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FUNCTIONS ANALOGOUS TO COMPLETELY 
CONVEX FUNCTIONS1 

S. P. PETHE AND A. SHARMA 

ABSTRACT. We consider the problem of expanding a func­
tion / e C ° ° [ 0 , 1] in a L35o,o series, which is an analogue 
of Lidstone series. To this end we are led to consider the class 
W 3 o,o °f functions and the class of minimal W 3 0>o functions. 
Following Widder's method for completely convex functions, 
we show that a function f has an absolutely convergent L 3 o,o 
series expansion if and only if / = g — h, where g, h be­
long to the class of minimal W 3 QQ functions. The existence 
of five more similar results is pointed out. 

1. Introduction. Recently Leeming and Sharma [3] have given a 
generalization of completely convex functions by considering an 
analogue of Lidstone series. In 1942, Widder [9] showed the close 
connection of completely convex functions with Lidstone series, simi­
lar to the one that exists between the completely monotonie functions 
of Bernstein and the Taylor series. For details we refer the reader to 
[ 10]. In 1942 many deep studies were made in connection with "the 
influence of the sign of the derivatives of a function on its analytic 
character", which seem to have deep connections with Widder's class 
of completely convex functions. In particular Boas and Pólya [1] 
showed, roughly speaking, that if {n f c}|and {qk} are two sequences 
of nonnegative integers and if 

(1.1) f{nk\x)f {"k + 2clx) (x) § 0 on a given interval I, 

then / must coincide on I with an entire function of order 1 and 
finite type. Although this result is of a very general nature, and al­
though it extends one of the results of Widder considerably, the other 
interesting results of Widder on completely convex functions went 
almost unnoticed. 

Our object here is to follow the point of view of Widder [9] and to 
consider a two point interpolation problem analogous to Lidstone 
interpolation. We shall use the notation of an incidence matrix for an 
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interpolation problem (Schoenberg [7] ). We shall consider the in­
cidence matrix 

/ 0 1 1 0 1 1 0 1 1 • • • \ 

^ V l O O l O O l O O - - / 

which is obtained by repeating M : = d o o) infinitely many times. I: 
the nodes of interpolation are 0 and 1, the matrix corresponds to th( 
problem of finding a function/G C °°[0,1] such that 

/(3fc)(l), /(3fe+1>(0), f*k+2\0\ k = 0,1,2, • • -, 

are prescribed. An expansion of f(x) using only these derivative: 
shall be called L3 0 0 series. The reason for this notation will becom< 
clear later. Here L stands for Lidstone who considered the interpola 
tion problem given by the incidence matrix 

/ l 0 1 0 1 0 • • \ 
( L 3 ) ( i o i o i o • • • ) • 

Leeming and Sharma [3] considered a class of functions whicl 
they called 'completely Wp-convex' which reduces to completely 
convex functions for p = 2. For p = 3, their results are related to th< 
incidence matrix 

/ l 1 0 1 1 0 1 1 0 •• ..v 
( , j \ i o o i o o i o o ••• / • 

Our results complement the results of Leeming and Sharma. It turn 
out that for p = 3, there are essentially six different classes of function 
which are analogues of completely convex functions. We give later i 
table of these classes and the corresponding incidence matrices. Fo 
p > 3, it follows similarly that there are at least p(p + l)/2 sue] 
classes of functions. 

In §2 we give some properties of generalized trigonometric fune 
tions which we shall need. §3 deals with a representation theorem an< 
the definition of L3>0,o series. §§4 and 5 are devoted to some propertie 
and estimates of the fundamental polynomials which occur in th 
L3 o,o series expansion. In §6 we define the class of W3 0,o function 
and their properties. This leads in §7 to the class of minimal W3 0, 
functions and the main result of this paper in Theorem 6.5, whid 
gives a necessary and sufficient condition for a function to have ai 
absolutely convergent L3 0,o representation. We also give three table; 
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Table I gives the six classes of functions and the six interpolation 
matrices related to them. In Table II, we give the comparative study 
of completely monotonie, completely convex, c — c* and c — c** 
functions with respect to the interpolation matrices associated with 
them. Table III deals with the generating functions of the fundamental 
polynomials and the kernels associated with the six interpolation 
problems in Table I. In the end we give a schematic diagram for 
writing down the six extremal functions for the six classes of functions. 

(3) 

If the extremal function is M3>0(AOI X) th e corresponding class of func­
tions is termed W3>0>0 and the corresponding series representation is 
termed L3o,o- Similarly one can see the rationale for the classes 
W3,i,o, w3,u> W3,2,o> W 3 J 2 J 1 and W 3 2 2 respectively. 

Preliminaries. We shall need the generalized sine and hyperbolic 
functions of order p. For a given integer p = 0, we set 

(2.1) 

00 (—l)n+np+j 

ThusM1>0(t) = e-(,M2il(f) = sin t,M2fi(t) = cos t,Nli0(t) = é, N2A(t) = 
sinh t, N2t0(t) = cosh t. Thus 

M(;!j(t)=MpJ_M O^r^j 

= - M P ) P + i _ r ( £ ) , j<r^p. 

Mikusinski [4] gave the following addition formula: 

(2.3) Mpj(x + y) = £ MP,k(x)MP,J-k(y) ~ 2 MpM(x)Mp,p+j.k{y). 
k=0 k=j+l 

Also 

NpJ(t) = ^2MPJ(t(o-ll% a) = e2^. 

If we arrange the real zeros (j^O) of Mpj(t) in increasing order of 
magnitude, we denote the ith zero of MpJ(t) by X$. Thus 

<><*#< A # < ••• c /=o, i , - - - ,p- i ) . 

Mikusinski [4] proved that the zeros of Mpj(t) are simple and if 
0^ij<k<p, then no zeros of Mpj(t) and Mp>k(t) coincide. 
Further if 0 < XJ^ < Aj,m+i are two consecutive zeros of Mpj(t) 
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there exists exactly one zero of MPtk(t) between them. Besides this 
interlacing property of the real zeros of Mpj(t), we shall also need 
the following inequalities, due to Mikusinski [4] : 

(2.4) {(p + 1)!#!yip < xfi>< {2 • (p + j)\lfl}llv. 

