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GAUSSIAN MEASURE IN HILBERT SPACE 
AND APPLICATIONS IN NUMERICAL ANALYSIS 

F. M . LARKIN 

ABSTRACT. The numerical analyst is often called upon to 
estimate a function from a very limited knowledge of its 
properties (e.g. a finite number of ordinate values). This prob­
lem may be made well posed in a variety of ways, but an 
attractive approach is to regard the required function as a 
member of a linear space on which a probability measure is 
constructed, and then use established techniques of probability 
theory and statistics in order to infer properties of the function 
from the given information. This formulation agrees with 
established theory, for the problem of optimal linear approxima­
tion (using a Gaussian probability distribution), and also per­
mits the estimation of nonlinear functionals, as well as extension 
to the case of "noisy" data. 

1. Introduction. The problem which is central to the subject to be 
discussed occurs frequently in numerical analysis and the interpreta­
tion of experimental data. Typically, we may be given the ordinate 
values of a function, measured at a finite number of abscissae, and 
wish to interpolate, i.e. make a reasonable estimate of the function 
value at some other abscissa. This problem may be regarded in two 
parts: 

(i) Construct an estimator for the required unknown value. 
(ii) Determine how accurate the estimated value is likely to be. 
The approach traditionally taken by numerical analysts has been to 

assume an algebraic form for the function in question, e.g., a polynomial 
of specified order, to determine the assignable parameters (co­
efficients) by forcing the function to satisfy the given constraints, and 
subsequently to refer to this constructed function for estimating any 
other required information. 

A statistician, on the other hand, might assume a joint probability 
distribution, e.g., multivariate normal, for the known and unknown 
quantities, and thence determine a conditional distribution for the 
required values. 

Each of these approaches has its own advantages and shortcomings. 
We shall be working towards a generalisation which retains some of 
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the advantages of both points of view, by regarding the interpolating 
function itself as a random variable in a probability measure space 
constructed out of a Hilbert space. 

Notice that no progress whatsoever can be made unless further 
assumptions are made about the dependence of the required values 
upon the given values. Even given the table of values 

xj Vi 
0.0 1.0 
1.0 1.0 
2.0 1.0 
3.0 ? 
4.0 1.0 
5.0 1.0 

how confidently can we assert that t/(3.0) = 1.0? Would we be pre­
pared to bet evens that |t/(3.0) - 1.0| < 0.1, or < 0.01, or < IO"100?! 
Clearly, some well defined conceptual framework must be established 
before questions of this kind can be answered, or even posed, satis­
factorily. 

Three main fields of activity can be identified which have a bearing 
upon the present discussion: Optimal Approximation, Functional 
Integration, and the Theory of Stochastic Processes. 

One part of the story begins with Sard's application (1949) of tìu 
techniques of optimal approximation in normed and seminormec 
spaces to the construction of practical interpolation and quadrature 
formulae. Since then an enormous volume of literature deriving fron 
Sard's original ideas has been published. Much of this has dealt wit! 
spline functions and their use in the approximation of linear fune 
tionals, for example, see Ahlberg, Nilson and Walsh (1967), Holla 
day (1957), Schoenberg (1958, etc.), Golomb and Weinberger (1959) 
de'Boor (1963), Birkhoff and de Boor (1964), and Schultz and Vargi 
(1968). The two last named authors give a bibliography of publica 
tions on spline functions. 

Mehlum (1964) and Schoenberg (1964) have suggested data smooth 
ing procedures which amount to aesthetic compromises between splin* 
interpolation and least-squares line fitting. The author (1969) ha 
pointed out that optimal interpolation can be interpreted as maximun 
likelihood estimation in a Hilbert space of normally distributed fune 
tions, and has also (1971) extended the spline smoothing work c 
Schoenberg as an application of the theory described later in thi 
paper. 

Sard (1963) introduced probabilistic concepts into the theory c 
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linear approximation, for the purpose of estimating the value of a 
linear functional from approximate values of other linear functionals. 

