(fi), 

where g(0, /x) = 0 for all jx and where h(jx) is a continuous function 
of fx such that h(0) = 0 and, for \fx\ sufficiently small but nonzero, 
h(fx) 7^ 0 and JQ [F(S)] ~[ ds is nonsingular, where F(s) is a 

fundamental matrix of x ' = Ax such that F(0) is the identity matrix, 
then there exists a nontrivial periodic solution for each sufficiently 
small |/x|. There will also be nontrivial periodic solutions in the 
resonance case if a further condition on g (a nonzero condition so that 
the topological degree of the appropriate mapping is defined and 
nonzero) is satisfied. (Actually in the resonance case there is a much 
larger class of equations for which there exist nontrivial solutions of 
period T. This can be demonstrated for autonomous functional dif­
ferential equations as well as autonomous ordinaiy differential 
equations by using the techniques of [9] and [10].) 

W e obtain similar results for equation (3.9) by using the same theory 
that was applied to equation (3.1). 

COROLLARY 2a. If x' = Ax has no nontrivial solutions of period T 
and if /XQ G (0,1] is such that 

tf[F(s)]-if(0,po)dsf£0, 

then the equation (3.9) with /x = IXQ lias a nontrivial solution of 
period T. 

4. Application to periodic solutions of functional differential equa­
tions. W e study the n-dimensional functional differential equation 

(4.1) x ' = L(t,xt)+ nf(t,xt,ii), 

where 

(4.2) L(t,xt)= Ba.xt(s)d8rt(t,s), 

where xt(s) denotes the function x(t + s), where — °° < s=0 and 

7)(t, s) is an n X n matrix with elements t)ij(t, s) such that for i, 

j= 1, * • - ,n , 
(1) 7iij(t,s), is defined for t ^ 0, - oo < s < °°, and ^(t, s) = 0, 

i f s ^ 0. 
(2) There exist positive valued functions Tij(t), Vij(t), defined and 

bounded for t = 0, such that for s = — r^(f), 

Vij(t,s) = Vijit, -Tij(t)), 
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and 

V::(lTjj(()1,y(t,S)gVy(0, 
where 

denotes the total variation from s= —T^t) to s=0 of r)ij(t, s) 
regarded as a function of s. (For later use, set 

T = SUp Tij(t). 
i,j = l,---,n 

Note that î-<»xt(s) dsr)(t,s) = BTxt(s) dsr)(t,s).) Also for each 
fixed t, the function of bounded variation v)ij{t, s) is the sum of a jump 
function and an absolutely continuous function, i.e., %j(t,s) has no 
singular part . See Kolmogorov and Fomin [ 16, p . 363]. (We will 
use results of Halanay [13, Chapter 4 ] . Halanay does not state this 
last hypothesis. However, Banks [2] has pointed out that for 
Halanay's results to be valid, it is necessary to assume that 7)ij(t, s) 
has no singular part . Actually, Banks has corrected Halanay's work for 
the case of rj^t, s), an arbitrary function of bounded variation. 
Since we want to use later results of Halanay, we restrict r)ij(t, s) as 
described above. It should also be remarked that Halanay does not 
give a satisfactory theory for the adjoint system (see Banks [2, p . 400] ). 
But the representation obtained by Halanay [13, pp . 365-366, 
formulas (23) and (23')] is correct, provided each rj^t, s) has no 
singular part , and this representation and later results based on it are 
all we need.) 

(3) T7tj(̂  s) is continuous in t uniformly with respect to s. 
(4) For each s, r)(t, s) has period T in variable t where T > r. 
(5) The equation x' = L(t,xt) has no nontrivial solutions of per iod 

T. 
W e assume further that f(t, xt, fx) is a continuous map from 

I X C[-T, 0] X [0, 1] , where / is the real £-axis and C[~T, 0] is the 
Banach space of real continuous n-vector functions on [— r, 0] with 
the usual sup norm into real Eucl idean n-space and that f{t, xt, /LL) 
has period T in variable ty and that f(t, xt, /JL) has the following 
additional properties: 

