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SOME C*-ALGEBRAS WITH OUTER DERIVATIONS 
GEORGE A. ELLIOTT 

1. In [9], Sakai has given an example of a simple C*-algebra with­
out unit every derivation of which is inner. Theorem 2 below shows 
that such a C*-algebra cannot be separable. 

Theorem 3, the main result of this paper, gives a complete descrip­
tion of separable liminary C*-algebras every derivation of which is 
inner.l 

A consequence of Theorem 3 is that a separable liminary C*-algebra 
every derivation of which is inner is the direct sum of a commutative 
algebra and an algebra with unit. Theorem 2 shows that this implica­
tion holds for a separable primitive C*-algebra, and a modification of 
the proof of Theorem 3 (see 4.3) shows that it holds for a separable 
C*-algebra whose primitive spectrum is separated.2 

Another consequence of Theorem 3 is that if every derivation of a 
separable liminary C*-algebra is inner then each quotient of this 
C*-algebra has this property. 

2. THEOREM. Let Abe a separable C*-algebra. If A has a primitive 
quotient without unit then A has outer derivations. 

PROOF. By [1] A has a commutative approximate unit, contained, 
say, in a commutative sub-C*-algebra B of A. Let t be a primitive 
ideal of A such that Alt does not have a unit. Then because B is 
separable and (B + t)lt does not have a unit, there is a bounded 
sequence (xn) of elements of B whose images in (B + t)lt have norm 
one, and whose supports in the spectrum of B are compact, mutually 
disjoint, and, except for finitely many, disjoint from each fixed com­
pact. 

Claim. The inner derivation of A defined by 5)n=i x2n> k = 1, 
2, • • •, converges simply to an outer derivation. 

To show convergence on all of A it is enough to show convergence 
on a dense subset of A. The set ofxŒA such that yx — xy = x for 
some y G. B of compact support in the spectrum of B is dense in A, 
and for each such x, xnx = xxn = 0 for all but finitely many n. 
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1 Added in proof It has been shown by Akemann, Elliott, Pedersen and 

Tomiyama (Derivations and multipliers of C*-algebras, preprint) that in this 
theorem "liminary" can be replaced by "postliminary". 

2Added in proof. This implication has now been established for an arbitrary 
separable C*-algebra (op. cit.). 
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The limit is clearly a derivation; denote it by 8. Since if 8 is inner 
the derivation induced by 8 in any quotient of A is inner, to show that 
8 is outer it is sufficient to consider the case t = 0. In this case A 
can be represented faithfully as an irreducible algebra of operators, 
and when this is done 8 is implemented by the operator ^ £ = i x2n. 
Moreover, any other operator implementing 8 must differ from 
Sn°=i x2n by a scalar. The properties of the xn together with the 
fact that B contains an approximate unit for A imply that no such 
operator can be an element of A. 

3. THEOREM. Let A be a separable liminary C*-algebra.1 Then 
the following two conditions are equivalent: 

(i) every derivation of A is inner; 
(ii) A is a finite direct sum of homogeneous C*-algebras, each 

noncommutative homogeneous summand possessing a unit. 

PROOF, (ii) => (i). Let 8 be a derivation of A. For each t G Prim A 
let 8t denote the derivation of Alt induced by 8. Since Alt is iso­
morphic to a matrix algebra there exists an element of Alt which 
determines 8t, and a unique such element xt of trace zero. To 
show that 8 is inner it is enough to show that the field t \—> xt 

on Prim A is continuous with respect to the continuous field of C*-
algebras defined by A, and vanishes at infinity. In fact the field has 
compact support. Let t0 be a point of Prim A. By [8, Theorem 3.2], 
there is a compact neighbourhood K of t0 such that the restriction to 
K of the continuous field of C*-algebras defined by A is trivial. The 
C*-algebra defined by this restriction is then isomorphic to the tensor 
product of a matrix algebra and a commutative C*-algebra with unit, 
and it is known that a derivation of such a C*-algebra is inner (see e.g. 
[6, remark on page 254] ). Hence the field 11—• xt differs on K from a 
continuous field by the trace of this continuous field; since this trace 
is continuous the field 11—> xt is continuous at t0. 