A. V. Sul'din (1959, 1960) has considered minimum variance esti­
mation of the values of linear functionals over the Wiener space of 
real, continuous functions {x(t); 0 ^ t^ 1, x(0) = 0}. The theory of 
Wiener integration, i.e. integration over this special function space, 
has received a great deal of attention since the original work by 
Wiener in the 1920's, possibly because of its usefulness in the applied 
fields of Statistical and Quantum Mechanics as much as for its 
intrinsic mathematical interest. I. M. Koval'chik (1963) gives a survey 
of the field to that date, as well as an extensive bibliography. For 
physical applications see, for example, Edwards (1967) and Gel'fand 
and Jaglom (1960). 

The theory of stochastic processes, itself intimately related to 
Wiener integration, provides a third viewpoint on the subject to be 
discussed. The work of Parzen (1959, etc.) and others, on Time Series 
Analysis and its formulation within the framework of Hilbert spaces 
possessing reproducing kernel functions, is described elsewhere in 
these proceedings. Kimeldorf and Wahba (1968, 1969) have pointed 
out the connection between spline functions associated with general, 
linear, differential operators and stochastic processes, and also interpret 
the smoothing properties of splines in terms of Bayesian estimation on 
stochastic processes. 

Parzen (1970) has also indicated the formal similarity between cer­
tain linear estimation problems in approximation theory, stochastic 
processes and control theory. 

With the exception of the work of Sul'din, the concepts and tech­
niques developed in the three above mentioned fields have attracted 
little attention among numerical analysts. Even Sul'din's work seems 
to have found little application so far, perhaps because the Wiener 
space comprises too wide a class of functions for many numerical 
purposes. The subset of differentiable functions has zero measure and, 
since optimal approximation involves the selection of a suitable func­
tion from a complete space of possible solutions, the Wiener space 
would seem inappropriate to situations requiring a differentiable 
approximating function. 

However, there are many Hilbert spaces, in particular those 
associated with the names of Bergman, Payley and Wiener, Sobolev 
and Szegö, which have already proved useful to numerical analysts, 
and the presentfcwork was motivated by a desire to extend the work of 
Sul'din to these, and other, function spaces, as well as to investigate 
nonlinear estimation problems. This desire is reflected by the 
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examples given later, although these are chosen to illustrate techniques 
rather than to recommend specific formulae for practical use. 

In numerical analysis Hilbert spaces possessing reproducing kerne 
functions are particularly important, for the following reason. It i: 
often convenient to express ones knowledge about a function 
defined over some domain D, in terms of its ordinate values at pre 
scribed abscissae in D. One takes the view that this information, i 
it is to be of any value, should increase the precision to which th< 
values of other functionals can be localised. However, it turns ou 
that a knowledge of the value of an unbounded linear functional ma1 

not contribute much to a knowledge of the value of another linea 
functional. Thus Hilbert spaces in which ordinate values correspond 
to bounded, linear functionals — which therefore possess reproducin 
kernel functions (Aronszajn, 1950) —offer special advantages i 
numerical analysis. 

2. Optimal approximation in Hilbert space. 
2.1. The linear approximation problem. Optimal (or "best") ap 

proximation is concerned with the problem of finding linear combina 
tions of known values of linear functionals on a normed, linear spac 
(usually a Banach space and often a Hilbert space) in order to estimât 
values of other functionals. In numerical analysis the theory ha 
found application in the construction of interpolation, quadrature an» 
derivative rules (e.g. Davis, 1963; Handscomb, 1966; Sard, 1963). 

In the following we shall be concerned fundamentally with optima 
approximation in Hilbert spaces, especially those possessing reprc 
ducing kernels, since this will form a natural basis for the subsequer 
probabilistic generalisation. 

Suppose we are given numerical values {ay, j = 1, 2, • • -, n} of th 
bounded, linear functionals {L,-; j = 1, 2, • • -, n} whose correspondin 
representors in some Hilbert space H are {g,; j = 1, 2, • • -, n}. Thu 
the given information relates to some element h EL H satisfying th 
linear constraints 

(2.1) Ljh = (h, & ) = op, j = 1, 2, • • -, n. 

Using only this information, can we estimate the value of anothc 
bounded, linear functional, say Loh? 

The answer to this question is somewhat equivocal since, although 
is not difficult to construct a reasonable estimator for L0fo, there 
apparently no way of judging the accuracy of the estimate unie: 
extra information is assumed. Knowledge of the values of a finii 
number of bounded, linear functionals can localise h only to a line« 
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manifold in H (Golomb and Weinberger, 1959). 
Let go be the représenter of Lo and consider the "error functional" 

n / n \ 
Rh = L0h- 2 WjLfh = ( h, g0 - 2) wfâ ) , 

where the {wy j — 1,2, • • -, n} are, as yet undetermined, coefficients 
in the estimation formula 

n 

Lo^ — S wjLjh, V/i G H. 

