
ROCKY MOUNTAIN 
JOURNAL OF MATHEMATICS 
Volume 3, Number 1, Winter 1973 

INTERACTIONS BETWEEN SPECIES: 
SOME COMPARISONS BETWEEN DETERMINISTIC 

AND STOCHASTIC MODELS1 

NIELS G. BECKER 

Introduction. Mathematical descriptions of the growth of inter­
acting populations have been attempted since Lotka (1925) and Vol­
terra (1926) first published their equations. The arguments for mathe­
matical modeling of such processes are that such descriptive models 
provide a potential for successful prediction of future conditions and 
by manipulation of mathematical models one may obtain insight into 
the response of the interacting system due to changes in conditions. 
Furthermore mathematics provides a means of accurate communica­
tion between biologists. The earlier work in the mathematical theory 
of interacting species was generally formulated without reference to 
the randomness inherent in biological processes. A comprehensive 
treatment of the deterministic models of Lotka (1925), Volterra (1926), 
Thompson (1939), Nicholson and Bailey (1935), etc., may be found in 
the book by D'Ancona (1954). 

The development of stochastic models to describe the growth of 
interacting populations has been hampered by the more difficult 
mathematics involved in solving the differential equations or differ­
ence equations. However, the presence of fast computers has en­
couraged some Monte Carlo studies of the stochastic models by Bartlett 
(1957), (1961), Leslie and Gower (1958), (1960), and Barnett (1962). 
Exact analytic solutions of the stochastic models are very scarce, except 
for greatly simplified models such as those considered by Weiss (1963), 
(1965), Dietz and Downton (1968) and Becker (1970a), (1970b). While 
these models are oversimplified they have the advantage of lending 
themselves to analytic solution and are hence ideally suited for a 
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comparison of deterministic and stochastic models. It is the aim here 
to take some particular cases of these simplified models and use them 
to illustrate some significant discrepancies between the stochastic and 
the deterministic approaches. The models considered here are not the 
most general for which analytic solutions are possible. They are de­
liberately considered in an oversimplified form in the hope that this 
will clarify under which circumstances one might expect differences 
between the deterministic and stochastic formulations. Previous com­
parisons of deterministic with stochastic models have indicated agree­
ment between the two under most conditions, provided the population 
sizes are not too small. For example, this is so for the model con­
sidered by Weiss (1963) for interaction between antagonistic species. 
The models for competition between species or predator-prey systems 
considered by Bartlett (1957), (1961), Leslie and Gower (1958), (1960) 
and Barnett (1962) are also found to be in general agreement with the 
deterministic Lotka-Volterra equations. The main discrepancy arises 
in the case of an unstable system. Given the initial conditions, the 
deterministic model will state which species is certain to become 
extinct, while in the stochastic model there is a probability that either 
species may become extinct. This probability is mostly determined by 
the initial fluctuations, after which the stochastic process usually fol­
lows the deterministic curves quite closely. 

The comparisons made here are of stochastic population models 
with their deterministic analogues. One form of interaction considered 
is that where the birth rate for a population Sx increases with the size 
of another population Sy, e.g. Sx is a parasite population and Sy is 
the corresponding host population. We illustrate that for such an 
interaction a stochastic model can indicate that Sx 'explodes' in finite 
time whereas the deterministic model indicates that the size of Sx 

remains finite for all finite time. The other form of interaction con­
sidered is that where Sx is a prey population and Sy a predator 
population. For such a situation it is possible to conclude from the 
deterministic model that Sx becomes extinct whereas the stochastic 
model may indicate that the probability of extinction of Sx is less than 
1/2 and in fact there is a good chance of no or very little prédation 
occurring before Sy becomes extinct. When the deterministic model 
indicates that Sx becomes extinct it is also possible to have the mean 
size of Sx, as obtained from the stochastic model, become infinite. 
By allowing immigration into Sx and Sy we may cause the population 
size of Sx to fluctuate enormously for an indefinite period, while the 
deterministic model may indicate that the population size tends mono-
tonically to a constant. Finally, the effect of differences in the pred-
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a tors' ability may be interpreted differently by the stochastic and 
deterministic models. In particular, differences between the predators 
may not affect the deterministic results. The stochastic model on the 
other hand may reveal that the expected size and the probability of 
extinction of Sx both increase as the difference between the predators 
increases. This reveals that stochastic models contain considerably 
more information than their deterministic analogues. The paper con­
cludes with some reasons for the observed discrepancies and a brief 
summary of methods of solving or approximating stochastic models. 