(6) / t a k e s sets of the form 

JX C X X [ 0 , 1 ] , 

where / is a subset of / and CY is a bounded subset of C [ — T , 0 ] , 
into bounded sets in Rn. 
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(7) There exists R2 > 0 and Nl > 0 and e G (0, 1) such that if 
yGC[-r,0] and \\y\\ ^ R2, then for £ E [0, 7] and M E [0, 1], 
||/(£, j / , it)|| ^ N^HJ/II)1^6 . Also the number NY is chosen large 
enough so that M < N^R)1 ~e, where 

M = lub ||/(*,y,/i)| |. 

f G [ 0 , T ] 
/b iG[0 , l ] 

(8) / satisfies a Lipschitz condition in y uniformly in t and fx, 
i.e., there exists a positive constant L such that if t E [0, T] and 
jut E [0,1] and if j / 1 ? j / 2 E C [ - r , 0 ] , t h e n 

where || t/ x — t/2|| denotes the C[—r, 0] nomi of j/i — y2- For later 
computation we will take L > 1. 

(9) f is continuous in /x uniformly in £ and bounded sets in 
C[ — r, 0], i.e., given e > 0 and B a bounded set in C[ — r, 0], then 
there exists 8 > 0 such that if 1/^ — /x2| < ôi and j / E ß , then for 
all * E [0, T] 

Wfity^,)- f(t,y,fx2)\\<e. 

The first step in finding periodic solutions of (4.1) is to obtain an 
analog of Lemma 1 in Section 3. 

LEMMA 2. For each <£EC[—r, 0] and each fx E [0,1], there 
exists a function x(t, <f>, JJL) defined on [ — r, T + e] , where e is any 
y?x£<i positive number, such that x(^, </>, /A) is a solution of (4.1) /or 
0 = £ < T + € and <£> is the initial function for solution x(t,<f>, fi) i.e., 
if t EL [— T, 0], fn^n x(t,<j>, fx) = <f>(t). Also x(t,<f>, fx) is a continuous 
function from C[-r,0] X [0,1] into C[ - T , T + e] . 

PROOF. If <£ is fixed, then there is a unique solution x(t, </>, fi) of 
(4.1) on [0, T + e] where e is an arbitrary fixed positive number for 
each fx E [0,1]. The function x(t9<f>, fi) is defined for t E 
[—r, T 4- e] and is the limit of the sequence x0(t,<f>), xn + ì(t,<j>} fi), 
where x0(t,<f>) is the solution of x ' = L(t,xt) which has the initial 
function <f> and 

xn+i(t,<(>, /Lt) = 4>(0) + Jo'm<r, *„<,(£</>, **)) 

= «ftt), for-T ^ fSO, 
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where xn<T(£, 0, fi) denotes (xn)a(if </>, fi). Because of the hypotheses 
imposed on L and f, it is not difficult to show, by using standard 
arguments that for each n, xn(t, </>, fi) is continuous in (t, fi) and the 
sequence {xn(£, 0, xx)} converges uniformly in (t, fi) for (t, fi) G 
[0, T + e] X [0,1]. Hence, for fixed <£, the solution x(t, (f>, fi) is 
continuous in (£, xx). 

Now suppose xx is fixed. If 01? </>2 G C[—T, 0], then according to 
the fundamental inequality for solutions of functional differential 
equations (see Halanay [13, p. 338]) we have: for each f tG [0,1], 

max \x(t, <fo, fi) - *(*, <fe, xx)| g ||<h - </>2||e^+e) 

Since 

max \x(t,<l>l9 xx) - x(£7</>2, xx)| = max |01(^) - 02(*)l 

= |*1 - 021|, 

we can conclude that there exists a positive constant B3 such that for 
all tx G [0, 1], 

(4.3) max \x(t, <f>i, n) - x(t, <f>2, /*)| < B^fa - 02||. 

Now suppose (/>!, </>2 £ C[ — T, 0], /x1? /x2 G [0,1]. We will show that 
x(t, </>, xx) is continuous at the point ($2, /x2): 

max |x(^0!, xti) - x(t,4>2, xx2)| 

g max \x(t, <fo, xii) - x(£, </>2, xti)|| 

(4.4) - T * " T + ' 
+ max \x(t,<l>2, Mi) - x(£,</>2, xx2)| ̂  B3||<h ~ 021| + e-

The first part of the inequality is from inequality (4.3). The second 
part of the inequality comes from the fact that x(t, $2 , xx) is continuous 
in (t, fi) on the compact set [ — r, T + e] X [0,1]. This completes the 
proof of Lemma 2. 