Also it is easy to verify that 

x # < ^ - i . * ' 0' = °> i> * * ->p " 2 ;
k = i,2, • • • 

(-l)kMPJ(k£llJc) > 0, Ü = °> 1> * ' "> P - 2; * = 1,2, • • • 

Lastly we mention the biorthogonal property [3] : 

= - — Mp>p_2(A^-iffc), 7 = fc. 

3. L3 o o series. We shall be concerned throughout with the intei 
polation problem (1.2) which is the iteration of the incidence matri 
M ! = (J Q Q). NOW there are five more such matrices: 

-•-a?;)- - .-a;;). - - ( Î S Î ) -
- . -a io 0 ) . « - ( Ì Ì ; > 

Each of these matrices when iterated infinitely often will lead to 
matrix similar to (1.2). The list of these interpolation problems, th 
generating functions of their fundamental polynomials and the kerne 
are given in Table III. There we denote the fundamental polynomia 
of the six interpolation problems at the nodes 0 and 1 by A(i\x) an 
B{i\x) with suitable suffixes. We shall prove the results only for (1.2 
We shall however write, for the sake of simplicity, B3k(x), A3k+i(x) an 
A3fc+2(*) for B(3k\x), A$+i(x) and A3k+2(x) respectively. 

THEOREM 3.1. The following representation holds for every enti 
function f(z) of exponential type r < A0,I where A0,I is the first re 
zero(/0)ofM3tl(t): 
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m = I {/<3">(l)B3„(z) + /<3«+1>(0)A3n+1(Z) 
n=0 

(3.1) 
+ /<2"+2>(0)A3n+2(Z)}, 

where {B3n(z)}™, {A3n+l(z)}™ and {A3n+2(z)}™ are the polynomials de­
fined by the generating functions: 

(3.2) 

(3.3) 

and 

(3.4) 

= **i(M3) , 

2 f 3 , + 2 A 3 f c + 2 ( z ) = N 3 2 ( t e )_^p^_) 
fe=o ^3 ,0 W 

= tty2(z9 t3). 

The series on the right of (3.1) converges to f(z) for all z and the 
convergence is uniform on all compact subsets of the plane. 

We shall say that the series on the right of (3.1) is a L30,o series ex­
pansion o f / and that {B3n(z)}o, {A3n+l(z)}% and {A3n+2(z)}o are its 
fundamental polynomials. 

PROOF. Setting f(z) = ezt in (3.1) and writing i/̂  for ̂ {(z, t3), i = 0, 
1, 2, we get a formal W3i00(L) representation of ezt as 

(3.5) ezt = e'$0+ fth+ tty2. 

Let CU = e2^13. Then replacing t by <ot and (o2t in (3.5), we get 

(3.6) e*«* = e^o + <otifil + co2£2i/>2, 

(3.7) ez»2t = e«>2tty0 + a>2fcK + o > ^ 2 . 

Bearing in mind that 1 + co + co2 = 0 and that 

2 
2 a>-«*e»mt = 3N3j.(£) (/ = 0 ,1 , 2) 

we obtain I/J0 by adding (3.5), (3.6) and (3.7). To obtain ifßl we 
multiply (3.5), (3.6) and (3.7) by 1, co -1 and c o 2 respectively and add. 
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i/>2 is obtained by multiplying these equations by 1, (o~2 and CU-1 re 
spectively. Now the Pólya representation of an entire function f(z) = 
Zjn=o anz

nln\ of finite type is given by 

where F(z) = ^n°°=o ajzn+l is the Borei transform of f(z) anc 
r is a contour surrounding the convex hull of the set of singularities o 
F (t), called the conjugate diagram D(f) off. From (3.2), (3.3) anc 
(3.4) we see that the right side of (3.5) is regular in all circles \t\ < KQ3J 

Therefore the series given by \fr0, ^ x and \jj2 converge uniformly ir 
any compact subset of the disk \t\ < AO% 

It is well-known [2] that if f is of exponential type T, then D(f] 
lies inside the disk \t\ = r. Therefore, T can be taken to be any circh 
\t\ < \(Q\. The proof of Theorem 3.1 is then completed by applying th* 
kernel expansion method [2, p. 10] with ezt as kernel. 

REMARK. The generating functions of the fundamental polynomiah 
in the other interpolation problems are given in Table III. 

Note. Throughout the rest of this paper, we will write AJJ for A, 
( / = 0 , l , 2 ; i = l , 2 , • • • ) • 

4. Properties of the fundamental polynomials. Let L be a lineai 
operator on C(3)[0,1] defined by 

(4.1) L(f) = f{x) - {/(l) B0(x) + /'(0)A1(x) + /"(0)A2(x)}. 

It can be easily seen that L(p) = 0 for any polynomial of degree ^ 2. 
Therefore by Peano's theorem [ 8] we have 

(4.2) L(/)= £ K^tif'^dt, 

where Kx(x, t) = \Lx[(x — t)+]. It is easy to verify that 

2KJX, t) = (x - t)2 - (1 - t)2 ( O S K ï g 1), 
(4.3) 

= -(l-t)2 ( O S ï g t g l ) . 

Putting f(x) = 1, x, • • -, x6 in succession in (3.1) we find that 

Bo(x) = 1, B3(x) = * - ^ - \ B6(x) = ^ - 2 0 x 3 + 1 9 

720 

~4 _ 4J.3 4. 3 
(4.4) A,(x) = x - 1, A4(x) = ^ g - ^ 

. . . x2 - 1 . , , x5 - 10*3 + 9 
A2W = — - — , A5(x) = —— . 

