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ON SOME OLD PROBLEMS OF FIXED POINT THEORY 
ROBERT F. BROWN 

It is not uncommon to begin an expository paper with the modest 
admission that the paper contains no new mathematics. I must make 
the even more modest admission that much of what I will write over
laps other expositions; especially the excellent paper of Fadell [17]. 
The purpose of this paper, however, is quite different from FadeH's. 
He described some of the new discoveries in fixed point theory; I wish 
to call attention to some of the problems which are, nevertheless, still 
with us. 

1. Continua in the Plane. Let X be a space and / : X —» X a 
map (continuous function), then x G. X is a fixed point of / if f(x) — 
x. A space X has the fixed point property [for homeomorphisms] if 
every map [homeomorphism] / : X —> X has a fixed point. A con
tinuum is a compact connected Hausdorff space. Denote the plane 
b y ß 2 . 

PROBLEM 1. IfX C R2isa continuum such that R2 — Xis connected, 
does X have the fixed point property? 

I do not know who first asked the question, but its age can be esti
mated from the reference to it in 1929* as a "well-known problem" 
[ 1]. In order to discuss the history of this problem, we must intro
duce its little brother: 

PROBLEM I/2. Under the hypotheses of Problem 1, does X have the 
fixed point property for homeomorphisms? 

The first solution to Problem IJ2 was by Ayers [1] (1929), but under 
the additional hypothesis that X be locally connected. It was soon 
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recognized that results of Borsuk [4] (1929) implied the same partial 
solution to Problem 1 itself. Hamilton [21] (1937) settled Problem 
1/2 in the affirmative assuming that X is hereditarily decomposable, 
that is, that every subcontinuum of X can be expressed as the union 
of two of its proper subcontinua. Seiklucki [38], [39] (1967) solved 
Problem 1 under the hypothesis that the boundary of X is hereditarily 
decomposable; thus improving Hamilton's result by getting a strong
er conclusion out of a weaker hypothesis. In the most recent advance, 
Hagopian [20] (1971) has announced a solution to Problem 1 assum
ing that X is arcwise connected. However, that is not the end of the 
story of Problem Vh because in the meantime, Choquet [13] (1941) 
proved that some homeomorphisms of X have fixed points, namely 
those which extend to periodic homeomorphisms of the plane, oi 
period other than two. Then, in 1949, Cartwright and Littlewooc 
[12] proved that all homeomorphisms X which extend to orientatior 
preserving homeomorphisms of R2 have fixed points. Therefore, we 
know how to solve Problem 1 if we are permitted to put some furthe: 
restriction on X and we know that some homeomorphisms of X have 
fixed points anyway, but there the matter rests at present. 

2. Products of Manifolds. Denote euclidean n-space by Rn and le 
Rn+ = {(*!, • • -, xn) G Rn | xn ^ 0}. By a manifold we mean a compac 
metric space, every point of which has a neighborhood homeomorphi< 
either to Rn or, in the case of boundary points, to R+. 

PROBLEM 2. If manifolds M and N have the fixed point property 
does M X N have the fixed point property? 

This problem has a long history, in the sense that the very firs 
important fixed point theorem was actually a result of this kind. Le 
I be the unit interval and let In = I X / X • • • X I. It is an easy exer 
eise for a calculus student to prove that I has the fixed point property 
It requires more sophisticated mathematics to prove the "Brouwe 
Fixed Point Theorem" [7] (1910) (but, according to Bing [2], firs 
published in 1904 by Bohl [3] ) which states that In has the fixed poin 
property. Of course the Brouwer Theorem would follow from a 
affirmative answer to Problem 2 using induction. 

Problem 2 has a famous ancestor, which was formally posed b 
Kuratowski in 1930 [27]. It is: 

PROBLEM II. If X and Y are locally connected metric continua wit 
the fixed point property, does X X Y have the fixed point property? 