Next we recast the problem of finding periodic solutions of (4.1) as 
the problem of solving a functional equation that is the analog of 
equation (3.2) in Section 3. This analog is the following functional 
equation in C [ — T, 0]. 

(4.5) 4>(s) = z(T + *,<£) + JoT +V/[a , x > ? <fc fi), ft] X(T + s, a) da, 

where s Œ [ — r, 0] , z(t, 0) is the solution of x ' = L(t, xt) which has the 
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initial function <\> and X(a, a) is the identity matrix and X(t, a) = 0 for 
t < a. Equation (4.5) is derived by Halanay [13, pp. 411-412]. In 
order to find a solution of period T of (4.1), it is sufficient to solve 
(4.5) for 0 as a function of fi. The solution of (4.1) which has this <£> 
as its initial function is a solution of (4.1) with period T. 

LEMMA 3. There exists a positive constant M1? such that for all 
(t, a) E [0, r + €] X [0, T + e ] , ||X(*, a)\\ < Mv 

PROOF. First X(t, a) = Y (a, t) where Y (a, t) is the matrix solution of 
the system 

- £ - [y(a) + /_°T via ~ ß, ß)y(« - ß) dß] = 0, 

such that Y(t, t) is the identity matrix and Y (a, i) = 0 for a > t. See 
Halanay [13, pp. 362-365]. But Y(a,t) can be obtained by using 
successive approximations and the "step-by-step" method. See [13, 
p. 363]. In the process of obtaining Y (a, t) in this way, it can be shown 
that for each fixed t, Y (a, t) is of bounded variation on finite intervals 
of the a-axis. Also Y (a, t) is continuous in t uniformly on closed finite 
intervals of the a-axis, which consist of points a such that a=t. (The 
continuity in t is one-sided on the right if a = t.) But from these facts 
it follows that there exists Mx > 0 such that ||Y(a, *)|| < Mx for 
(a, t) E [0, J + €] X [0, T + e ] . 

LEMMA 4. Given e > 0 then there exists 8 > 0 such that if tly 

t2 E [0, T + e] and \tl — t2\ < 8 and if 0 Zâ a= min(^, t2) then 
\\X(tl9a)-X(t2,a)\\<e. 

PROOF. ||X(*1? a) - X(t2, a)|| = ||Y(a, tj - Y (a, t2)\\. Since Y(a, t) is 
continuous in t uniformly on closed finite intervals of the a-axis, there 
exists 8 > 0 such that if \tY - t2\ < 8 then for all a E [0, T + e], 
||Y(a, h) - Y(a,t2)\\ < e. 

Since z(T + s, <f>) is uniquely determined by </>, the operator 

(7 :</>(*) ^z(T+ 5,0), 

is a well-defined map from C[—r, 0] into C[— r, 0] and we may 
rewrite equation (4.5) as 

(4.6) (/ - U)<l> - JoT+V/[«> xa(<r9 & M), /i] X(T + «, a) da = 0. 

LEMMA 5. Operator U is a linear compact map from C[—T,0] into 
C [ - T , 0 ] . 
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PROOF, U is additive (i.e., U(ax + y) = aU(x) + t/(t/)) because 
x ' = L(£, xf) is a linear equation. U is bounded (and hence continuous) 
by the fundamental inequality for solutions of functional differential 
equations [13, p. 338] referred to earlier. (To show that the in­
equality holds for solutions of x' = L(t, xt), it is only necessary to show 
that L(t, y) satisfies a Lipschitz condition in y which is uniform in t. 
But this follows at once from condition (2) on the matrix rj(t, s) which is 
used to define L(t, y).) 

The fact that U is a compact mapping is indicated by Halanay [ 13, 
pp. 402-403]. The details of the proof can be filled in with the use of 
Lemma 3. 

LEMMA 6. The map 

V : (4>(s), IL) -> Jo T + V/[a , *>> 0> /*)> /*] X(T + s> «) ^ 

is a continuous map from C[— T, 0] X [0,1] into C[— T, 0] and is 
continuous in ix uniformly on bounded sets in C[— r, 0] . Also for 
each fixed / i E [0,1] , S? is a compact map ofC[—T, 0] into C[—r, 0] . 