2\ i g 5 W 120 
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Further, it can be easily seen from (3.2), (3.3) and (3.4) that 

B3» ' ̂  = B^n~1^ A3nïl(*) = A3(n_1) + 1(x), 
^ ' A ' " I \ — A t \ 

A3n+2W — A3(n-1)+2W 

and therefore in general 

(4.6) 3n 
Bgk)(x) = B3(n_k)(x), 4n+i(*) = A3(n_fc)+1(x), 

• ^ 3 n + 2 ( x ) = A3(n-k)+2W-

Again from (3.2), (3.3) and (3.4), we see that 

A3n+,(1) = 0 ( J = l , 2 ; n = 0 , l , • • • ) , 

(4.7)A3n+2 (0) = A3n+1(0) = BUO) = BS»(0) = 0 (n = 0,1 , • • •), 

A3'n+1(0) = A'3n+2(0) = B3n(l) = 0 (n = 1,2, • • •) , 

while Ai '(0) = 1 and A2"(0) = 1. 
Ki(x, t) is also seen to be the Green's function for the differential 

system 

(4.8) </'"(*) = <*,(*), i/(l) = 0, t/'(0) = 0, </"(0) = 0 

where <f>(x) is any function continuous o n 0 ^ x ^ l , s o that 

y(x) = J* Kx(x, *)<*>(*) ctt 

is the unique solution of the system (4.8). Since from (4.5) and (4.7) 
we see that B3n(x) (n = 1, 2, • • •) satisfies the system (4.8) with <j>(x) = 
B3(n-i)(*)wehave 

(4.9) B3n(x) = P Kx(x, t)B3in_l}(t) dt (n = 1,2, • • •)• 

Setting 

(4.10) Knix, t) = P Kx(x, tOK^^ti , t) dw (n = 2, 3, • • •), 
Jo 

and observing that B0(x) = 1, we can write (4.9) as 

(4.11) B3n(x) = P KJx, t) dt (n = 1,2, • • •)• 
J o 

Similarly we have 
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(4.12) A3n+1(x) = P K„(x, tiA^t) dt (n = 1,2, • • •) 
Jo 

and 

(4.13) A3n+2(x) = £ K„(x, t)A2(t) dt (n = 1, 2, • • •)• 

LEMMA 4.1. I//(x) G C<3">[0,1], then 

(4.14) 

+ s V f c + 2 , ( 0 ) 4 * + 2 ( * ) + Rnifi x), 
k=0 

where 

(4.15) Rnif; X) = £ K^X, *)/<3»>(t) <fc, 

o>i£/i K„(x, £) giuen Z?t/ (4.10). 

PROOF. For n = 1, (4.14) is given by (4.1) and (4.2). The proof is 
completed by induction on n. 

LEMMA 4.2. For 0 ^ x = 1 the following inequalities hold: 

(4.16) ( - l^K^x, *) ̂  0 (0 g t g 1; n = 1, 2, • • •), 

(4.17) ( - l )»B 3 n (x ) i^0 ( n = 0 , l , • • • ) , 

(4.18) ( - l ) ^ i A 3 n + j ( x ) ^ 0 (/ = 1, 2; n = 0 ,1 , • • •)• 

PROOF. For n = 1, (4.16) is clear from (4.3). For n > 1, (4.16) is 
proved from (4.10). (4.17) is immediate from (4.11). Observing that 
Ax(x) = x — 1 and A2(x) = (x2 — l)/2, we prove (4.18) from (4.12) and 
(4.13). 

5. Estimates for the fundamental polynomials. Throughout the 
rest of this chapter we shall denote positive constants by C0, C1? 

LEMMA 5.1. For 0 = x = 1, n = 0 ,1 , • • -, we have 

I , _ i y , + i A (x) - 3M3j(Xo,i)M3,o(Xo,1x) j 
(5.1) I ( ' 3n+M) V^M^o,:) I 

= ( * ^ " ° ' = 1 ' 2 ) 
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and 

<5-2» I ' - ^ - J ^ S & K * . . -
PROOF. We will prove (5.1) for j = 1. (5.1) for j = 2 and (5.2) can 

be dealt with similarly. Let T0 and Ti be the circles: 

Define 

4+l,m(x) = ^T J^ t-^-^^X, t3) dt 

(5.3) 
(0 S x g 1; m = 0,1) 

where $i(x, t3) is defined by (3.3). Then it is easy to see that A3n+ljo(s) 
= A3n+1(x). Now 

A3n+l,l(*) - A3n+1(x) = - ^ f t ^ » " ^ * , *3) d* 

(5.4) 

2iri Ji'i-ro #3,o(*) 

From (5.4), it is clear that the only poles of t~3n~l$i(x, t3) are the 
simple poles at t = Û>"+1/2ÀO,I, ^ = 0,1,2. By simple calculations we 
find that the residue of Z~3n_1i/f x(x, t3) at each of these poles is 

(-l)-M3,1(X0,OM3,o(Xo4x)/X0
3,r2M3,2(Xo,i). 

Therefore 

(5.5) A3 n + M(x) A 3 n + 1 ( * ) - X3n+2M 3 > 2 ( X o i ) 

Further from (5.3) we get, 

, , M l _ | J _ f t-3"-a2y3,1(fa)y3,o(t) - N3A(t)N3fi(tx) I 
A3n + lW - I o L \7 /A I 

* C° <-ß L r , as ^d< l . 
3n+l \ 3 n + l ' r i Ao,i 
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From (5.5) and (5.6), we get (5.1). 

LEMMA 5.2. For 0 ^ x ^ 1, n = 0,1,2, • • -, 

(5.7) 0 ̂  ( - l)"+1A3n+i(*) ^ ^2/Xo,ni 0' = 1,2) 

and 

(5.8) 0^(- l )»B 3 n (x)^C 3 /Xo 3 r i . 

PROOF. The results can be easily deduced from Lemma 5.1. 

LEMMA 5.3. For any fixed x0, 0 < x0 < 1, there exist constants C4 

and C5 such that 

(5.9) (-l)«+iA3n+J.(x0) ^ CJX& (/ = 1,2; n = 0 ,1 , • • •) 

and 

(5.10) ( - l)"B3„(x0) ^ Cg/Xo3:, (n = 0 ,1 , • • • ). 

