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FIXED POINT THEORY VIA SEMICOMPLEXES 
RICHARD B. THOMPSON 1 

ABSTRACT. In this paper we first establish a scheme which 
can be used to classify much of the work that has been done in 
fixed point theory and then survey the current status of 
knowledge about semicomplexes in this context. Some recent 
discoveries are introduced and used to give strengthened forms 
of some earlier results. Finally, several open questions are 
posed, whose solutions would, in the opinion of the author, 
make valuable contributions to the theory of semicomplexes. 

1. Classification of fixed point theories. As any check of the recent 
literature shows, work in fixed point theory has proliferated to such 
an extent that the field now encompasses a very broad range of mathe­
matical activity. This diversity suggests the need for some type of 
framework to use in classifying both new and old results in fixed point 
theory. As an initial step in this direction, we will introduce two axes 
which seem to form natural dividing lines for the subject. 

First note that one may approach fixed point questions by either 
direct or indirect methods. Work will be classified as using the direct 
approach if it studies fixed point problems in the natural settings 
where they arise outside of fixed point theory itself. Thus, for example, 
a question about fixed points for maps between absolute neighborhood 
retracts (ANR's) would be studied and solved by working entirely 
within the category of ANR's and their maps. 

This is contrasted with the indirect approach, which we define as 
the study of fixed point questions in categories that were originally 
devised for the purpose of doing some type of fixed point theory. In 
this case, a fixed point question about maps of ANR's might be re­
garded as a special case of a question about maps of, for example, 
semicomplexes and then studied in the category of semicomplexes and 
their maps — a category specifically invented for fixed point theory. 
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We will elaborate briefly on the distinction between these two 
approaches by giving examples of each and noting their primary ad­
vantages and disadvantages. The direct approach is the older and 
more obvious of the two methods. This covers the work done in the 
categories of finite polyhedra and compact metric ANR's as well as 
much of the fixed point work arising from operator theory and dif­
ferential equations. In these latter situations fixed point questions 
are most commonly studied in categories consisting of certain subsets 
of topological vector spaces (often Banach spaces) and particular types 
of maps of these spaces. A final example is provided by the work of 
point set topologists on the fixed point property for various specific 
spaces and classes of spaces. This is clearly a direct approach, since 
their work is done entirely within the space or spaces under investiga­
tion. 

The most notable advantage of direct methods is that solutions are 
given explicitly in terms of the original problem — if you ask a question 
about ANR's, you get an answer about ANR's. A further benefit is 
that one usually is working in categories that have been thoroughly 
investigated and are relatively well understood. Thus the answer to 
a particular fixed point question may not be known, but a large amount 
of information and machinery is available and may be brought to bear 
on the problem. 

These advantages are balanced by the drawback that each fixed 
point question, however closely related to similar questions in other 
settings, must usually be answered by ad hoc methods peculiar to the 
category in which one has asked the question. For example, a result 
obtained in Banach spaces may depend heavily on the presence of a 
metric and be of no help in answering the corresponding question in 
locally convex linear spaces. A second aspect of this phenomenon is 
that useful methods are seldom employed to their greatest extent, 
since this would take one out of the original category in which the 
problem arose. These difficulties notwithstanding, it may be observed 
that a majority of the work in fixed point theory has employed direct 
methods. 

Indirect methods comprise a somewhat more recent approach to 
fixed point questions — dating from the work of Lefschetz on quasi-
complexes published in 1942 [ 12, p. 323]. This work was followed by 
the convexoids of Leray [ 14,15 and 16], the semicomplexes of Browder 
[8], the weak semicomplexes of the author [19 and 20] and the Q-
simplicial spaces of Knill [11]. 

All of these indirect fixed point theories share several common ad­
vantages as well as some common difficulties. On the plus side, there 
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is the obvious point that a quite satisfactory fixed point theory (either 
local or global) is developed in each of these settings. This, of course, 
should come as no great surprise since these categories were designed 
for that purpose. A less obvious virtue is that each of these categories 
is so constructed that the fundamental techniques used in their develop­
ments are employed in what would appear to be almost their fullest 
generality. Thus by working in these abstract, indirect settings the 
full power of one's methods is utilized and one obtains a uniform 
treatment for large classes of related questions, each of which would 
have required separate investigations by direct methods. The last 
advantage of the indirect approach is one which does not seem to have 
borne much fruit as yet. This is the simple fact that new mathematical 
structures are created which may well prove to be of some intrinsic 
interest for reasons outside the realm of fixed point theory. 