PROOF. TO prove the first statement we will show that given 
e > 0 and <f>2 G C [ - r , 0], there exist 8l > 0, ô2 > 0 such that if 
||0i ~ 021| < Si and \fix - LL2\< ô2, then 

max \\lj+s {iLif[a, xa(a, <fo, ^ ) , JAJ - ^ / [ a , x > , </>2, M2), M2] } 
, G [ - T , ( ) | 

X(T + s ,a)da | | < €. 

First 

\\Sor+s{Pif[<x>Xa(<r>4>i> Mi), Mi] 

~ M2/[«, *«(o% 02, M2), M2] }X(T + s, a) da\\ 

= | |/o r+s{Mi/[«, *«(o",0i, Mi), Mi] 

- fi2f[a, xa(a, </>!, Mi), Mi] }X(T + s, a) da\\ 

+ I | / T + M M 2 / [ « , * > , 0 I , M I ) , M I ] 

- Maf [^ x«(°"> 02, M2), Mi] }*(^ + s, a) da\\ 

+ II / r + * { M S / [ « , *a(<7, 02, M2), Ml] 

- lief [a, xa(cr, <£2, LL2), M2] }*(^ + «, a) da||. 
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But 

II JoT+*{^i/[«,*«(<7?</>i, Mi), Mi] 

(4.7) - M2.fl>, xa(ar, 0i , Mi), Mi] }X(T + 5, a) da|| 

= IMI - M2|M! JoT \\f[a, xa(a, 0 b Mi), Mi] II«-

By the definition of xa and the fundamental inequality, we have 

K > , 0 i , Mi)|| = ||*(*,0i,Mi)|| 

= ||*(*,01, Ml) - *(*,02, Ml)|| 

+ ||*(*,02, Ml) ~ *(*,02, M2)|| 

+ ||x(f,02, M2)|| 

^ B 3 | | 0 1 - 0 2 | | + € l + B4, 

where \\xa(cr, 0 l 7 Mi)|| means the norm in C[—r, 0] and ||x(£, 0 l 5 MI)|| 
means the norm in C[—T,T + e] and where B3 is independent of 
Mi and B4 is independent of M2 a n d where ex is independent of Mi and 
M2, i-e., we only require that |MI — M2I be small enough. 

Thus, if 0j_ ranges over any bounded set in C[— r, 0] and Mi ranges 
over any set in [0,1] such that |MI ~~ /UL2| is sufficiently small then the 
set of numbers {||xa(c7, 01? Mi)||} 1S bounded. Hence, by condition (6) 
on /, the set of numbers {||/[a, xa(a, 01? Mi), MI] ||} *s bounded. 
Thus, from inequality (4.7), we obtain: if s G [ — T, 0] 

||/oT+5{Mi/[a>*a(<r>0i5 Mi), Mi] 

- M2/[«, xa(a, 0i, Mi), Mi] }X(T + s> a) da\\ 

= IMI - M2IB5, 

where B5 is a positive constant. 
Next for all s E [ - T , 0 ] 

II JoT+* M2{/[«, *«>>0i, Mi), Mi] 

- f[<r, xa(a, 02, M2), Mi] }X(T + s> «) da|| 

^ | M 2 | M ! / o T | | / [ a , ^ ( ^ 0 i , Mi), Mi] 

- / [a ,x a (a ,02 , M2), Mi] || d« 

^ IM2IM1TL max 11x^,0!, Mi) - *<*>, 02, M-a)|| 

^ |M2 |M1TL||x(^01, MI) - x(f,02, M2)|| 

< |M2|M!rL€, 

http://M2.fl


QUASILINEAR EQUATIONS 55 

by Lemma 2 if ||<̂ >1 — 0 2 | | and 1/AJ — /x2| are sufficiently small. (Note 
that while (j>2 is fixed, neither fi{ nor /x2 need be fixed because, as 
follows from the proof of Lemma 2, x(t, <f>, fi) is uniformly continuous 
in/x.) 

Finally for all s E [ - T , 0 ] 

\\fo+s {^ifW, xa(<r9<l>2, /x2), pi] 

- fi2f[a, xa(<r, 0 2 , tt2), tt2] }X(T + 5, a) da| | 

= I ^ I M ! JoT | | / [a ,x a(a ,<fe, /x2), /Xi] 

- / [ a , xa(cr, 0 2 , /x2), /x2] || da 

if j/LLx — jLt2| is sufficiently small by property (9) of funct ion/ . 
The proof that *D is continuous in JX uniformly on bounded sets in 

C[—T, 0] follows by the same steps as in the preceding argument 
except that <f)l = c/>2. 