Model 1. Consider two distinct populations Sx and Sy which consist, 
respectively, of X(t) and Y(t) members at time t Assume the growth 
rate for Sx at time t to be proportional to X(t) and to Y(t), while the 
growth rate for Sy is proportional to Y(t) only. More precisely we 
suppose that in the time increment (t, t + 8t) there are the following 
possible transitions and associated probabilities: 

(X, Y) -> (X + 1, Y) ßXYot + o(8t) 

(1.1) (X, Y) -* (X, Y + 1) kY8t + o(8t) 

(X, Y) -» (X, Y) 1 - ßXY8t - KY8t + o(8t) 

with X(0) = m and Y(0) = n, say. An example where the birth rate 
of one population is observed to increase with the size of another 
population is found in a host-parasite system. Since a parasite needs 
a host to lay its eggs in we see that the probability that a parasite 
finds a 'site' to lay its eggs in increases with the number of hosts. 

The probabilities pX}y(t) = P[X(t) = x, Y(t) = y] then satisfy 

Px,y{t + 8t) = ß(x - l)ypx-hy(t)8t + % - lKy_!(08* 

+ (1 - ßxy8t - \y8t)px>y(t) 4- o(8t). 

By rearranging this equation and letting 8t -^ 0 we obtain the dif­
ferential-difference equation 

ß(x - l)ypx-i,y(t) + k(y - l)px>y-i(t) 

- {ßx + \)ypx>y(t) 

Px,y(Q) ~ 1 when x — m,y = n, 

= 0 otherwise. 

dpXfy(t) 
dt 

(1.2) 

with 
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Let x[r] = x(x + 1) • • • (x + r — 1). If we now multiply both sides of 
(1.2) by x[r\uy and sum over all possible values of x and y we obtain 
the equation 

(1.3) dGr(t, w)ldt = (kw - X - r/3)u; dGr(£, w)ldw 

with Gr(0, u;) = m[rkvn, for the generating function Gr(t,w) = 
^x,yx[r^vyPx,y(t)- Equation (1.3) may be solved to give 

(1.4) Gr(t9 w) = m[r\k - rßY ( x + k ~ ^ ~ kW e*-«» V" 
L u ; J 

provided \ j^ rß. Note that G0(t, w) gives the probability generating 
function for Y(t), which corresponds to a pure simple birth process. 
Therefore, in particular, 

( L 5 ) £ ( Y ) = *Go(t,w) I = n ^ t ^ 0 

dw \w = l 

By substituting w = 1 in (1.4) we find the moments 

E(X^]) = m(X - rß)n{k - rße^-rW}~n, t < ln(X/ij8)/(X - tj8) 

= oo 7 f^ ln(X/rj8)/(X - ijS). 

Therefore the moments of X become infinite in finite time. The results 
when X = rß are similar. In particular when X = ß we find 

E(X) = m/(l - kt)n, t < 1/A, 

= oo , t ê l / X . 

The deterministic analogue of this stochastic model is arrived at by 
considering the transition probabilities of (1.1) not as probabilities but 
as the exact increases in the population sizes. This approach requires 
us to approximate the sizes of the populations by continuous variables. 
Let x(t) and y(t) be the deterministic (continuous) analogues of the 
stochastic X(t) and Y(£), respectively. The deterministic growth model 
is therefore described by 

dxldt = ßxy, dyldt = ky 

with initial conditions x(0) = m and y(0) = n. The solution of these 
equations is 

x(t) = m exp | — (ekt — 1) \ , y(t) = neKt. 

It is seen that E(Y) = y(t); however, E(X) > x(t) for all t > 0 and 
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although x(t) —> °° as t -» °o, x(t) remains finite for all finite t There­
fore E(X) - x = oo for t > ln(X/0)/(X - ß). 

Model 2. Suppose now that Sx does not benefit from the presence of 
individuals from Sy, but instead that individuals from Sx are subject 
to prédation by individuals from Sy. Members from Sy are also assumed 
to be subject to natural death at a rate fx. In the time increment 
(t, t 4- dt) there are then the following possible transitions and 
associated probabilities: 

(X, Y) -> (X - 1, Y) aXYdt + o(8t) 

(X, Y) -* (X, Y + 1) \Y8t + o(8*) 
(2.1) 

(X, Y) -* (X, Y - 1) /iY8* + o(8t) 

(X, Y) -» (X, Y) 1 - aXY8t - \Y8t - pYdt + o(8£). 