The main drawback to these indirect theories is that difficulty which 
is common in all cases of generalization and abstraction — problems 
must be translated into the indirect setting and solutions must be 
translated back into the original context of the problem. Thus, while 
one can build an elaborate machine, it is not always clear whether 
or not this machine can be applied to a given problem. An interesting 
example of this difficulty is that it is still unknown after almost thirty 
years whether or not all ANR's admit quasi-complex structures. 

A second aspect of indirect methods must also be classed as a draw­
back. Namely, no really useful indirect fixed point theory will ever be 
found that covers all of the situations where fixed point questions arise. 
Hence some special direct methods will always be needed. This state­
ment follows from the work of the author in [21], where it is proved 
that no general fixed point theory can be closed under products (i.e., 
apply to the cartesian product of any two spaces to which it is 
applicable) and still apply to all compact Hausdorff spaces that have 
the fixed point property. 

In addition to the distinction between direct and indirect theories, 
we can also draw a second dividing line to help classify fixed point 
results. All theories deal with some class of maps (continuous func­
tions) between members of certain specified classes of spaces. If 
the needed restrictions are placed only on the type of space considered 
so that all maps are covered by the theory, then we will refer to this 
as an unrestricted mapping theory. If, on the other hand, conditions 
must be placed on the type of maps to be studied, then we will speak 
of a restricted mapping theory. In practice, this difference is usually 
reflected by whether one places strong compactness conditions on the 
spaces considered and can then look at all maps or whether one uses 
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weaker compactness conditions on the spaces and hence must place 
some limitations on the maps that may be considered. 

Obviously, statements about the fixed point property for spaces can 
only be made in unrestricted theories. Thus, if we agree to date fixed 
point theory from Brouwer's theorem stating the fixed point property 
for the n-cell, then our subject began with an unrestricted theory. We 
can press this example somewhat further to illustrate the fact that as 
succeeding generalizations of a theorem unfold, they often alternate 
between restricted and unrestricted mapping results. In a purely 
topological direction, Ayres ( [ 1], 1930) expanded the class of subsets 
of the plane to be covered from the 1- and 2-cells of Brouwer to all 
Peano continua that do not separate the plane. He then proved the 
restricted mapping result that all such spaces have the fixed point 
property for homeomorphisms. Subsequently, Borsuk ([3] , 1932) 
strengthened this to an unrestricted result by showing that Tiomeo-
morphisms' could be replaced by 'continuous functions'. 

The same phenomenon occurs with the generalizations of Brouwer's 
theorem that have been used in analysis. For example, Schauder 
([17], 1930) extended Brouwer's theorem by showing that every com­
pact convex subset of a Banach space has the fixed point property. 
Interestingly enough, this unrestricted mapping result is equivalent 
to the following restricted theorem. If C is a closed convex subset 
of a Banach space B and / : B —> B is a map such that the closure 
of / (C) is compact, then C contains a fixed point of/. Finally, this 
latter form of the result has been extended by Browder ([7] , 1959) to 
a restricted mapping result which requires conditions on the iterates of 
the mapping rather than on the mapping itself. This type of theorem 
is somewhat typical of the current fixed point theorems used in 
operator theory where most results are of the restricted mappings type. 

To complete our classification picture, we note that recent direct 
theory results of primarily topological interest appear to be divided 
between those of a restricted and those of an unrestricted nature. 
Classification is much easier in the case of indirect theories, where all 
but the Q-simplicial theory are of an unrestricted nature. 

Before illustrating these ideas with semicomplexes in the next sec­
tion, we will make three further remarks. First, the 1963 monograph 
by Van der Walt [25] gives an interesting survey of much of the older 
fixed point theory work and provides a good place to apply our clas­
sification plan. Second, the various fixed point results for multi-valued 
functions all fall under the heading of direct theories and appear, in 
general, to require fairly strong restrictions on the type of maps con­
sidered. Finally, the following diagram may help to present a sum­
mary of the program outlined in this section. 
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Restricted 
Mapping 
Theories 

Unrestricted 
Mapping 
Theories 

Direct Theories 

Current work used in 
operator theory including 
both local and global 
fixed point indices. 