PROOF. From (5.1) we have 

lim (-l)^A3n+{(xo)M3,2(X01)Xo3ri = ^ = 

M3J(XO,1)M3IO(XOJ1X0) ° 4 V ; 

which proves (5.9). (5.10) is similarly proved. 

LEMMA 5.4. For 0 ^ x ^ 1, n = 1, 2, • • -, 

0 ^ ( - l ) " P Kn{x,t)dt^ Ä . 

PROOF. The proof follows immediately from (4.11) and (5.8). 

6. The class W3 0 0 of functions. 
DEFINITION 6.1. A real valued function / defined on [a, b] is said 

to belong to the class W3 0 0 of functions (f G W3 0 0) if 
(i)/GC-[c,fe], 
(ii) (-l)kfW(x) ^ 0 (a ̂  x ̂  b; k = 0,1,2, • • •), 
(iii) (-l)k + lf3k+J\a)^0(j= 1,2; fc = 0,1,2, •• •)• 
We now prove some basic properties of functions of the class W3 0 0 

LEMMA 6.2. Iff Œ W3 0 0 on 0 = x = 1 t/ien /or sufficiently large k 
we have 

(6.1) (-WI^C^, 



FUNCTIONS ANALOGOUS TO COMPLETELY CONVEX FUNCTIONS 6 0 1 

and 

(6.2) ( - l)*+i/<3*+i>(0) ^ C7k
3oki {J = 1,2). 

PROOF. From Definition 6.1 and (4.17) and (4.18) we find that every 
term on the right of (4.14) is nonnegative. Therefore 

(6.3) 0g/<3*>(l)B3 f c(z)g/(x), 

(6.4) 0 § f ^ ( 0 ) A a + J . ( x ) 2 / W ( / = 1 > 2 ) -

Choosing x = I and applying Lemma 5.3 to (6.3) and (6.4) we get 
(6.1) and (6.2). 

LEMMA 6.3. If (i) /(x) ^ 0, / ' " ( x ) ^ 0 , O S ^ l , and (ii) 
f '{0) ^ 0, f" (0)^0 then 

(6.5) f(x) ^ /(xo) (0 g x ^ xo), 

(6.6) /(x) ê 7 f ^ / ( x o ) è (1 - x)/(xo) (xo ^ x ^ 1). 

PROOF. Setting n = 1 in (4.14) and replacing the node 1 by x0 

(0 < x0 ê 1), we get 

f(x) = f(xo)Bo(f)+f'(0)Al (f) 

(6.7) 

+ r ( 0 ) A 2 ( f ) + H i ( / . f ) . 
X0 / \ *0 

where Ri(/; x) = Jo Kx(x, t)f ' '(t) dt. On account of conditions 
(i) and (ii) and Lemma 4.2, all the terms on the right of (6.7) are non-
negative. Therefore f(x) = f(x0) (0 ^ x ^ x0). To prove (6.6), 
consider 

L*(/) = / ( * ) " J / ( i £ = J ° + f { x o ) l ^ ± + r { 0 ) <* - *<>>(* - *> 

(6.8) ° ° 
= R*(f;x0) (x 0=Sx=gl) . 

It can be easily verified that L*(P) = 0 for all polynomials of degree 
^ 2. Therefore, by Peano's theorem 

H*(/;*o)= | 0 K*(x,x0,t)f'"(t)dt, 

where 
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2K*(x, xo, t) = (x- tf - (1 - tf ^—^- (xo^têxê 1), 
1 - XQ 

1 — x0 

= {x _ t)2 _ (1 _ «)«^*o - ( x ° - y ( 1 - % ) , 
1 x0 1 x0 

( 0 g ( g x 0 g K l ) . 

It is easy to see that K*(x, x0, t) ^ 0 for x0 = x ^ 1 and 0 ^ t ^ 1. 
Thus R*(/: x0) ^ 0, whence we have (6.6). 

LEMMA 6.4. Under the same conditions as in Lemma 6.3, foi 
0 < b < 1, 

(6.9) f(x) g T" r f(*) * (0 < x < 1). 
o Jo 

PROOF. By Lemma 6.3 for any x0 with 0 ^§ x0 < b < 1 we have 

f f(x) dx ^ f X° f(x0) dx + P (1 - x)f(x0) dx 
(6.10) J ° J ° Jx° 

= /(*o) [ - b2 + 2b + x0
2] 12 ^ fo/(x0)/2. 

It can be easily seen that (6.9) is also true for 0 S b â x0 < 1. Since 
(6.10) is true for any x0, 0 ^ x0 < 1, we get (6.9). 

We shall need the following lemma due to Hadamard. 

LEMMA 6.5 (HADAMARD [10] ). If g(x) G Ci3\I) where I is a closec 
interval of length a and if 

|g(x)|âM0; Ig-'WI^M!, xGI, 

then throughout the interval I 

|gü>(*)| ^ ( y J * [ a-'Mo + ^Mi ] (j = 1,2). 

Now we prove 

THEOREM 6.6. If f G W3 0 0 on 0 ^ x ^ 1, then f coincides or 
[0,1] with a real entire function of exponential type not exceeding 
\o,i and the L3 0 0 series representation (3.1) holds. 

PROOF. Observing that (dldt)M3y0(t) = — M3j2(0 and using integra 
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tion by parts, we have 

j o /(x)M3)2(X0)i - \0,i*)dx 

= T ^ ~ 7~ f / 'WM3,o(Xo,i-X0 fix)dx. 
A 0 , l A 0 , l J ° 

Repeating this process twice, we get 

J f(x)M3t2(ko,i - A0,IX) dx 

(6.11) = J U L //(0)M3a(Xo,1) r(0)M3 ,2(\o,1) 

A 0 , l Ao, i A.0,1 

^ ~ r / ' ' 'WM3,2(Vl - *0.1*) dx-
Xo,i J0 

Now M3>„(x) è 0 for 0 ^ x ̂  X,,! (*» = 1,2), and \0 , i < Xi,i < X2;1. 
Therefore M3„(X0,i)= 0 (" = 1,2). Further, since f(x) E W30<» we 
have / ( l ) ̂  0̂  / ' ( 0 ) g 0, and /" (0) ^ 0. Hence from (6.11) we have 

J /(^)M3>2(Xo,i - *o,i*) dx 

(6.12) 
^ T3-/ '"(x)M3,2(Ao,i-Xo,i*)dx. 