We proceed as in the previous example and find 

dpx>y(t)ldt = a(x + l)ypx+lty + X(y - l)px,y-i 

+ fi(y + l)px,î,+i - (ax + X -h /x)ypx,y. 

Let x(r> = x(x - 1) • • • (x - r + 1). From (2.2) we then find that the 
generating function 

Hr(t, W) = S X^WypX)y(t) 
x,y 

satisfies the equation 

(2.3) dHJdt = {Xu;2 - ( A + / I + ra)w + fjijdHjdw 

with initial condition Hr(0, u;) = m(r)wn. We see that H0(£, u ;) g i y e s 

the probability generating function for Y(t), which is 

Ho(t>w) - L { x ^ - ^ - M - M ^ - ^ - i } ^ J ' X ^ * 
(2.4) ' ' 

w + (1 - u;)X* i n 

' X = /x. T + (1 - u?)X£ 

This is, as expected, the probability generating function of a simple 
birth-death process. For r è i we find from (2.3) that 

(2.5) »,(«,«,,-„« { w + ^ ^ - " : T \ ; l ) k ' } " 
L 1 + (u> - pr)(e

 €'xf - l)/€r J 
where the pr and er are defined by 
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k(w — pr)(w — pr — €r) = kW2 — (k + fJL + ro)W 

+ ti, €r> 0. 

The factorial moments are given by E(X(r)) = Hr(t, 1). 
From the Hr we may deduce the probabili ty distributions for x. It 

follows from 

x,y r,y 

thatp*(f) = P{X(t) = x} satisfies 

The ult imate distribution for X is thus 

(2.8) px(*) = ( ™ ) £ ( - i ) r - . ( rn-x y x 

where we now define p 0 to be unity, instead of min( l , ti/A.) as it is 
defined by (2.6). The limiting distribution (2.8) is shown in Table 1 
for m = 10, n = 1, ti = 0.75, a = 0.25 and various values of X. Table 
1 also gives the limiting means computed from E{X(™ )} = mp^. 

The deterministic analogue of this stochastic model is described by 
the equations 

dxjdt = —cay, dyldt = (A — p)y. 

The solutions to these equations are 

x(t) = raexp( —nctf), k = ti, 

= raexp < ——(e(*-M)f — 1) 1 A / J L I , 

y(t) = ne{K-^. 

In the limit we find 

x(oo) = 0, A ^ t i , 

= m r " 0 ^ - ^ , A < tt, 

which is given for m = 10, n = 1, it = 0.75, a = 0.25 and various 
values of X in Table 1. A comparison of x(o° ) with px(<*> ) in Table 1 
reveals that x( °° ) gives an inadequate description of the process. In 
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particular if A ̂  fx, then x(oo ) = 0 although P{X(o°) > 0} may be 
greater than 1/2. In fact the stochastic model does not only suggest 
that there is a good chance of Ŝ  not becoming extinct but indeed 
a good chance of no or very little prédation occurring before Sy be­
comes extinct. This follows from the fact that the distribution of 
X(oo ) is U-shaped. 

TABLE 1. Limiting probabilities px(°°), means E{X(oo)} and corre­
sponding deterministic values x(oo) when m— 10, n = 1, fi = 0.75, 

a = 0.25. 

x 
£ .10 .25 .50 .75 1.00 1.50 2.00 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

.010 

.018 

.029 

.041 

.056 

.073 

.094 

.120 

.150 

.185 

.225 

.029 

.032 

.038 

.046 

.057 

.071 

.088 

.110 

.138 

.173 

.218 

.095 

.047 

.044 

.047 

.053 

.062 

.076 

.094 

.121 

.156 

.206 

.201 

.043 

.038 

.039 

.044 

.051 

.063 

.080 

.105 

.141 

.195 

.318 

.030 

.028 

.030 

.034 

.041 

.051 

.067 

.091 

.127 

.184 

.5082 

.0090 

.0110 

.0138 

.0177 

.0234 

.0321 

.0458 

.0679 

.1046 

.1667 

.6261 

.0023 

.0037 

.0057 

.0086 

.0130 

.0199 

.0314 

.0512 

.0866 

.1516 

E{X(oo)}7.30 6.97 6.34 5.66 5.00 3.92 3.17 
x(oo) 6.81 6.07 3.68 0 0 0 0 

Model 3. Let us now change the predator-prey model by allowing 
births of prey and taking Y(t) to be a Poisson process. More specifically 
we consider the following possible transitions and associated prob­
abilities in the time increment (t,t+ 8t): 

(X, Y) -» (X + 1, Y) \X8t + o(8t) 

(X, Y) -» (X - 1, Y) aXYôt + o(8t) 

(X, Y) -> (X, Y + 1) vt+ o(8t) 

(X, Y) -> (X, Y) 1 - (AX + aXY + i>)6t + o(8t) 

with X(0) = m and Y(0) = 0. 
Proceeding as before, this leads to 
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dPx,y(t) _ 

(3.1) 
dt 

= k(x - l)px-ìty + a(x + l)ypx+lty + vpXtV 

- (Ax + ocxy + v)pXty. 