The mapping Q is the composition of the maps 

S : (</>, /x) - * *(£,</>, /x), (t G [ - T , T + 6] ) 

and 

^/ : *(*, 0, /LL) -> /oT+'s M/[a , x„(a, $ , /A), JLI] X(T + s, a) da. 

By Lemma 2, the map J> is continuous and for fixed it, S takes bounded 
sets in C[—r , 0] into bounded sets in C[—r, T + e] by the funda­
mental inequality for solutions [ 13, p . 338]. Hence, to prove the 
last statement of Lemma 6, it is sufficient to show that for fixed fi, 
the map ̂ / is a compact m a p from C[ — T, T + e] into C[ — r, 0 ] . W e 
must show: 

(i) S t a k e s C [ - r , T + €] into C [ - T, 0] ; 
(ii) &} is continuous; 

(iii) $/ takes bounded sets into compact sets. 

Proof of (i): L e t x ( * ) E C [ - T , T + € ] . Then 

(@x)(s) = Jj+S tfla, xa(<r), fi] X(T + s, a) da. 

Assuming for définiteness, that s{ < s2 
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\\<&x)(Sl) - <0x)(s2)l 
= ||/oT+Sl pf[a, XJP), lA AT + *i, «) à* 

(4.8) - J0
r +* M / [ a > Xa(a )> M] X ( T + s2, a) da||, 

^ ||/oT+S ' {/*/[«, x » , d } {X(T + s2, a)} da|| 

+ IIttZ; pf[oc xa(a), fi]X(T + s2, a) da\\. 

Since ||xa(o-)|| ^ ||*(0||> where the first norm is for C[—r, 0] and the 
second norm is for C[—T,T + e], then {xa(<j) \ 0 ^ a = T) is a 
bounded set in C[—r, 0] and thus by property (6) of/, there exists 
a positive constant B6 such that 

lub | | / [a ,x a (<7) ,^] | |<B 6 . 

Hence, (4.8) becomes, by applying Lemmas 3 and 4, 

\\<0x)(si) - @x)(s2)\\ ^ TB& + B6M,|Sl - s2\, 

if |*i - s2\< 8. 

Proof of (ii): Let *!(*), x2(t) G C[-T, T + e]. Then 

\ i ß X l - g X 2 \ l = max l/o^X/ta,»!»,^ 

- / [ a , x 2 a ( ( 7 ) , M ] } X ( r + $ , a ) d a | | , 

(where x la(a) denotes (xi)a(a))9 

^TMV max | | / [«, i , » , M] 

- / [ « , x 2 a ( a ) , / x ] | | 

g TMi L max ||xla - x2a||, 

by property (8) of function f. But 

max x^a x2a = \\Xi x2 • 

Proof of (iii): Let {xu(t)} be a bounded set in C[—T, T + e ] , say 
with bound B7. We prove that {<$%,} is a bounded equicontinuous set 
in C [ — r, 0] . The compactness then follows by Ascoli's Theorem. 
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||£/*„)(s)|| = max|| J 7 + V / [ a , xja), p] X(T + s, a) da\\ 

t^MJ max \\f[a,xja),rì\\. 

SÌnCe |K„(a)|| ^ INI ^ B7, 

by property (6) of function / , it follows that {||^„(s)||} is a bounded 
set. 

The proof of the equicontinuity follows from an examination of the 
proof of (i). 

This completes the proof of Lemma 6. 

LEMMA 7. There exist positive constants R3, A, B, C and e G (0,1) 
such that if ||$ || i^ R3, then for all j ^ G [0, 1], 

| | ^ ( * , i x ) | | < A ( B + C W ) i - « 

PROOF. For all s G [ - T , 0] and all /ut G [0,1] 

Il /(/ + V / I > , xa(a, $7 / 4 xt] X(T + s, a) da\\ 
(4.9) 

^ A^T max \\f[a, xa(<i, $, /x), /x] ||. 