Multi-valued functions. 

Work on the fixed point 
property by geometric and 
algebraic topologists. 

Questions concerning 
bounds for the number 
fixed points of maps. 

Indirect Theories 

Q-simplicial spaces. 

Quasi-complexes, 
semicomplexes, 
weak semicomplexes, 
and convexoids. 

Figure (1.1) 

2. Semicomplexes. 
The material in this section has been selected to serve a two-fold 

purpose. In the first place, we will mention some new results on 
semicomplexes and indicate how these can be used to strengthen 
several older theorems. On the other hand, we can use this summary 
of the present status of knowledge about semicomplexes to give con­
crete illustrations of the advantages and disadvantages mentioned for 
indirect fixed point theories in § 1. 

We will begin by setting down the basic definitions and conven­
tions. All topological spaces considered are assumed to be compact 
and Hausdorff and all chain complexes and homology groups are 
taken with rational (Ç) coefficients. Given a space X, we denote by 
5] (X) the collection of all finite covers of X by open sets and recall 
that J ) W *s quasi-ordered by the relation of refinement. If a, ß G 
2 (X) and a refines ß(a > ß) and we let Na and Nß stand for the 
nerves of a and ß, then rrß

a : C(Na) -* C(Nß) will denote any of the 
usual chain maps induced by a vertex transformation based on set 
inclusion. The support of a chain c G. C(Na) is written as sup(c) and 
is the union of all sets in a which appear in Simplexes of Na that occur 
with non-zero coefficients in c. The following definition is given in 
[20, p. 9] along with a more detailed explanation of the general 
notation and terminology that we will use in the rest of this paper. 
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DEFINITION (2.1). A weak semicomplex (WSC), S(X) = {X, ft, C}, 
is a triple where X is a compact Hausdorff space; [Ì is a function assign­
ing to each k G ]£ (X) a cofmal subset î \ of ^ (X) which has a 
designated coarsest element oto(k) such that <xo(k) > k; and C is a 
function assigning to each k G ^ (X) a family, Cx, of chain maps con­
sisting of one or more chain maps ca

ß : C(Nß) —» C(Na) for every pair 
a , j 8 £ ( \ such that a> ß > «o(X). Each c / G Cx has the property 
that if a G Nß, then there is a set U G \ with sup(a) U sup(c</((j)) 
Ç U. These chain maps are called antiprojections and are assumed 
to satisfy the following axioms. 

(i) If a > ß > y > OÖ(X), a, ß, y G f\ and cj, cj G Cx, then cj is 
chain homotopic (~ ) to ca

k7Ty
ß. 

(ii) If a > ß > y > oo(X), a, ß, y G I \ and <y, c^ G Cx, then c^^ — 

(iii) If a > ao(X ), a G f\ and ca« G Cx, then c2* : H(NJ - • H(NJ is 
an idempotent endomorphism whose image is exactly the image of the 
projection homomorphism pa : H(X) —> H(Na) where H(X) denotes 
Cech homology with rational coefficients. 

A weak semicomplex, {X, (I, C}, is called simple (SWSC) if for each 
X G 2 W> « G a and ca« E CK, ca« ~ lC(Na) : C(Na) -* C(NJ. 

We will often refer to X as the underlying space of a WSC, S(X), 
and will call S(X) an SC-structure on X. 

As was indicated in § 1 of this paper, WSC's constitute an indirect 
fixed point theory. In this particular case, the concept was for­
mulated with the goal of having the Lefschetz number of a map 
serve as a global fixed point index, i.e., the underlying spaces of 
WSC's satisfy the Lefschetz fixed point theorem. This fact, which was 
proved in [20, p. 15], is stated in the following theorem. 

THEOREM (2.2). If S(X) is a WSC and f : X —» X is a fixed point 
free map, then its Lefschetz number L(f) is zero. 