Then, for H^t, w) = ^x>yxwypx>y(t),
 w e find 

(3.2) dHjdt = -aw dHJdw + (A + vw - v)Hl 

10 

FIGURE 1 — Deterministic values and stochastic means for the size of population 
Sx when m = 10, v — 1 deterministic, stochastic. 
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with initial condition H^O, w) = m. Solving this equation for H1 

and setting w = 1 leads to 

(3.3) E(X) = m exp {(A - v)t + v(l - e-«*)/«}. 

In the limit therefore 

E{X(oo)}= 0, \<P, 

(3.4) = mella
7 A = v, 

= oo 9 X > v. 

The deterministic analogue of this stochastic model is described by 

(3.5) dxldt = AX — axy, dyldt = v 

with x(0) = m and t/(0) = 0. Therefore 

x(t) = met*-»**12, y(t) = vt 

from which we see that x(°o) = 0. To enable a more detailed com­
parison of E(X) with x(t) we show the curves of E(X) and x(t) in Fig. 1 
for the parameter values: m = 10, v = 1 and X = 0, 1, 1.2 on a time 
scale such that a = 1. 

Model 4. Let us now consider still another variation of the predator-
prey model. Imagine a population of fish Sx in a riverpool. Sx in­
creases in size due to random immigration at a rate e and decreases 
in size due to 'prédation' by anglers who arrive at the pool at random 
times to catch fish for a random length of time. Let Y(t) denote the 
number of anglers at the pool at time t. We may argue that the 
stochastic process involving the fish and angler populations may be 
approximately described by the following possible transitions and 
associated probabilities corresponding to the time increment 
(t, t + 8t): 

(X, Y) -> (X + 1, Y) eôt + o(St) 

(X, Y) -> (X - 1, Y) aXYôt + o(6t) 

(X, Y) - » (X, Y + 1) m + o(Ôt) 

(X, Y) -> (X, Y - 1) tiYôt + o(8t) 

(X, Y) -» (X, Y) 1 - (€ -h i/ + //T + aXY)Ô£ + o(tt) 

with X(0) = Y(0) = 0, say. 
Analytic treatment of this process for e > 0 is awkward. Dietz and 

Downton (1968) have found E(X) expressed as an integral; however, 
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the mean E(X) contains very limited information about the behaviour 
of X(t). Due to the difficulties in obtaining analytic solutions for this 
process we have conducted simulations of the realizations of X(t). 
An illustration of such a simulation is given in Fig. 2 for e = 0.1, 
a = 0.1, v = 0.005 and JJL = 0.1. The simulations reveal that X(t) tends 
to proceed according to 'random oscillations.' 

The deterministic analogue of this stochastic model is described by 

dxldt — e — cay, dyldt = v — yjy. 

Subject to x(0) = t/(0) = 0 we find the solutions to be 

*(*) = —Tae-aT\ u-a-leaudu, 
fJL J T 

(4.1) 
y(t) = -^(1 - D, 

where T = e~^ and a = api JJL2. It follows that x(°°) = ejjjap. For 
e = a = / x = 0 . 1 and v = 0.005, the deterministic curve (4.1) is 
monotonically increasing, as is shown in Fig. 2. 

Model 5. Consider now a predator-prey model with two kinds of 
predators. The two kinds of predators may be different species or 
members of the same species with different abilities as predators. Let 
Yi(t) denote the number of predators of kind i, i = 1, 2. Then we 
assume that in the time increment (t, t + 8t) there are the following 
possible transitions and associated probabilities: 

(X, Yi, Y2) -* (X - 1, Y„ Y2) (a1XY1 + a2XY2)8t + o(8t) 

(X, Y1; Y2) -» (X, Yl - 1, Y2) fiY.St + o(8t) 

(X, Y„ Y2) -* (X, Y1; Y2 - 1) nY28t + o(8t) 