Now if ||<̂  || ^ R2 (the number which occurs in the description of 
property (7) of function / ) and if \\xa(cr, $, /x)|| ̂  R2 for some 
a G [0, 7 ] , then by property (7) of/ 

(4.10) max \\f[a, xa(v, 0, jit), /*] || ^ N( max | | x > , <*>, / i ) ! ) 1 - . 

But 

| | x> 7 $ 7 t t ) | |^ | | x ( c7 ? $ ? At) | | 

^ ||x(a, 0, xx)|| 4- ||x(a, $, fx) - x(a, 0, tt)||, 

and ||x(a, 0, /x)|| = B8 where B8 is a positive constant and /x G [0, 1] 
because x(cr, 0, /LX) is continuous in (cr, /x). By the fundamental in­
equality for jx G [0, 1] 

(4.12) ||x(a,4>, /x) - %(a,0, M) | | g Le^^\\. 

Thus, (4.10), (4.11) and (4.12) yield: if ||0|| è R2 and if ||xa(cr, 0, ft)\ g 
R2 for some a G [0, T], then 

(4.13) max | | / [« , xa(a, <f>, M), M] || g N(B8 + LeT+<\\<j>\\y-<, 
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and from (4.9) we have the desired result. Now suppose \\<f>\\ = R2 

and \\xja, <f>, /u)|| < R2 for all a G [0, 7] . Then 

<N1(B8+LerW)»-. 

Thus, we have (4.13) and hence the desired result if ||$|| = R2. 
Thus, the hypotheses of Theorem 1 are satisfied by equation (4.6) 

and applying Theorem 1, we obtain 

THEOREM 3. For each /x £: [0,1], equation (4.1) has a solution of 
period T. 

COROLLARY 3. If for /x = /x0, there exists s G [ — T, 0] such that 

lJ+sf[a,0,fjL0]X(T+s,a)da^O, 

then the periodic solution obtained in Theorem 3 is nontrivial. 

PROOF. If the condition in the corollary holds, then by the variation 
of constants formula (Halanay [13, p. 366, equation (23')]), the 
solution x(t, <f>, /Lio) cannot be identically zero. 

REMARK. If in equation (4.1) it is assumed that L and f are 
independent of t, then a result for (4.1) strictly analogous to Corollary 
2a follows. 

5. Application to the Dirichlet problem for nonlinear elliptic 
equations. Let a be a fixed number such that a G (0, 1) and let 2> be 
a bounded connected open set in the xt/-plane and suppose that its 
boundary !zV is in C^+a (For definitions of this term and other terms 
concerning Holder spaces which will be used subsequently in this 
discussion, see [8, p. 157ff.].) We study the Dirichlet problem in 
Lo for the nonlinear elliptic equation 

a(x, y)zxx + b(x, y)zxy + c(x, y)zyy + d(x, y)zx 

+ e(x, y)Zy + f(x, y)z = G(z), 
where: 

(i) o,b,c,d,e,f,GCa('£); 
(ii) there is a positive constant m such that for all real £17 and all 

(x, 1/) E £> 

a l 2 + béri + er,2 ^ m{? + T,2); 

(iii) f(x, y)^0 for all (_*, y) G 2>; 
(iv) For z(x, y) G C0( £>), the map 

5 

file:////xja
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G : z -+ G(z) 

is a continuous map of C0( Lo) into itself and there exist positive con­
stants fi3, N2 and e G (0, 1) such that if ||z||a è R3, then 

\\G(z)\\a<N2\\z\\a^. 

Also G takes bounded sets in Ca(
(J^) into bounded sets in Ca(£>) and 

N2 is selected large enough so that M < N2R
l~€ where M = 

lub|N |a^||G(z)| |a . 
Let £(x, y) G Ca( ^ ) and consider the equation 

a(x, y)zxx + b(x, y)zxy + c(x, j / ) ^ + d(x, f/)zx 
(5.2) 

4- e(x, y)zy + /(x, t/)z = £(x, y). 

We apply the 
Schauder Existence Theorem. Given <f>(s) €ï C2+a(

çJ^ '), then (5.2) has 
a unique solution z = w(£, </>) where z (E C2+a(

(2$) and zlth' = <j>. 
Also there exists a positive number fc which depends only on the 
Ca(Lò) norms of a, b, c, d, e, f, the constant ra, and 2> such that 

(5.3) H « , 0)i |2+«âfc{W2+«+ ||«||a}. 