(i) => (ii). By Theorem 2, every primitive quotient of A possesses 
a unit. Therefore the C*-algebra A~ obtained by adjoining a unit to 
A is liminary. Since it is enough to prove (ii) with A replaced by 
A", it is enough to prove (i) =>(ii) for the case that A has a unit. In 
this case Prim A is compact, and (ii) follows once it is known that for 
each r = 2, 3, • • • the open set {t G Prim A | dim A/f i= r2} is closed. 

Suppose, then, that A has a unit and that there exists a convergent 
sequence tn —> t in Prim A such that dim Altni^ r2, n = 1, 2, • • -, 
and dim Alt < r2. The following argument shows that A must have 
an outer derivation. 

By [4, Proposition 2], there exists in Prim A a dense open set S 
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of separated points. The points tn may be assumed to be in S. 
Since A is separable, the space £(Prim A) of closed subsets 

of Prim A, with die Fell topology, is compact and metrizable ( [7] , 
and [5, Lemme 2]). Therefore the sequence ({tn}) may be assumed 
to be convergent in £(Prim A), say to a closed subset F of Prim A. 

Choose an open neighbourhood On of {tn} in £(Prim A), n = 1, 
2, • • -, in such a way that each neighbourhood of F contains all but 
a finite number of On. 

Let A denote the map Prim A 3 m {s} E £(Prim A). Fix n = 1, 
2, • • \ By [5, Theoreme 17], \\S is continuous, so X_1(On) fi S 
is open. Let gn be a continuous function on Prim A satisfying 
|gn | S 1, gn(*n) = 1 and support gn C À^(On) H S. 

The functions gn will be used to construct a sequence of elements 
of A, the derivations defined by finite sums of which converge to an 
outer derivation. The construction will be such that both the con­
vergence (simple) of the derivations and the outer nature of the limit 
follow from the fact that for each element of A the norm of the image 
of this element in the quotient of A corresponding to a point of 
£(Prim A) depends continuously on this point ( [8, Theorem 2.2]). 

There are two cases to consider: F = {t} and F ^ {t}. 
If F = {£}, let (ey) be a complete system of matrix units for Alt. 

By [8, Theorem 3.1], there exists an array (x#) of elements of A 
whose image in the quotient of A corresponding to each point in a 
neighbourhood of {t} in £(Prim A) is a system of matrix units, and whose 
image in Alt is (e^). For all except finitely many n = 1,2, • • -, which 
will be ignored, the open set On is a subset of this neighbourhood 
of F. For the moment, fix n = 1, 2, • •. There exists an element yn 

of A whose image in Altn is nonscalar but permutable with the image 
of each xy in Altn. Set ^ XnynXu equal to zn. Then the element 
gnzn of A has the same image in AJtn as yn and moreover is per­
mutable with each x%. Some scalar multiple of gnzn defines a 
derivation of A of norm one; denote this element by xn. The inner 
derivation of A defined by ^n=iXn, k = 1,2, • • ••, converges 
simply to an outer derivation. (Every element of A is the sum of an 
element of t and a linear combination of the x^. Since the xn are 
permutable with the xijy to show convergence it is enough to show 
that for each y G t9 Y*^ k x n y - yZ,™=kXn - • 0 (*, m -* » ). 
This holds because each 2L*™=kxn defines a derivation of norm 
one, and is zero for sufficiently large k and m in all primitive quotients 
of A except those in which y is small. If the limit derivation were inner, 
defined by z G A, then z+ t would be zero in Alt, but in quotients 
of A corresponding to points of £(Prim A) arbitrarily close to {t} z 
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would define a derivation of norm one; this would contradict the 
above-mentioned continuity of the norm.) 