Dyer [16] (1955) proved that the answer to Problem II is "yei 
even if the continua are not metric, provided that they are chainabl 
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that is, that every open cover has a refinement {L^, • • - , [ / „} such that 
Ui PI Uj j^ji if and only if \i - j \ g 1. On the other hand, Connell 
[14] (1959) proved that the answer to Problem II is "no" for metric 
spaces in general, even if they are subsets of the plane, and Klee [25] 
(1960) did the same with bounded subsets of R2. Knill [26], in 1965, 
gave a "near counterexample" for Problem II in which X = 7 and Y 
is even a contractible metric continuum, but Y was not locally con
nected. Finally, in 1967, Lopez [34] used observations of Fadell to 
give a resounding "no" answer to Problem II because in his example, 
X = 7 and Y is a finite polyhedron with the fixed point property, and 
yet X X Y does not have the fixed point property. 

A simplified version of Lopez's original example, due to Bredon, is 
easy to describe. Let T be either the complex numbers Ç or the qua
ternions 77, topologized by identification with R2 or R4. Let Tn + 1 = 
r X • • • X r and call x, y G Tn + 1 — 0 equivalent if there exists 
y £ T such that x = yy, then the resulting quotient space is denoted by 
IT". For a space A, let j A be A X 7 with AX {0} and A X {1} each 
identified to a point. In Bredon's example, X = 7 and Y consists of J ] ÇP4 

and HP3 joined at a single point. In a neighborhood of the point 
where ^ ÇP4 and HP3 meet, the example looks just about as unlike 
a manifold as it is possible for a polyhedron to look. Fadell, perhaps 
encouraged by this fact, posed Problem 2 in [ 17]. 

Incidentally, the answer to Problem 2 is "yes" if one of the mani
folds is the unit interval (see [11, VIII.F] ) so the Brouwer Fixed 
Point Theorem can indeed be proved by induction using the right 
form of Problem 2. Actually, it's a lot easier to prove the Brouwer 
Theorem directly than it is to verify that M X I has the fixed point 
property whenever M does. 

We have seen that Problem 2 represents an effort to state the "right" 
version of Kuratowski's question; after Fadell and Lopez wiped out 
the original version. Such an effort has a very honorable and famous 
precedent. Recall that Poincaré originally conjectured that a 3-dimen-
sional manifold without boundary whose first integer homology van
ishes is a sphere. A counterexample, the so-called "Poincaré sphere" 
was soon discovered. A corrected version of the Poincaré conjecture, 
with "simply-connected" replacing the homology condition, is still 
unsettled. Of course, this is not to suggest that Problem 2 is in the 
same league as the Poincaré conjecture! In fact, it is really too early 
to say whether Problem 2 is difficult or not. 

For recent advances concerning the fixed point property on "nice" 
spaces such as polyhedra or manifolds, as opposed to the pathological 
spaces one meets in connection with Problem 1, see Fadell [18] and 
Bredon [6]. 
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3. The Lefschetz Fixed Point Theorem. Part of the difficulty of 
this next problem comes from the fact that there is no general agree
ment about how it should be stated. Therefore, it will be necessary 
to outline the history of the subject before we can discuss what the 
problem is. 

Let X be a space and denote its rational homology by H*(X) = 
{Hp(X) I p ^ O } . Each HP(X) is a vector space. Call H ̂ (X) finitary if each 
HP(X) is finite dimensional and all but a finite number of the HP(X) are 
trivial. A map / : X —» X induces linear transformations f^p : HP(X) 
—> HP(X). If H#(X) is finitary, we can define L(f)9 the Lefschetz 
number off by 

L(f)= S ( - 1 ) ' t r a ce (/*,) 

where trace (f%p) = 0 if HP(X) is trivial. A "Lefschetz Fixed Point 
Theorem" is a statement of the form: if / : X —» X is a map such that 
L(f) ^ 0, then/has a fixed point. 