A-0,1 

If/(*) G W30)0, then — / ' ' '(x) also belongs to W3 A 0 . Hence applying 
(6.12) successively k times we get 

(-D fc fi 
3k £ fW(x)M3,2(k0,i - Ao,ioc) dx 

g J o /(x)M3f2(Xo,i - A 0 , I* ) dbc = A. 

Let 0 < fo < 1. Then a fortiori 

^ - f c r /(3fc)(x)M3,2(X0,i - Ao,i*) dx S A. 
Ao,i J 0 

Elementary considerations show that for 0 ^ x â fo (0 < fo < 1), 

min M3>2(AO,I - Ao.i*) = D > 0, 
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so that 

3k 

(-l)fe£ fW(x)dx< J ^ L . 

Therefore by Lemma 6.4 

(-l)fc/(3fc)(x)<2AX^i/b. 

By Lemma 6.5 we then have 

( - l)kf3k+J\x) = 0(\Z+i) as k - • oo for j = 0,1,2. 

Thus we have 

/(n>(x) = O(\o,i) uniformly in [0, b] as n -> oo . 

This shows that /(oc) is entire of exponential type ^§ A0,I and the 
theorem is proved. 

THEOREM 6.7. If the series 

00 

(6.13) £ {fo3n#3n(*) + ö3n+1A3n + 1(x) + ö3n + 2A3n + 2(*)} 
n=0 

converges for a single value x0 (0 < x0 < 1) then it converges uni­
formly inO=x=lto a function f(x). Furthermore, the series 

taiA\ y ( ~ 1 ) n + l fh ^ 3 , i ( V i ) , Ma.^Xp,!) -, 
(6-14) 1 > 3 n + i I fo3n - — ; a3n+1 -a a3n+2 I 

„=0 An 1 l A0,l Ani J 

( ~ l ) n + 1 f u _ M3,i(k0,1)_ _ M3,2(X0,1) 
— v 3n + 
n=0 Ao,l 

/̂ /̂ >'M'ii/̂ '»<rr/?o / ru /1 -tii/? V\nt\n -frw I I "̂ ^ -v ^ - I 

converges and we have for 0 ^ x = 1 

/<3*)(x) = ^ {&3<n+*)B3n(*) + Û3(n+fc) + l A 3 n + 1 ( x ) 

(6.15) 
+ a3(n+k)+2^3n+2Kx)}' 

PROOF. AS the proof is straightforward, we will give only its outline. 
By (5.1), (5.2) and Lemma 5.3, it is easy to see that the series 
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2 {b4BM- {er] 
n = 0 A 0 , l J 

(6.16) + Û3n+1 L. A3n+l(Xo)
 X 3 „ + 2 J 

+ „ r 4 ^ Ï (-I)"+ IM3 ,2(VI) -i i 
+ 03n+2 [ A3„+2W 3 n + 3 J j -K 

converges absolutely. Subtracting (6.13), convergent for x = x0 from 
(6.16) we prove that (6.14) converges and further that (6.13) con­
verges uniformly for 0 ^ x ^S 1. 

The uniform convergence of the series in (6.15) is proved by noting 
the uniform convergence in 0 ê x ë 1 of both the series 

2 {&3<n+*>[ B3n(x)- g £ ] 
n = 0 *• L Ao,l J 

(-l)n+iM3A(X0A) 
v 3n+2 
Ao,l 

± n ÏA M - ( " 1 ) W ' h l a f 3 , 2 ( A 0 , l ) 1 1 
•+" a3(n+fc)+2 I A 3 n + 2 W 3 n + 3 > 

L A0,1 J J 

T fl3(n+k) + l A 3 n + l W I 3 n + 2 
L A 0 , i J 

(-l)n + 1M3 ,2(\o,i) 

and 

y r(-l)"b3 (n+fc) . (-l)n+1a3(n+fc)+iM3.i(Aoa 
2-4 | v 3 n + l v3n+2 

n = 0 v Ao,i A o j 

üL 

, ( - l ) n + 1 % n ^ ) + 2 M 3 > 2 ( X o , i ) l 

v3n+3 f ' 
Ao,l J 

This completes the proof. 

LEMMA 6.8. If f(x) G W3 0,o in 0 ^§ x ^S 1, fhen f/iere exisf con-
stants C8, C9 suc/i £/wz£ 

oä(-i)rw^c8 ( ^ ) 
og(-Drw^c9 ( ^ J 

(6.17) 3fe ( * - > « , ) . 

PROOF. If /(x) G W3j0>0 in a ^ x ^ b then F(x) = f(a + bx — ax) 
z- ^3,0,0 on 0 S i g 1, Therefore by Theorem 6.6 we have 
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F<3*>(0) = (b- a)3*/(3fc)(a) = 0(XoJi) 

F<3*)(1) = (b - a)3kfW(b) = 0(Xo,\) 
(6-18) _ , _ „ ; „ , . 3 ^ ( f c - o o ) . 

First putting a = 0, b= x < 1 and then a= x>0, fe = 1 in (6.18) 
we get (6.17). 

THEOREM 6.9. If f(x) G W3, 

oo in a= x= b where b — a > 1 £/ien 
/(x) is an entire function of exponential type less than X0,i

 and the 
L300-series representation holds for any z in the complex plane. 

PROOF. By (6.18) we have 

|/w*>(x)| ^ C10(Xo,i/(fc - x))3k (a^xîë b). 