(X, Y„ Y2) -> (X, Yj, Y2) 1 - (o,XY, + a^XY2 + MYt + |uY2)Ô* 

+ o(80 
with X(0) = m and Y,(0) = nhi= 1, 2. For 

p«.tf„«, (0 = W ) = x> YM = yi. Y2(0 = «/*} 
it then follows that 

- c — ^ = (x+ l)(a1y1 + a2y2)px+Uyi,y2 

+ Kyi + i K 
+ /i(f/2 + l)px 

- (ttiXt/j + a2xy2 •+•/*!/!+ /ix/2)Px 
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For the generating function 

Hr(t, WU W2) = £ xir)wiyiW2y2Px,yi,y2 (t) 
X,{/i,t/2 

we find the equation 

dHr dHr dHr 

-= (/Lt - yLWx - raiwiy—- h (fi - fjLW2 -ra2w2)-dt v r dw1 dw2 

with initial condition Hr(0,wl,w2)=mir)wl
niw2

n2. The solution is 
found to be 

2 

Hr(t,wl9w2) = ra^n |U^-<M+'*,>* + £ (1 - e-Ox+'A,)*) | n i . 

The probability distribution for X(^) is given by 

m / Y)*—x 

p.(')=2^y,H,(U,i) 
(cf. equation (2.7)). This leads to the limiting distribution 

M->- (")f (-«"("•"* )(-rf-)-(-T?-r-
\ x / ^~x \ r — x / \ ji + roti / \ M + m2 / 

These probabilities are given in Table 2 for m = 6, nl = n2 = 1, /x = 
0.75 and various values of aja2 such that ai + a2 = 0.5. By taking 
oti + a2 = 0.5 in each case we have standardized them in the sense 
that the risk of prédation is initially the same. Subject to this type of 

TABLE 2. Limiting probabilities px(°°) and mean E{X(°°)} for the 
ultimate number of prey when initially there are two predators with 

different abilities; m = 6,n1 = n2 = 1, JJL = 0.75. 

\Wa 2 

0 
1 
2 
3 
4 
5 
6 

1 

.047 

.107 

.160 

.195 

.203 

.177 

.111 

2 

.050 

.105 

.155 

.190 

.202 

.181 

.117 

3 

.053 

.104 

.149 

.184 

.200 

.185 

.125 

4 

.055 

.103 

.145 

.179 

.197 

.188 

.132 

5 

.057 

.103 

.142 

.175 

.195 

.190 

.138 

00 

.068 

.102 

.128 

.149 

.168 

.185 

.200 

E{X(oo)} 3.375 3.399 3.429 3.453 3.471 3.600 
x(oo) 3.08 3.08 3.08 3.08 3.08 3.08 
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standardization we are varying the rates of prédation. The probability 
distributions in Table 2 indicate that the expected size of the prey 
population increases as the difference between a : and a2 increases, 
while the probability of extinction of the prey population increases. 
Clearly a deterministic model cannot lead to this conclusion. 

The deterministic analogue of this stochastic model is described by 

dxldt = — ot\Xyi — a2xy2y 

dyjdt — — ixyi, i = 1, 2. 

It follows that 

x(t) = m exp < (1 — e ^) I 

y{(t) = n{e-»\ i = 1,2. 

Therefore, if nl = n2 and c^ 4- a2 is kept fixed while aja2 is changed, 
we find that x(t) remains unchanged. For m = 6, nx = n2 = 1, /x = 
0.75 and aY + a2 = 0.5, we find that *(<») = 6e~213 = 3.08 irrespec­
tive of the value of aja2. 

Discussion. For Models 1 and 3 it was observed that the 
difference between E(X) and the corresponding deterministic value 
x may be infinite, thus verifying that these concepts are quite dif­
ferent. The reason for the discrepancy becomes clearer when we 
compare the differential equation for E(X) with that for x. For Model 
3, for example, we may find the differential equation for E(X) by mul­
tiplying both sides of equation (3.1) by x and then summing over x 
and y. This leads to 

dE(X)ldt = \E(X) - aE(XY) 

with E{X(0)} = m. The equation has the same form as its deterministic 
analogue (3.5) if we assume E(XY) = E(X) • E(Y) i.e., if we assume 
the covariance of X(t) and Y(t) to be zero. However, this is not a valid 
assumption for this model, since in fact this covariance becomes infin­
ite as t —» oo [ see Becker (1970a)]. A similar argument applies to the 
discrepancy in Model 1. This discrepancy between E(X) and x(t) does 
not imply that the deterministic value is useless; in fact, it may be a 
closer representation of the process than E(X) by itself. For example, 
for Model 3 it may be shown that the probability of ultimate extinction 
is unity (see Becker (1970a)). The limit x(oo) = 0 suggests just that, 
while E(X) —» oo (\ > v) is misleading. 