Of course, the Lefschetz Theorem is not going to be true without 
some hypotheses. First of all, we would like to know that H#(X) is 
finitary so that L(f) is defined. Even very well-behaved spaces, 
such as the plane with all points represented by two integer coor
dinates removed, lack this property. That requirement alone is not 
enough, since the fixed point free map f : Rl -+ Rl defined by 
f(x) = x + 1 turns out to have a nonzero Lefschetz number. Com
pactness of X is not enough either, even when H*(X) is finitary. In 
1934, Borsuk [5] constructed an example of a map / : X —> X with
out fixed points, where X is a locally connected metric continuum, 
and yet L(f) = 1. Lefschetz [28] first announced his fixed point 
Theorem in 1923, with the hypotheses that X is both a finite poly
hedron and a manifold without boundary. He was soon able to in
clude manifolds with boundary [29] (1926). In 1928, Hopf [23] 
proved the Lefschetz Theorem for all finite polyhedra. Lefschetz ex
tended his fixed point theorem to compact ANR's (absolute neighbor
hood retracts, a generalization of polyhedra) in a disguised form in 
1930 [30] and explicitly in 1937 [31]. It was proved by Hanner 
[22] in 1950 that if X is an ANR then X is e-dominated by polyhedra, 
that is, given e > 0 there exists a polyhedron P and maps <\> : X —> F 
and i/f : P —> X such that i//<£ is homotopic to the identity map on X 
by a homotopy that moves no point more than e. Using this result, il 
is easy to reduce the Lefschetz Theorem for compact ANR's to the cor-
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responding theorem for finite polyhedra (see [11, III.C] ). Thus 
although Lefschetz's 1937 version of his theorem does include some 
infinite-dimensional spaces (for example, the Hilbert cube), it works 
because these spaces are so much like finite-dimensional ones that 
the tools of algebraic topology can't tell the difference. 

For a long time after 1937, research related to the Lefschetz Fixed 
Point Theorem was concerned with generalizations of the theorem to 
various kinds of compact spaces other than ANR's and to other mat
ters which are not of concern to us here. However, one important 
development was Dugundji's discovery [15] in 1951 that a convex 
subset of a normed linear space is an ANR. Consequently, many of the 
fixed point problems that are of interest in analysis are questions 
about maps on (in general noncompact) ANR's. This suggests, if your 
mind works that way, that it would be desirable to prove the Lefschetz 
Theorem for all ANR's. 

The humble example f(x) = x + 1 on the real line shows that you 
can't do it. In fact, the "punctured plane" example above proves that 
a noncompact ANR need not have finitary homology, so the Lefschetz 
number need not even be defined. The way around these difficulties 
is suggested by the approach to Problem 1 that Cartwright and Little-
wood used [ 12]. They observed that when, in a problem in dif
ferential equations, we want to know that a map on a continuum satis
fying the hypotheses of Problem 1 has a fixed point, we are not really 
confronted with just any old map, but with a very special kind which 
arises from the differential equations setting. In Cartwright and Little-
wood's paper, we recall that the maps were homeomorphisms which 
extend to orientation-preserving homeomorphisms of the plane. Be
fore discussing what kind of maps are appropriate to the present 
situation, let us state our problem in the form suggested by this dis
cussion. 

PROBLEM 3 — €. Prove the Lefschetz Fixed Point Theorem for all 
analytically important maps on ANRs. 

Of course the vague phrase "analytically important maps" makes 
this form of the problem most unsatisfying (and thus not worthy of 
being called "Problem 3"), but at least it suggests a direction in which 
to proceed: try first to prove the Lefschetz Theorem for some "analyti
cally important maps" and then attempt to improve your result until 
you can include all of them. 