(For later computation, select k > 1.) For references to the proof of 
the Schauder Existence Theorem, see [8, p. 162]. 

Now let <f) G C2+a(Lò') be fixed. Using (5.2) and the Schauder 
Existence Theorem, we may rewrite (5.1) as £ = G [ w(£, </>)]. In­
equality (5.3) shows that w(Z,<j)) is a compact map of Ca(£ò) into 
itself. Since G is a continuous map of Ca(!£>) into itself, then 
G[w(C<f>)] is a compact map of C a (£) into Ca(2S). Also if ||f||a^ R3 

and| |u;(£,<«| |aè R3, then 

l l G I ^ t ^ l l ^ N a d M t ^ H a ) 1 - * 

^ N a W l W ^ a + H C l l a ) ] 1 -

= N2(fc||*||24.+ fc||dtt)
1"e. 

I fNt ,0) | | a <fl3 , then 

j |G[u;(^)] | | a ^ M < N2R' ^ N 2 | | £ | | a ^< N2(k\\C\\a^). 

Thus, the hypotheses of Theorem 1 are satisfied for the functional 
equation: 

(5.4) C+ ßG[w(C,4>)] = 0 , ^ G [0,1]. 
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Applying Theorem 1, we may solve (5.4), and hence (5.1), and obtain: 

THEOREM 4. //<£>£= C2+a(Lb') is given, then for each f t £ [0,1], 
the equation 

a(x, y)zxx + b(x, y)zxy + c(x, y)zyy 

+ d(x, y)zx + e(x, y)zy + /(%, j/)2 = pG(z) 

has at least one solution z 6E C2+a( !£>) such that zl^Lb ' = </>. 

(Theorem 4 also holds for elliptic equations in n-space. The proof 
goes through in exactly the same way except that it is necessary to 
use a more general version of the Schauder Existence Theorem, i.e., 
the version for elliptic equations in n-space). 

6. Application to the Dirichlet problem for nonlinear parabolic 
equations. Let D be a bounded connected open set in the xt/-plane 
and let Lb = D X (0, T) where T is a positive constant. Let p = 
(xh yh ti) and q = (x2, j / 2 , h) D e a P a i r of points in Lb and define 

d(p, q) = ((*, - %2)
2 + («/! - j /2)2 + |*! - h\) "2. 

If real-valued function/has domain Lo and a G (0, 1), let 

Ha(f)= lub \f(p)-f(q)\l(d(p,q))", 

and let 

| | / K = ;lub | / ( p ) | + H t t ( / ) . 

Let 

$ / = (DX [0]) U ( D ' X [0,7]) , 

where D ' is the point set boundaiy of D. By standard arguments, it 
follows that if ||/||£ < °° then f has a continuous extension on 
Lb where Lo = Lb U €', and if ||/||g < °°, we shall understand 
/ t o be this extension. I f /has second derivatives, define 

ll/ll2+<.= l |/ | |S+||/x| |ri+a ,/2+||/J|(P
1+a„2 

+ ||/,||£ + ||/„||S + WUS + Wfyyt 

Let (f) be a real-valued function whose domain is the set clJ and define 
M2+C» analogously. 

We study the Dirichlet problem for the nonlinear parabolic equa­
tion: 
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au(x, y, t)uxx + al2(x, y, t)uxy 4- a22(x, y, t)uyy - ut + b^x, y, i)ux 
(6.1) 

4- b2(x, y, i)Uy 4- eu — G(w), 

where there exist constants a and e such that 0 < a < a + e < l and 
the set Lo is of class B2+a±€, i.e., the set D is such that for each point 
(x, y) G D' there is a neighborhood J\\ of (x, y) and a neighborhood ^V 
of the origin in another plane (whose points have coordinates sl7 s2) 
and a 1-1 mapping from J\l onto J\\ described by a pair of real-valued 
functions x(sl, s2) and y(su s2) such that x(sly s2), y(sÌ7 s2) G C2+a(JM) 
where C2+a(J\!) is the Banach space of real-valued functions with 
a-Hölder continuous second derivatives on N. It is also assumed that 
there is positive number M such that the numbers | |a^||g+e (i,j = 1, 2), 
| |&i | | £ ( i = 1, 2) and ||c||g are all less than M and that the matrix 
(otijix, y, t)), where al2 = a2l = %al2 and an = an, a22 = a22, is such 
that its quadrat ic form is positive definite on 2> (which implies there 
is a positive constant N such that det(a^(x, y, t)) = N, for all (x, y> t) G 
LÒ). 