The motivation for introducing the concept of simple WSC's is that 
they provide a complete characterization of the class of quasi-complexes 
as a subclass of the WSC's. The theorem given below is proved in 
[20, p. 19]. 

THEOREM (2.3). A space X is a quasi-complex if and only if it admits 
an SWSC-structure. 

In addition to the references given above, WSC's and SWSC's 
(quasi-complexes) are used or discussed in [6], [9], [10], [18], 
[19], [22] and [23]. 

Finding the "right" set of axioms of this same nature that would 
allow one to have a local fixed point index seems to have been an 
elusive goal. In 1960, Browder [8] defined the notions of semicomplex 
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(SC) and semicomplex morphism (SC-morphism) and proved that a 
local fixed point index existed for this category. Less restrictive axioms 
for both SC's and SC-morphisms which allow one to get a clearer 
picture of exactly which spaces admit SC-structures were given by the 
author in [20, sec. I l l ] . However, these axioms for SC's still forced 
one to limit his attention to metric spaces for many key constructions. 
Finally, in 1970 [24] a replacement for one of the SC axioms was 
found which eliminates this difficulty while at the same time leaving 
valid all of the known proofs of facts about SC's. These new axioms 
are given in the following definition where, as before, Cech homology 
is used. 

DEFINITION (2.4). A semicomplex, (SC), S(X) = {X, /, fi, OQ, C}, 
is a quintuple where X is a compact Hausdorff space; / is a collection 
of finite covers of X by connected open sets which is cofinal in ^ (X); 
fi is a cofinal subset of ^ (X); OQ is a function from I into fi such that 
for each \ É / , oft(X) > X; and C is a function assigning to A G / a 
family, Cx, of chain maps consisting of one or more chain maps 
cj : C(Nß) -» C(Na) for every pair a,ß G fi such that a > ß > ofc(X). 
These chain maps ca

ß are called antiprojections and are assumed to 
preserve the Kronecker index as well as satisfy the following axioms. 

(i) If a > ß > y > OÖ(A), a, fry G fi and cj, cy G Cx then there 
exists a chain homotopy Aa

ß connecting cj and ca
y7Ty

ß such that for 
each o rGN^ there is a set ( 7 G \ with sup(a) U sup(ca

ß(a-)) U 
sup(A/(<7)C U. 

(ii) If a > ß > y > Oo(X), a, ß, y G fi and cß
y, cy G Cx then there 

exists a chain homotopy Fß
y connecting cß

y and 7Tß
aca

y such that for each 
a E.Ny there is a set V G A with sup(a) U sup(cß

y(a)) U sup(r^^(a)) 
C V. 

(iii) If a > cto(k), a G fi and ca<* G Cx, then c£# : H(Na; Ç) -> 
H(Na; Ç) is an idempotent endomorphism whose image is exactly the 
image of the projection homomorphism pa : H(X; Q) —> H(Na; Ç). 

(iv) If X, fji G J with fi > X; a > ß; a, ß G fi with ß refining both 
ofo(X) and ao(fi); ca

ß(\) G Cx; and ca
ß(fi) G Cß; then there exists a chain 

homotopy ßa
ß connecting these two antiprojections such that for each 

a GNß there is a set W G X with sup(<j) U sup(c/(X)(<j)) U 
sup( e J (a)) C W. 

The concept of a simple SC has been defined [20] in a fashion 
analogous to that used for simple WSC's. However, we will not con­
sider this aspect of the theory here. 

It is clear that an SC-structure on a space can be used to derive a 
WSC structure. In this sense, the SC's are a subclass of the WSC's. 