Choose c so that b — c > 1. Then we get 

\f3kKx)\ =§ C10(Ao,i/(& - c))3* (fl = * = c)-

Setting k0fil(b — c) = q and applying Lemma 6.5 we get 

/<»>(*) = 0(qn) (n -> oo ), 

uniformly in a = x ^§ c. This shows that f(x) is entire of exponentia 
type q < A0,i> which proves the theorem. 

7. Minimal W3 0 0 functions. The sufficient condition of Theorerr 
6.9 for the representation of a function by a L30,o series is not neces 
sary. For example N3 0(x) has the L3 0,o representation 

N3.0W = #3,0(1) f B3fc(x) 
fc=0 

yet it is not a W 3 0 0 function. Also M30(A.o,i^) G W3>0)0, but it has nc 
L3 0,0 representation. In order to obtain a necessary and sufficient con 
dition, we introduce the class of minimal W3 0 0 functions. 

DEFINITION 7.1. A real valued function f(x) defined on O ^ s 
^ 1 is said to be a minimal W3 0 0 function (f(x) G minima] 
W3f0fo) on [0,1] iff(x) G W3Ao on [0,1] and if f(x) - €M3,0(Ao,i*) $ 
W3 0,0 ° n [0,1] for some e > 0. 

Thus f(x) = 0 and f(x) = M3i0(x) can be easily seen to be minimal 
W3 o o functions. 

THEOREM 7.2. If the series 
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2 {(-l)"b3nlU*)- ( ^ ^ L + I ^ W » ) 
(7.1) " - 0 l 

( - 1 ) ^ , 1 ) 

^0,1 
2 ' "'"' a 3n+2^3n+2( x ) f 

u?i£/i fo3n ^ 0, a3n+1 ^ 0 and a3n+2 = 0 (n = 0, 1, • • •) converges to 
f(x), thenf(x) G minimal W300 on [0,1] . 

PROOF. Using Theorem 6.7 and (4.7), simple calculations show that 
f(x) G W300 O â x ^ l , thus satisfying the first part of Definition 
7.1. 

Further 

(-l)*/<3*>(*)= £ {(-l)»-*fo3„B3<„-*)(x) 
n=k L 

(7.2) + '- ö3n+1A3(n_fc)+1(x) 

"•" - 2 ö3n+2A3(n-fc)+2W f 
^0,1 

Using (5.7) and (5.8) in (7.2), we get (-l)kf3k\x) ^ C9Ao*rfc where 

rr _ V * -3n J 7, , M 3 , l ( ^ 0 , l ) % n + 1 , M 3 , 2 (X 0 > 1 )a 3 n + 2 -| 
^fc— A A 0 , l Ì »3n "T " • 72 f 

n=fc ^ A0,l A0,l J 

From Theorem 6.7, the series (6.14) converges absolutely so that for a 
given € > 0 and x0, 0 < x0 < 1, there exists an integer fc0 sufficiently 
large such that C9Tko — €M3}0(Ao,i*o) < 0. In other words, 

( - l )* [ / (* ) - eM3j0(Vi*)] (3fc) < 0 atx = x0. 

This completes the proof. 

LEMMA 7.3. Z/(i) / ' (0) ^ 0,/"(0) ^ 0, (ii) /(x) ^ 0 , / " '(x) ^ 0 /or 
0 ^ x ̂  1 and if (iii) /(x0) > ko^el2for some x0,0 ^ x0 = 1, £ften 

(7.3) /(x) g €M3,o(Ao,i*) (0 < x < 1). 

PROOF. We first recall from (2.4) that 

(7.4) 6 " 3 < A 0 , I < (12) " 3 . 

From (iii), (6.5) and (7.4) we have for 0 g x g x0, /(*) ^ /(x0) > 
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Xosle/2 > €. Therefore (7.3) follows if we show that 

(7.5) 1 ^ M3,o(V.*) = 1 - % ^ + % ^ - • • •• 

(7.5) is equivalent to 0 = — Ao.i*3'11(*)> where 

Using (7.4), it is easily seen that each bracket is a nonnegative quantity 
Thus (7.3) is proved for 0 ^ x = x0. 

If x0 = 1, there is nothing else to prove. Let therefore x0 = x < 1 
From (iii), (6.6) and (7.4), we have f(x) ^ (1 - x)Aoa€/2. Hence, (7.3 
follows if 

A0
3,I(1 - x)/2 ^ M3,0(Ao,i*) (*o ^ * < 1), 

or equivalently if 

(7.6) AJ^x/2 è M3fo(Xo,i - A0,I*) (0 ^ x ^ 1 - x0 < 1). 

Both sides of (7.6) vanish at x = 0. Hence it is enough to show that 

(7.7) Ao,i/2 = Ao,i max M3 ) 2(A0 , I - Vi*)-
0^x<l 

Simple considerations show that M32(AO,I ~~ Ao,ix) 1S decreasing u 
0 ^ x < 1 and therefore has the maximum M3 2(Xo,i)- Thus it is seei 
from (7.7) that we have to show that 

4 ^ AoaÄMAo.,)- ̂ [%- - -%- + • ] 

or equivalently that 

0 ^ - X O , I M A O , I ) , 

where 

7 /v \ / ^ A 0 , l \ I / A 0 , l A 0 , l \ , 

From (7.4) we see that /I2(A0,I) = 0. This completes the proof of th 
lemma. 