What are some "analytically important maps"? The fixed point 
results which seem to have been used most frequently in analysis are 
the fixed point theorems of Banach and of Schauder. It is the latter 
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result [36] (1930) that interests us; even though its proof is, in fact, 
a rather easy application of the Lefschetz Fixed Point Theorem for 
compact ANR's. A set A in a space X is a relatively compact subset if 
the closure of A in X is compact. Let X be a space, then / : X —> X 
is a compact map if f(X) is relatively compact. The Schauder Fixed 
Point Theorem states that if / : X —» X is a compact map on a Banach 
space, then / h a s a fixed point. 

With the Schauder Theorem in mind, we ask if the Lefschetz Fixed 
Point Thorem is true for compact maps on ANR's. An affirmative 
answer was supplied by Granas [19] in 1967. The Lefschetz number 
of a compact map / : X —» X on an ANR can still be defined because 
f%p has finite-dimensional image for all p and is nonzero for only a 
finite number of integers p. The proof is a variant of the compact 
ANR case: use c-domination to reduce the situation to the finite poly
hedral case. 

The next part of the story of Problem 3 also goes back to the 
Schauder Fixed Point Theorem. An equivalent form of the theorem 
states that if / : X —> X is a map on a Banach space such that / 
maps bounded sets to relatively compact sets and f(X) is bounded, 
then f has a fixed point. In 1958, F. Browder [8] generalized this 
result in the following manner. Given f : X —> X, define fl(x) = 
/(*), P(x) = /(/(*)), and, in general, fm(x) = fif'^x)). Browder 
proved that if / : X -» X is a map on a Banach space that maps 
bounded sets to relatively compact sets and if /m(X) is bounded 
for some m, then / has a fixed point. Since, as we noted above, the 
Schauder Theorem is a direct consequence of the Lefschetz Fixed 
Point Thorem, Browder was led to look for a generalization of the 
Lefschetz Theorem along the lines of his generalization of Schauder's 
Theorem. 

Browder's solution rests on some important concepts due to Leray. 
Leray wrote a paper [32] in the early 1940's concerning fixed point 
theory on compact spaces in which, for a map / : X —» X, the set 
Om>ofm(X\ n<>w called the core of / , played a major role. In 
part of this work, Leray had to consider the restriction (/1 core) : 
core —> core of / to its core. In order to have a Lefschetz theory for 
this map, he had to add the hypothesis to several of his theorems that 
the homology of the core of / was finitary. In order to eliminate this 
unnatural and quite restrictive hypothesis from his results, Leray 
much later [33] (1959) developed a theory of a "generalized trace" 
and the corresponding "generalized Lefschetz number". In the setting 
of Leray's earlier paper, the map (/1 core) does have a generalized 
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Lefschetz number even when H*(core) is not finitary, so he was able 
to remove that annoying hypothesis from his previous results. 

Browder's form of the Lefschetz Fixed Point Theorem [10] (1967) 
states that if / : X —» X is a map on an ANR such that / is "locally 
compact" in the sense that every point x has a neighborhood whose 
image under / is relatively compact and such that fm(X) is rela
tively compact for some m, then the generalized Lefschetz number 
L(f) exists and if it is not zero, then / has a fixed point. The 
proof consists of showing that the hypotheses imply the existence of 
K, a compact ANR in X, such that f(K) C K and L(f) equals 
the ordinary Lefschetz number of / | K Thus Browder's theorem 
reduces, ultimately, to the classical Lefschetz Fixed Point Theorem. 

The most recent chapter in the story of the efforts to solve Problem 
3 is very helpful in showing us where we stand with regard to the 
problem. This version of the Lefschetz Fixed Point Theorem was pre
sented by Eells at a conference in 1969 (unpublished). It is a generali
zation of Browder's Theorem. Like Browder, Eells uses Leray's 
generalized Lefschetz number and a line of argument that reduces 
the theorem to the compact ANR case. Eells' hypotheses for a map 
/ : X - » X o n a n A N R a r e : 

(1) The core C off is compact and not empty. 
(2) There is a family <U = {U} of neighborhoods of C in X such that 

(a) if an open set V contains C then U Q V for some U Çz^U, 
(b) f(U)C 17 for all 17 GTZ, 
(c) if U G <U and xGX then fm(x) G U for some m. 