The discrepancy found between E(X) and x helps to emphasize that 
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care needs to be exercised, when a stochastic process for interacting 
populations is approximated by replacing one or more random vari­
ables by a corresponding deterministic or mean value. This method 
of approximation is used, for example, by Bartlett (1955), Gani (1965a) 
and Kendall (1956). If this method is applied in Model 1 or 3 by, say, 
replacing Y(t) by y(t) = £(Y), then the approximation obtained for 
E(X) is equivalent to x(t), which indicates that it results in a signifi­
cantly different process for X(t). 

For Model 2 it was observed that the deterministic approximation 
x to the size of Sx may be zero when the stochastic model indicates 
that the probabili ty of Sx becoming extinct is relatively small (e.g. 
about .2 when A = fi in the above example). This discrepancy is mainly 
the result of the small initial size of populat ion Sy. This also explains 
why the number of survivors from Sx, given Sx, does not become ex­
tinct, tends to be large. The reason is that if Sy becomes extinct it is 
likely to do so early while Y(t) is small, in which case little time has 
elapsed for prédat ion to occur. That only one populat ion size needs 
to be small in order to observe large discrepancies is even more 
clearly reflected by the simulations of Model 4, where the random 
oscillations are the result of the occasional presence of efficient pred­
ators. 

The discrepancy between the stochastic and deterministic versions 
of Model 5 is of another kind. A fundamental question asked by 
ecologists is: If a species evolves in a certain way so that its relation­
ship to other species and its environment alters, how does this affect 
the species' chance of survival? In the very limited sense that the 
effect of variations in the a* in Model 5 addresses this problem, we 
find different answers from our stochastic and deterministic formula­
tions as is indicated in Table 2. 

It is hoped that the discrepancies between the stochastic and deter­
ministic formulations outlined here reveal the need for further study 
of stochastic models for the description of the growth of interacting 
populations despite the mathematical difficulties involved. Let us 
now briefly outline different methods by which the more difficult 
mathematics inherent in stochastic models may be attacked. 

For the simpler nonlinear stochastic models it may be possible to 
obtain exact analytic solutions, for example by introducing different 
types of generating functions such as the Gr(t, w) and Hr(t, w) used 
here. Generat ing functions of this type have been very successful in 
obtaining explicit analytic solutions for nonlinear stochastic models 
[see Downton (1967), Dietz and Downton (1968), Becker (1970a), 
(1970b)]. The more commonly used probabili ty generating function 
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J] («, w,t)= £ u*w«pxJ.t) 
x,y 

has also proven useful for nonlinear processes. The second order dif­
ferential equations forYl(u> w> t) may be sidestepped by writing 

Y[(u,w,t)= "Zu*fx(w,t) 
X 

and then attempting to solve the differential-difference equation for 
the fx(w, t), which contain only first order derivatives. This method 
of solution has been successfully used on nonlinear processes by Gani 
(1965b), (1967), Siskind (1965) and Dietz (1966). 

When an exact analytic solution seems unlikely it may be useful to 
consider an approximation to the process. Several methods of approxi­
mation have proved to be useful. One method is to replace one or 
more random variables by a deterministic function. As mentioned 
above, care needs to be exercised in the use of this method. Another 
method is to use approximating birth-death processes. Thus Whittle 
(1955) was able to give a precise formulation of the stochastic version 
of the epidemic threshold theorem by 'sandwiching' the stochastic 
general epidemic model between two birth-death processes. Daley 
and Kendall (1965) combine the deterministic and stochastic 
approaches for a method they call the 'Principle of the Diffusion of 
Arbitrary Constants.' In applying this method to a stochastic model 
(with nonlinear transition rates) for the spread of rumours, they find 
results in excellent agreement with those obtained from simulations of 
the exact embedded random walk. Several other methods of obtaining 
approximations to stochastic processes may be found in the books by 
Bailey (1964, Chapter 15) and Bartlett (1960). 

Monte Carlo studies always improve one's insight into stochastic 
processes, however the analytic intractability of many of the stochastic 
models for interacting populations has given the simulation methods 
an even more significant role in the study of these stochastic processes. 
The studies of Bartlett (1957), (1961), Leslie and Gower (1958), (1960) 
and Barnett (1962) clearly show this. 
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