If F ^ {t}, then F must consist of at least two points. By [3, 
Proposition 12] (for example), the quotient of A whose primitive 
spectrum is F has a nonscalar central element; let x be a representative 
in A of such an element. The inner derivation of A defined by 
Sn=ig2n^ k = 1,2, • - -, converges simply to an outer derivation. 
(For any y EL A the image of xy — yx in a quotient corresponding to 
a point of £(Prim A) sufficiently close to F is small; hence, for suf­
ficiently large k and m, 2)™=fcg2n*î/~~ y X™=fcg2n* *s small. 
If the limit derivation were inner, defined by z G A, then, for r = 1, 
2, • • -, on the one hand the image of z in AJt2n would differ from 
the image of x by a scalar, and on the other hand the image of z in 
Alt2n+\ would be a scalar. Since {tn} converges to F in £(Prim A) it 
would follow by the above-mentioned continuity of the norm that 
the image of x in the quotient of A with primitive spectrum F is scalar, 
contrary to the choice of x.) 

4. REMARKS. 4.1. Let A be a noncommutative C*-algebra and let 
B be a C*-algebra without unit. Then A ® B has outer derivations. 
More precisely, if x is a noncentral element of A there exists a unique 
derivation 8X of A ® B such that 8x(t/ ® z) = (xt/ — yx) <8> z, and 
8X is outer. 

To show this it is enough to consider the case that A is primitive, 
so that A and B can be realized as algebras of operators, A acting 
irreducibly. If 8X is inner then for every e > 0 there exists a finite 
sum ^ t / i ® Zi in A ® B such that the norm of the derivation of A ® B 
defined by x <8> 1 — ^t / j ® z{ is less than e. Since A acts irreducibly, 
there exists a state / of A such that 

II (x ® 1 - S«A ®*) - (f(x) ® 1 - 2 / f o ) ® z,)|| g e. 

Hence, if g is any state of A, 

ll(g(«) -/(*)) - 2(gfo) - MM =c-

Because x is not a scalar there exists ß > 0 such that for every state 
/ of A there is a state g of A such that \g(x) — f(x)\ > ß. Since e 
is arbitrary it follows that B contains a nonzero scalar, a contradiction. 

Corollaries 1 and 2 of [9] are special cases of this result. 
A variation of the preceding argument shows that if a C*-algebra 

has outer derivations then its tensor product with any nonzero 
C*-algebra has outer derivations. 



SOME C*-ALGEBRAS WITH OUTER DERIVATIONS 505 

4.2 Let A be an infinite-dimensional separable matroid C*-algebra 
with unit, and let B be an infinite-dimensional separable commutative 
C*-algebra with unit. Then A® B has outer derivations. 

To see this it is enough to consider the case that B is the C*-algebra 
of convergent sequences of complex numbers; then A ® B is iso­
morphic to the C*-algebra of convergent sequences of elements of A. 
If (xn) is a sequence of elements of A each of which defines a deriva­
tion of norm one, such that xnx — xxn -> 0 for each x G A, then the 
sequence (xn), although not a multiplier of A ® B, defines a deriva­
tion. This derivation is not inner because for no choice of scalars 
Xn does (xn + kn) converge. 

4.3. Let A be a separable C*-algebra. Suppose that every deriva­
tion of A is inner. Then by Theorem 2 each primitive quotient of A 
has a unit. If Prim A is separated then it is not difficult to show that 
the set of t G Prim A with dim Alt > 1 is compact. This shows that 
A is the direct sum of a commutative algebra and an algebra with 
compact primitive spectrum. In fact, a summand with compact 
primitive spectrum must have a unit, for arguments similar to those 
in the proof of Theorem 3 show that the extra point added to the 
primitive spectrum upon adjunction of a unit is isolated. (The 
existence of a dense open set of separated points, needed in the proof, 
follows from [3, Proposition 11].) 

4.4. Consideration of the C*-algebra of convergent sequences of 
complex 2 X 2 matrices shows that it is not always possible to extend 
a derivation from an ideal. Consideration of the C*-algebra of con­
vergent sequences of complex numbers shows that it is not always 
possible to lift an automorphism from a quotient. An example due to 
Kadison and Ringrose (unpublished) shows that it is not always pos­
sible to lift a derivation from a quotient. This question is open, how­
ever, in the separable case. 

Knowledge that derivations could be lifted from quotients of a 
separable C*-algebra would make possible some simplification in 
the proof of Theorem 3. 
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