(3) There exists a neighborhood U of C in X such that /(17) is 
relatively compact. 

The reason this result is not considered a satisfactory solution to 
Problem 3 — € is that one of the hypotheses is so restrictive that Eells' 
Theorem does not apply to all, or even most, "analytically important 
maps". The offending hypothesis is not, as one might first imagine, the 
complicated number (2), but rather the last hypothesis. Note that 
hypothesis (3) is really Granas' hypothesis, tha); / b e a compact map, 
except that the entire space has been replaced by a smaller open set. 
The trouble with such a hypothesis is that in many interesting 
ANR's, the compact sets may be very "thin" in the sense that they 
must have empty interiors. Therefore, a hypothesis that requires maps 
to take a "fat" (i.e., open) set into a compact one eliminates many 
"analytically important maps". 

It is tempting to restate Problem 3 — € just by saying "prove Eells' 
result without using hypothesis (3)". There is no doubt that most 
people would consider that a satisfactory solution to Problem 3 — €, 
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but to require Eells' other hypotheses without modification doesn't 
leave us much room to maneuver. Browder's requirement, that the 
map be locally compact, implies hypothesis (3), so we can not seek 
help from that direction. A better form of Problem 3 seems to be: 

PROBLEM 3 — e/2. Prove the Lefschetz Fixed Point Theorem for 
an impressively large class of maps on ANKs; without requiring that 
the maps take any open sets to relatively compact sets. 

Of course the statement is still rather vague, but I don't think it 
will be hard to recognize the correct solution once someone finds it. 

As I look at the various generalizations of the Lefschetz Theorem 
since Hopfs polyhedral version of 1928, I wonder if perhaps the real 
challenge is: prove any version of the Lefschetz Fixed Point Theorem 
by a method other than reducing the question to the Lefschetz-Hopf 
Theorem. In other words, the problem is to find a truly infinite-
dimensional version of the Lefschetz Fixed Point Theorem. 

4. The Nielsen Number. Let / : X —» X be a map on a finite 
polyhedron, then f can be approximated, according to a theorem of 
Hopf [23] (1928), by a map f with a finite number of fixed points, 
each in a neighborhood of X homeomorphic to a euclidean space. 
Identify a neighborhood of a fixed point of / with euclidean space, 
with that point at the origin, and call the fixed point "positive" or 
"negative" depending on which the Jacobian of the map of euclidean 
space " / minus identity" is at that point (it can't be zero). Fixed 
points x and x ' of / are said to be equivalent if there is a path P in 
X from x to x ' such that P and f(P) are homotopic by a homotopy 
keeping x and x ' fixed. The index of an equivalence class of fixed 
points of f is the number of positive points in the class minus the 
number of negative ones. The Nielsen number N(f) of / is the 
number of equivalence classes of fixed points of / which have non
zero index. It is true, but by no means obvious, that homotopic maps 
have the same Nielsen number. Therefore, the definition of the Niel
sen number of a map / is independent of the choice of approximating 
map / . Furthermore, every map homotopic to / has at least N(f) 
fixed points. This last statement, known as the Nielsen Fixed Point 
Theorem, is the reason we are interested in the Nielsen number. 
Nielsen introduced his theory in 1927 for maps on closed surfaces [35]. 
The generalization to all finite polyhedra was due to Wecken [41] 
(1940). It might seem that the Nielsen Theorem, which offers informa
tion on the number of fixed points of a map, is so much more powerful 
than the Lefschetz Fixed Point Theorem, which only promises the 
existence of a single fixed point, that it is a waste of time to discuss the 
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Lefschetz Theorem. However, in order to compute the Lefschetz 
number of a map / : X —> X, we need to know only enough about the 
homomorphisms of the homology of X induced by / to compute 
traces. On the other hand, it should not surprise the reader that the 
computation of the Nielsen number of / directly from the definition 
we gave above is almost always impossible. Thus, although the Nielsen 
Fixed Point Theorem is, in theory, more powerful than the Lefschetz 
Fixed Point Theorem, in practice the Nielsen Theorem is much more 
difficult to apply. 