Finally, we assume that G(u) satisfies the following conditions: 

(1) If Ca°(Lò) is the linear normed.space of functions f(x, y, t) such 
that | | / | | g < °° and such _that_ J7(D' X [0] ) U ( D ' X [T]) is 
identically zero, then if z G Ca°(£>), the mapping G : z —» G(z) is a 
continuous mapping from Ca°(i£>) into Ca°(£ò). 

(2) There exist positive constants R4, N 3 and € t G (0,1) such that if 
/ e C „ ° ( Ê ) and if | / | | S ^ R 4 , then | |G( / ) | | S < tfafll/fs)1^. 
Also G takes bounded sets in Ca°(!£>) into bounded sets in Ca°(2^) 
and N 3 is selected large enough so that M0 < N3(R4)

l~€l where 
M0 = lub| |G(/) | |g , w h e r e / G C a ° ( £ ) and | | / | |g ^ K4. 

Now let £(x, y, t) G Ca( 2>), the linear normed space of functions 
f(x9 y, i) such that | | / | | a < °° , and consider the equation 

(6.2) a\\Uxx 4- ai2uxy 4- a22uyy — ut 4- fc^ 4- £>2
W«/ 4- cw = £. 

W e apply: 
Barrar-Friedman Existence Theorem. Suppose the function </> with 

domain ^/ such that ||$||2+« < °° is given and suppose (f> is com­
patible with (6.2), i.e., cf> satisfies (6.2) on ( D ' X [0] ) U ( D ' X [ T] ). 
Then (6.2) has a unique solution w(£, <f>) and 

(6.3) \\w(t, <«||£+a < C(M, IV, ÎÙ) (Udir + ||0||2
P

+J 

where C(M, N, Lo) is a positive constant which depends only on M, N, 
and Lo. (For later computation, select C(M, N, îS) > 1). 
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For proof of the Barrar-Friedman Existence Theorem, see Barrar 
[4, 5] and Fr iedman [11] . 

Let </> be identically zero and let £ E Ca°(Lò). Using (6.2) and the 
Barrar-Friedman Existence Theorem, we may rewrite (6.1) as £ = 
G[w(£,0)]. From inequality (6.3), it follows by standard arguments 
that o>(£, </>), where (/> is fixed, is a compact map from Ca(iò) into 
Ca(

(J^) and hence by condition (1) on G, it follows that G[w(£, 0)] is a 
compact mapping from Ca

(\5b) into itself. Also if ||£||£ = # 4 and 
|| ti;(£, 0) | | g ^ R u t h e n 

| |G[u; ( ( ; ,0 ) ] | | s<N3( | |u ; ( J ,0) | |g )»- 1 

^ N 3 [ C ( M , N , î 5 ) ] ^ [ | | î | | g ] i - i . 

I f | M £ , < « | | 2 < Ri, then 

||G[u;(£</>)] HC ^ Mo < N 3 ( R 4 ) ^ ^ N3[ | |£ | |£] i - i 

< N 3 [ C ( M , N , I Ò ) ] [ W S ] 1 ^ . 

Thus, the hypotheses of Theorem 1 are satisfied for the functional 
equation 

£ + ixG[w(Z,0)] = 0 , 

and we obtain: 

THEOREM 5. For each JJL G [0, 1] the equation (6.1) w;i^/i G(w) re­
placed by jJiG(ix) has at least one solution u G C2+a(Lò) such that 
ul~' is identically zero. 

REMARKS. 1. Theorem 5 also holds in the n-dimensional case and 
for more general regions because the Barrar-Friedman Theorem holds 
in these more general cases. 

2. Note that the arguments above cannot be employed if 4> is not 
identically zero because if </>, not identically zero, is given, then the 
set of functions £ such that (f> is compatible with (6.2) will not in general 
be a linear space and so the domain of u>(£, <j>) and G[w(£,4>)] is not 
a linear space. So there is no possibility of applying Theorem 1. 
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