THEOREM 7.4. If f(x) G minimal W3 0,o on O S x S l #i£n it ca 
be expanded in a convergent L30,o series. 
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PROOF. Let 

S-(*)= S {/<^(l)ß3,(x) + /<3fc+1»(0)A3fc+1(x) 

+ /«*+2)(0)A3k+2(x)}. 
(7.8) 

Asf(x) G W3 0 0 , we see from Lemma 4.1 that 

S„(*)S/(X) ( 0 ^ * ^ l ; n = 0 , l , •••)• 

Sn(jc) is also seen to be a nondecreasing function of n for each x. 
Hence Sn(x) —» g(x) (say) as n -» oo. We claim that g(x) = /(%). For 
if g(x) 7̂  /(*), then for some x0 in [0,1] 

f(x0) - lim Sn(x0) = A > 0, 

so that 

(7.9) / fo) - Sn(x0) = J* K ^ , t)/(an)(t) ^ A 

( n = l , 2 , •••)• 

Since f{x) G minimal W300 , f(x) — €M3>O(A0,IX) (£ W 3 0 0 for every 
€ > 0. But we have 

-££j {(-l)"+1[/W-«M3,o(Xo,ix)]^o 

= ( - i r f » Ì 0 ) è 0 0"= 1» 2)-

Therefore there exists an integer nx and xL (0 < xx < 1) such that 

(7.10) (-l)nlf(^ )(xi) _ € X *H M3f0(AOflXl) < 0. 

By Lemma 7.3, (7.10) implies that (-l)n> /<3n*>(z) < cX^1/3/2. Hence 
by Lemma 5.4 

(7.11) Jo K n > o , 0 / ( 3 " ' W ^ ^ 7 ^ . 

Choosing € < 2 A/C3\o,i, we get from (7.11) that 

£ Kni(xo,t)f^0(t)dt<A, 

which contradicts (7.9). 
Hence g(x) = f(x) and the theorem is proved. 
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This leads us to state 

THEOREM 6.5. A necessary and sufficient condition thatf(x) be repre­
sented by an absolutely convergent L300 series is that it is the dif­
ference of two minimal W300 functions in 0 ^ x = 1. 

PROOF. The proof of this theorem is similar to that of Widder': 
theorem for completely convex functions and is therefore omitted. 

ADDED IN PROOF: Professor G. Poly a has kindly pointed out that an 
essential property of the zeros of Mpj(x) used here was given by him 
as far back as 1929 in Jahresbericht d. deutschen Math. Vereinigung 
38 (1929) and also in Comptes Rendus (Paris), 183,467-468. 
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Classes of Functions Associated With Six Interpolation Problems 

Matrix of 
interpolation problem 

(1) 

- O i l ] 

1 0 0/ 

n 
\0 1 0/ 

M 3 = 
,1 1 0\ 

lo o il 

fl 0 1 

Il 0 0/ 

Associated 
class of functions 

(2) 

3,2,0 

3,1,1 

Properties satisfied by 
functions in column (2), 
in addition to (i) and (ii) 

given below 
(3) 

( i i i ) ( - l ) k + 1 f ( 3 k + l ) ( 0 ) >. 0 

(iv) ( - l ) k + 1 f ( 3 k + 2 ) ( 0 ) * 0 

( i i i ) ( - l ) k f ( 3 k + 1 ) ( l ) * 0 

(iv) ( - l ) k + 1 f ( 3 k + 2 ) ( 0 ) * 0 

( i i i ) ( - l ) k f ( 3 k + 1 ) ( 0 ) > 0 

(iv) ( - l ) k f ( 3 k + 2 ) ( l ) :> 0 

( i i i ) ( - l ) k - f l f ( 3 k + 2 ) ( 0 ) * 0 

Extremal function 

(4) 

" . . . < ! « > 

M 3 , 1 ^ 0 ( > > 

M3 (Xj ;>x) 

v ' ( i ) f eC [ 0 , 1 ] 

( i i ) ( - l ) k f ( 3 k ) ( x ) > 0; ( 0 < x < l ; k - 0 , 1, 2 , • • • ) . 

*1 
C 

O 
H 
i—t 

O 

> 
> 
r 

o 
v> 
H 
O 

n 
o 

r 

w 

s 
w 
X 

d 
25 

o 
as 

a» 



Table I (continued) 
h-1 

to 

Matrix of 
interpolation problem 

(1) 

\ 0 1 0 / 

«.-I1 ' °) 
\l 0 0 / 

Associated 
class of functions 

(2) 

W3,2,l 

W 
3,2,2 

Properties satisfied by 
functions in column (2), 
in addition to (i) and (ii) 

given belowC ) 
(3) 

(iii) (-l)k f(3k+l)(0) >. 0 

(iv) (-l)k f(3k+1)(l) >, 0 

(iii) (-l)k f (3k+i)(0) >. 0 

Extremal function 

(4) 

M3,2<iX> 

M (A(3)x) 
3,2' 2,1 

'*) 
( i ) f e C [ 0 , 1 ] 

( i i ) ( - l ) k f ( 3 k ) ( x ) :> 0; ( Û U v < l ; k = 0, 1 , 2, • • • ) . 



Table II 

Classes of Functions Associated With the Interpolation Problems Treated 
Earlier by Bernstein, Widder, Whittaker, Schoenberg and Poritsky 

Matrix of the 
interpolation problem 

a) 

a) 

CD 

Ci) 

G 3 

Associated 
class -af functions 

(2) 

completely 
monotonie 

completely 
convex 

c-c 

c-c** 

Properties satisfied by 
function in (2) in addition 

to property (i) given 
belov<**) 

(3) 

(ii) (-l)k f(k)(x) * 0 

0 $ x < °° 

(ii) (-l)k f(2k)(x) * 0 

0 $ x $ 1 

(ii) (-l)k f(2k)(x) >, 0 

0 * x $ 1 

(iii) (-l)k f(2k+1)(0) * 0 

(ii) (-l)k f(2k)(x) * 0 

0 $ x $ 1 

Ciii) (-l)k f(2k+1)(l) >. 0 

Extremal function 

(A) 

0 

sinux 

008 (T) 

- ( ? ) 

<**), (i) f (x) possesses derivatives of all orders in the relevant interval. 

d 

o 
H 

o 
as 
> 
> 
o 
d </> 
H 
O 

n 
o 
r 
M 
H 
M 

n 

< 
w 
d 
5? 