As we mentioned above, the concept of a map between two spaces 
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which respects existing SC-structures on these spaces has also evolved. 
DEFINITION (2.5). Suppose that S(X) = {X, I, u,oo,C} and S(Y) = 

{Y,/?^,/30 , D} are SC's and that h : X —» Y is a continuous map of 
spaces, h is called an SC-morphism from S(X) into S(Y) and written 
as h : S(X) —» S(Y) if for each X Œ I and f t £ J there are covers Ax = 
\i(\, fx) Œ. I and /x1 = /LL^X, /X) G / with Â  > A. and fJii> fi which have 
the following property. For any four covers <f>, i// G ^ (X) and 
X, eu G ]£ (Y), four covers a,/3 G (Ì and y , 8 £ ? can be picked suc­
cessively so that 8 = 8(ix, co) is a common refinement of ßo(l^i) a n d 
co; ß = ß(8, *jß) is a common refinement of afo(Ai), h~1(8) and 
i//;y = 7(8,X) is a common refinement of 8 and X; and a = <x(ß7y, </>) 
is a common refinement of ß,h~l(y) and t/>. Further, these are 
assumed to have the property that if 

V ^ C(NJ -> C(Ny) and V : C(fy) -> C(NÔ) 

are chain maps induced by /i, ca^ G Cx and dy8 E. Dß then there 
exists a chain homotopy A connecting /iy

aca^ and dy
8hs

ß such that for 
each a G Nß there is a set U G /LL with 

/i(sup(tr)) Usup(A(cr))Ç U. 

It is shown in [20] that the collection of all SC's and SC-
morphisms is a category and several of the properties of this category 
are studied, including its behavior under an equivalence relation 
defined by saying that S(X) is equivalent to an SC, T(X), if the identity 
map on X is an SC-morphism from S(X) to T(X). 

As with WSC's, SC's are the basis for an indirect fixed point theory, 
as shown by Browder in [8]. 

THEOREM (2.6). A local fixed point index exists for the category of 
the underlying spaces and maps of SC's and SC-morphisms. 

In the remaining work we will sometimes use the term semicomplex 
as a generic name for any one of the types of structures, SC, WSC or 
SWSC. 

We will now illustrate the remarks made in § 1 by giving as con­
crete examples some of the known results on SC's. Several of these 
represent strengthened forms of the previously published versions of 
the theorems. This is made possible by the improved set of axioms 
which may now be used. In some of these cases the reference given 
is for the proof of the theorem in its earlier form and the adaptation of 
that proof to the present axioms is left to the reader. In those instances 
where proof of the strengthened form requires any great amount of 
ingenuity, the reference given is to a proof of the new result. 
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In regard to the advantages claimed for indirect fixed point theories 
in § 1, we have already noted that either a global or a local fixed 
point theory does exist for each type of SC. It should be noted, 
however, that the existence of this fixed point theory does not follow as 
any immediate consequence of the definitions of SC's. This is parti­
cularly so in the case of the local index, whose derivation requires a 
lengthy and sophisticated argument. It is reasonably clear, however, 
that the techniques used in the proofs of the fixed point result for the 
various SC's are utilized in their full generality. 

As was observed in § 1 of this paper, the most substantial problem 
with indirect fixed point theories is that of relating them with the 
standard categories in which one normally works. In view of the 
somewhat complex nature of the definitions of the various types of 
SC's and their morphisms, it is not surprising that much of the work on 
these categories has been devoted to finding sufficient conditions for 
a space to support an SC-structure. Some of these results will be out­
lined in the following material. 

In the case of some elementary spaces, one can construct SC-
structures without any great difficulty (as shown in [20, sec V] ). 

PROPOSITION (2.7). All finite polyhedra and the Hilbert cube admit 
SC-structures (and hence WSC-structures). 

The various categories of SC's are also closed under some of the 
standard topological constructions. In particular, the following re­
sults are established in [20, sec VI] and in [22, p. 259] respec­
tively (with the second theorem strengthened via use of the new 
axioms). 

THEOREM (2.8). If X and Y are two compact Hausdorjf spaces that 
admit a given type of SC-structure, then X X Y supports the same type 
of SC-structure. Moreover, in the case of actual SC's (not WSC's) 
these structures may be taken so that the projection maps are SC-
morphisms and equivalent structures on the factors induce equivalent 
structures on the product. 

THEOREM (2.9). If A is a retract of a compact Hausdorjf space X 
and X has either a WSC-structure or an SC-structure, then the retrac­
tion induces a structure of the same type on A. 