Until 1962, virtually the only cases for which the Nielsen number of 
/ : X —> X could be computed were those, such as where X is simply-
connected or f is the identity map, for which N(f) = 1. In that 
year, more sophisticated methods for computing Nielsen numbers were 
developed by Jiang [24]. Jiang proved that if / : X —> X is a map 
and X is a polyhedron whose fundamental group satisfies a certain 
technical condition, then N(f) can be computed algebraically just 
from a knowledge of the homomorphism of the fundamental group of 
X induced by / . In that case, the computation of N(f) is of the 
same order of difficulty as that of L(f). The Jiang condition is 
satisfied by some familiar spaces, Lie groups for example, but unfor
tunately it isn't a widespread phenomenon. There have been refine
ments of Jiang's techniques (see [ 17] for references) but, in general, 
it is still very difficult to compute a Nielsen number. 

The problem we are concerned with is not just the computation of 
the Nielsen number, although that is our central concern. In 1960, 
Browder [9] suggested that it should be possible to characterize the 
Nielsen number of a map / : X —» X algebraically from a knowledge 
of the homomorphisms induced by / , just as the Lefschetz number is. 
If this could be done, the computation of the Nielsen number would 
be similar to the computation of the Lefschetz number. Furthermore, 
we would have an easy proof that the Nielsen number is invariant 
under homotopy. Most likely, other, as yet unsuspected, properties of 
the Nielsen number would emerge from this new level of understand
ing of the concept. But just what do we mean by "induced homo-
morphisms,? Do we mean homomorphisms of homology groups, of 
homotopy groups, or of something else? Browder, in a letter in 1964, 
suggested that the problem was to express the Nielsen number of 
/ : X —> X in terms of the homomorphisms induced by / on the 
homology groups of X, considered as modules over the group ring of 
the fundamental group of X. Although this formulation, in which the 
fundamental group plays a major role, fits in well with Jiang's results, 
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it seems rather restrictive. Anyhow, no one has succeeded in solving 
the problem in this form. 

The formulation of the problem which seems to me to offer the 
widest scope, while preserving the essential elements of Browder's 
idea, is the following. A functor from the category of homotopy classes 
of maps of finite polyhedra to the category of morphisrns of graded 
groups is a function which assigns to a map a sequence of homomor-
phisms in such a way that 

(1) homotopic maps have the same image under the functor, 
(2) the image of the identity function is a sequence of identity func

tions, 
(3) composition is always preserved or always reversed. 

Homology, whether or not over the group ring of the fundamental 
group, is such a functor. So also is homotopy theory and the other 
tools used in algebraic topology. 

PROBLEM 4. Characterize the Nielsen number of a map on a finite 
polyhedron by means of algebraic operations on the images of the map 
under functors from the category of homotopy classes of maps to the 
category of morphisrns of graded groups. 

It is possible, as Scholz has done [37] (1970), to define the Nielsen 
number in a very general setting. However, I believe that the essential 
difficulty of Problem 4 has little to do with the generality of the spaces 
and maps considered. If Problem 4 can be solved in the form given, 
the generalization to cover every case in which the Nielsen number 
has been defined should present no great problem. 

In spite of the lack of an answer to Problem 4, the Nielsen number 
has played an important part in fixed point theory; for example in 
connection with Problem 2 [ 17]. A solution to Problem 4 would 
probably give us a tool more powerful than any we now possess in 
fixed point theory. 
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