O 
2 

h-» 
CO 
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M (x) M (x) M <x) 

2,1 

Schematic Method for Obtaining the Six Extremal Functions 

M3,0<X01^>- M 3 , l ( ^ l X ) ' M 3 , 1 ( X U X ) ' M 3 , 2 ( X ó ' i X ) ' M 3 ) 2
( X ! , 3 ! X ) 

M 3 > 2
( X 2?1 X ) 



Table III 

Generating Functions of Fundamental Polynomials and Kernels 
Associated with Six Interpolation Problems 

M a t r i x 
G e n e r a t i n g f u n c t i o n s of 
f u n d a m e n t a l p o l y n o m i a l s 

Fundamen ta l p o l y n o m i a l s 
f o r k » 0 

K e r n e l 
a 
H 
o 

> 
2 

o 

H 
O 
O 
O 
§ 
F 

E? 
M 

r 

< 

o 

05 
h-1 

Mi 

Y 3k r i ) , , N 3 , o ( t x ) 

I t B ^ ( x ) « ' 

3k+l A ( l ) 

N3 ( t ) N3 ( t x ) 

? t ^ A ^ > ( x ) = N ( t x ) / 3 , 2 < t ) N 3 > 0 ( t x ) 

k : 0 3 k + 2 W N 3 , 2 ^ t X > N3 0 ( t ) 

Bo ( 1 ) (x ) - 1 

A j ( 1 ) ( x ) = x - 1 

A (o ( x ; = x iz i 

2 K 1
( l ) ( x , t ) = < 

( x - t ) 2 - ( 1 - t ) 2 , OS t < x s 1 

- Ü - C ) 2 , O i x s t i l 

y t3 k + 1 B ( 2 ) (x) = N 3 ' l ( t x ) 

k V 3k+1 N 3 , 0 U ) 

V 3k (2 ) N 3 2 ( t ) N 3 l ( t x ) 

I t 3 k A ^ ( » ) - H 3 ( t * ) - 3 '2 • 
k=0 ' " 3 , 0 ^ 

J t 3 k + 2 . ( 2 ) , . . , _ N
 N 3 ; l ( t ) N 3 , l ( t X > 

5 ( 2 ) (x) = x 

k=0 
S k " ; 2 < x ) = N 3 , 2 ( " X ) - »3 „ ( t ) 

A < 2 ) ( x ) - 1 

A ( 2 ) ( x ) = > ^ 

( x - t ) - 2 x ( l - t ) , 0<: t < x S 1 

2 K 1
( 2 ) ( x , t ) =< 

- 2 x ( l - t ) , 0 < x £ t $ 1 



Table III (continued) 0> 
h-1 

05 

Matrix 
Generating functions of 
fundamental polynomials 

Fundamental polynomials 
for k = 0 

K e r n e l 

y t 3 k + 2 B ( 3 ) (x ) = N 3 , 2 ( t x ) 

k i 0 B 3 k + 2 ( X ) N 3 > 0 ( t ) 

r 3k ( 3 ) N 3 l ( t ) N 3 2 ( t X > 

I t 3 k A<3>(x) = N 3 > 0 ( t x ) - 3'' fc k=0 ' 3 . 0 ' 

3 k + 1 . 0 ) ^ _ „ , . > N 3 . 2 ( t ) N 3 . 2 ^ > r 3 k + l 1 3 ; , v X1 . x 

J0
 c A3k+i(x) = N 3 , i ( t x ) N 7 7 ( Ö 3 , 0 ' 

B 2
( 3 ) ( « ) - £ 

A 0
( 3 ) ( x ) = 0 

A J ^ O O - x 

-2xt + t , 0 S t < x S 1 

2K} J , (x , t ) = I 

0 £ x * t $ 1 

W 
H 
S 
M 

ö 

X 
> 
ss 

r 3k f«0 N 3 l ( t x ) 

L- ' ** W N 3 L ( t ) 
i < - > 

k=0 3k (x) = x 

r 3k M • N 3 0 ( t ) N 3 l ( t X ) 

k=0 

No ( t ) N , ( t x ) 
l t 3 ^ 2 ^ ^ - N 3 2 ( t x ) - " 3 ^ 7 " 3 ^ 

* 3,1 k=0 3k+2v 

A ^ } ( x ) - 1 - x 

A ( 4 ) ( x ) = x ( x I l ) . 

C x - t ) 2 - x ( l - t ) 2 , 0 $ t < x S 1 

ULfhx.t) = { 

• x i l - t ) , 0 S x $t $ 1 



Table III (continued) 

Matrix 
Generating functions of 
fundamental polynomials 

Fundamental polynomials 
for k = 0 Kernel 

d 
as 

3 
o 
as 
CD 

• 
> 
r 
§ 
O 
o 

2 

n 

< 

d 
o 
H 
O 
2 

I t * * 1 » ^ , « 
k=0 

N, „(tx) 

3k+lVÄ/ N3 j ( t ) 

r 3k (5) N3 2 ( t ) N3 2 ( t x ) 

I t 3 k A = >(x) =N „ ( t x ) - - ^ ^ 
k=0 JK 3 ' ° N 3 , l ( t ) 

V 3k+l (5) N3 0 ( t ) N ' 2 ( t X ) 

I t 3k+1 A HI (x) = N , (tx) - - ^ ^ 
k=0 3k+lv ' 3,1 N3 i ( t ) 

B i ( x ) - ~ 

\ ( 5 ) « - 1 

A ( 5 ) ( x ) = 2 ^ 

2K1
( 5 )(x,t) « < 

( x - t ) 2 - x 2 ( l - t ) , 0 * t< x * l 

-x ( l - t ) , O u a $ l 

? t3k B (6) W 3 r 2 ^ ) 

^ 3k (6) N3 0 ( t ) N3 ^(tX) 

? r
3 k + I A<6> r , » , , K3 ( t ) H3 (tx) 

B 0
( 6 ) ( x ) = x 2 

A < 6 ) ( x ) - 1 -

k[6)U) = x ( l - x ) 

' t 2 ( l - x 2 ) - 2 t x ( l - x ) , 0<t<xsX 

2 K i
( 6 ) ( x , t ) - < 

2 2 
-x ( l - t ) , 0 £ x S t S 1 

h-1 