The advantage of this type of result is that it can often be used to 
avoid direct constructions of SC-structures on certain classes of spaces. 
Thus, since any compact, metric ANR is homeomorphic to a retract 
of the product of a finite polyhedron and the Hilbert cube [5, p. 105], 
we have the following consequence of the last two theorems. 
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THEOREM (2.10). Every compact, metric ANR admits an SC-structure 
(and hence a WSC-structure). 

It can be deduced further (see [22, p. 268] ) that any map between 
two such ANR's is an SC-morphism between any SC-structures on 
its range and domain. In particular, any two SC-structures on such 
spaces are equivalent. 

The above result has been generalized, by explicit construction of 
SC's, to the HLC* spaces introduced by Lefschetz in [ 13, p. 122]. 
(We will refer to these as le* spaces for purposes of notational con­
sistency.) 

This notion arises in the study of generalized manifolds (see [27] 
and [2] ) where it plays a role analogous to that of ANR's for ordinary 
manifolds. The following result is a strengthened form of a similar 
theorem in [20, p. 45] whose proof is given in [24, sec. 4]. 

THEOREM (2.11). Every le* space admits an SC-structure and all 
maps between such spaces induce SC-morphisms between any SC-
structures on their domains and ranges. 

We will digress briefly at this point to note that the last result 
gives rise to one of the few known realizations of one of the potential 
benefits of indirect theories that was cited in § 1 of this paper. It 
is known (see^ [20, p. 10] that any space which supports a WSC-
structure has Cech homology (with rational coefficients) that is iso­
morphic to a subgroup of the homology of the nerve of a sufficiently 
fine cover. Hence this homology condition holds for all le* spaces — 
a fact that was known previously only in the case of finite dimensional 
le* spaces [27, p. 180]. This provides a case where a result having 
no connection with fixed point theory was discovered by work in a 
category devised for fixed point work. 

Theorem (2.11) (in its strengthened form) is also the key to the proof 
of the following result which indicates that the theory of SC's can 
move in the direction of non-metric applications to analysis (see 
[24] ). 

THEOREM (2.12). All finite unions of compact, convex subsets of 
locally convex topological linear spaces admit SC-structures. 

We can use WSC's to move into the opposite corner of fixed point 
theory and investigate the fixed point properties of continua. It was 
shown in [10, p. 667] that every chainable continuum is a quasi-
complex — and hence has an SWSC-structuré. This result is gen­
eralized in [23] where the notion of a regular set of covers for a 
tree-like continuum is introduced and the observation made that 
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every chainable continuum is a tree-like continuum which admits a 
regular set of covers. The main result in this direction (see [23, p. 
216] ) is that regular covers give a complete characterization of the 
existence of WSC-structures. 

THEOREM (2.13). The following are equivalent conditions on a tree­
like continuum T. 

(a) T has a regular set of covers. 
(b) Every cofmal collection of tree chains on T is regular. 
(c) T admits a WSC-structure. 

To relate this to the fixed point property, we need only observe 
that, since a tree-like continuum is acyclic in the sense of Cech 
homology with rational coefficients, the existence of a WSC-structure 
on such a space implies the fixed point property for the space. 

The delicate nature of fixed point questions for tree-like continua 
is illustrated by the following pair of spaces, each of which is formed 
by a "V that is approached tangentially by a ray. 

FIGURE (2.14) 

T has a regular set of covers, and hence a WSC-structure, while U 
has a cofinal set of tree-chains that is not regular (see [9] and [23, p. 
213] ), and hence admits no WSC-structure. 

It should be clear from the list of results given in this section that, 
while there is room for a great deal of further work, many of the prob­
lems of relating SC's with the topological categories normally studied 
can be (or have been) solved. Thus the most serious difficulty inherent 
in all direct fixed point theories does not appear to be an insur­
mountable hurdle in the case of SC's. 

3. Open questions. 
We will close our survey with several questions and problems, 
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which, to the best of the author's knowledge, are now open and whose 
solutions would shed new light on the nature of semicomplexes. The 
first two of these questions are of a somewhat internal nature, in that 
they ask for information about the various categories SC's and their 
relationships. 

As was outlined in § 2 of this paper, we may picture the implica­
tions between the different types of semicomplexes as shown in 
Figure (3.1). In this case SSC stands for simple semicomplex. 

5V5C Sc 

SSC 
F I G U R E (3.1) 

There exist "cheap" examples to show that a space which admits 
a WSC-structure need not have an SC-structure. For example, the 
pseudo-arc is a chainable continuum and hence has a WSC-structure. 
However this space is not locally connected and hence can have no 
SC-structure. A more meaningful example would be a space which 
has a WSC-structure, violates none of the necessary conditions known 
for the underlying spaces of SC's but yet supports no SC-structure. 
The following question should be interpreted in this context. 

QUESTION (3.2). Do there exist meaningful examples to show that 
implications in Figure (3.1) cannot be reversed? 

In all of the cases where SC-structures have been constructed 
directly, it has happened that all maps between spaces have induced 
SC-morphisms between any of the SC-structures supported by their 
domains and ranges. In particular any two SC-structures on the same 
space have been found to be equivalent. It seems highly doubtful that 
this situation prevails in general. 

PROBLEM (3.3). Find two SC's, S(X) and S(Y), and a map / : X -H> Y 
such that / is not an SC-morphism of S(X) to S(Y). As a special case 
of this, find two non-equivalent SC-structures on a single space. 

The next two questions are aimed at clarifying the relation of two 
of the standard types of spaces to the different types of SC-structures. 
An example due to Borsuk [4] together with the remarks following 
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Theorem (2.11) of this paper show that a locally contractible, compact 
metric space need not admit an SC-structure. However, the corre­
sponding answer is not known if we consider uniformly locally con­
tractible (ULC) spaces (see [26] ). 

QUESTION (3.4). Does eveiy compact ULC space admit an SC-
structure? 

As mentioned in § 1 of this paper, the question of whether or not 
all compact, metric ANR's admit SSC-structures (or even SWSC-
structures) has been outstanding for many years. While its solution may 
be difficult, no list of problems about SC's would be complete without 
its inclusion. One possible approach to the question is outlined in 
[22, sections 3 and 4]. 

QUESTION (3.5). Does every compact metric ANR admit an SSC- or 
an SWSC-structure? 

Note that, since every such space has SC- and WSC-structures, a 
negative answer to this question would provide a particularly satis­
factory affirmative answer to part of Question (3.2). 

As we have noted earlier, all of the indirect fixed point theories of 
the unrestricted mapping type, except the convexoids, have been 
shown to involve no more than special types of semicomplexes. Some 
work has already been done toward removing this last exception, but 
the question is still unresolved. 

PROBLEM (3.6). Show that the all convexoid spaces support SC-
structures and analyze the category of all SC's whose underlying 
spaces are convexoids. 

One of the most promising directions for further research on semi-
complexes is to extend this notion into a restricted mapping theory 
including some types of non-compact spaces. Such a program should 
be carried out in a manner that would allow one to obtain indirect 
proofs of some of the more useful results of the direct theories dealing 
with such spaces. It would also be desirable to establish the relation­
ship between such a theory and the Q-simplicial spaces. 

PROBLEM (3.7). Define SC-structures for a useful class of non-
compact spaces and develop an indirect, restricted mapping type of 
fixed point theoiy in that setting. 

Multi-valued functions offer another area into which one might 
expect to extend the methods of semicomplexes. This could either be 
done by considering such functions between spaces that support SC-
or WSC-structures as presently defined, or in conjunction with the 
type of extension of the theory suggested in Problem (3.7). 

PROBLEM (3.8). Establish fixed point results for multi-valued func­
tions in the context of semicomplexes. 
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We have already observed that the category of spaces which sup­
port semicomplex structures offers an interesting topological setting 
in which to pursue questions outside the realm of fixed point theory. 
In this context, we can consider semicomplexes as a class of spaces, 
the nerves of whose covers form something like a direct system as well 
as the usual inverse system at the chain level. Such spaces might, for 
example, constitute a natural setting for Cech-type homology theories, 
allowing one to verify the exactness axiom for a wider class of spaces 
than is now possible. Considerations such as these would probably 
require the definition of semicomplex structures based on coefficients 
other than the rational numbers. 

PROBLEM (3.9). Find topological applications having nothing to do 
with fixed point theory for the category of spaces that admit SC- or 
WSC-structures. 
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