The bar, of course, denotes complex conjugation. 
Since the functionals {Lß j = 1,2, • • -, n} are all bounded, R is 

bounded, and we can write 

m\^ ||go- i */& ||-w-
Thus, a reasonable estimation strategy would be to choose the weights 
{Wj;j = 1, 2, • • -, n} so as to minimise 

I M - Ileo— i «*& II. 
Il j- = i II 

i.e. by projecting g0 onto the subspace of H spanned by 
{gfyj — 1, 2, • • -, n}, and then to choose 

(2.2) (Qi)= X tVjLjh= fjWM^a'w 

as an estimator of LoK given the values a = {<%,] = 1, 2, • • -, n}. 
Since ||K||2 is a positive, quadratic fonn in the weights, the minimisa­

tion is easily performed, the final result being 

(2.3) w= Glv 

where the nth order Gram matrix G and column vector v are defined 
by 

Gjk = (&, git), 
j,k= 1,2, • • -,n. 

VJ = (&» go), 

G, of course, is nonsingular provided the elements {g, = 1, 2, • • •, n} 
are linearly independent. 
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2.2. Solution in terms of an optimal function. Let us now determine 
that element hŒ. H of smallest norm, subject to constraints (2.1). 
Introducing the real Lagrange multipliers {A,-, fx^j = 1, 2, • • -, n} we 
minimise the quadratic form in h 

S= ÏW- 2VRe[(fc, &)-<%] 

n 

+ £ /J* - I m [ ( / i , & ) - a , ] 
i = i 

with respect to h. A small change dS in S resulting from an arbitrary 
small change ôh in h will vanish (to first order) only if 

n n 

(2.4) /i = h = x fo + */*>•)& = S rçgk say-
i = i i = i 

The complex parameters £ = {vf,j = 1,2, • • -, n} are found by 
noting that 

n 

Ofc = (Ä, gfc) = S »*(&> g*) 

i = i 

so that£ = G~la. Hence 

(2.5) L0h = 2 W = *'« = ä'G-^ = (CA), 
i = i 

where the prime denotes "complex conjugate transpose". 
In other words, for any bounded, linear functional the "optimal 

estimate" (Lo/i), defined by (2.2) may be found by applying L0 to h — 
the element of H having smallest norm subject to the given linear 
constraints. It is easily verified that the minimal norm in question is 
given by 

(2.6) | | / i | | 2 = ä ' G - 1 ä = a ' G - 1 a 

where the prime denotes "complex conjugate transpose". 
2.3. Geometric interpretation. So far we have merely proposed an 

intuitively reasonable estimator for Loh and can say nothing about 
the magnitude of \Rh\. However, if we make the additional assump­
tion that 
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(2.7) IHI2^'2 . 

where r must exceed \\h\\ in order to ensure compatibility with the 
linear constraints, it becomes possible to bound \Rh\. Interpreting the 
situation from a geometric viewpoint (see Fig. 2.1) we see that condi-

norm constraint 

tions (2.1) constrain h to lie in a hyperplane in H, while (2.7) constrains 
h to lie within a hypersphere, centred on the origin, in H. Provided 
the constraints are compatible, i.e. the hyperplane cuts the hyper­
sphere, h is constrained to lie in a hyperdisc with centre at h and 
radius p given by 

(2.8) p = Vr2-| |&||2 . 

2.4. Optimal approximation as a minimax problem. Let us now 
minimax the error in the required functional subject to the given 
constraints. Denote the hyperdisc by B, and consider the expression 

e = inf sup \(h,go) - (fco, go) | 

= inf sup \(h- h0y go*) | 

where g0* is the projection of g0 onto the linear manifold defined by 
(2.1). By inspection of Figure 2.2, we see that 
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e = inf max 
ho e n {|( h + p ÜL 

llg.1l ^ l " 

K*"'to*-****)!}-
Thus 

(2.9) e = p||go*|| = [r2 - ||/*||2] »2[ | |g o | |2 - |(go^)|2/||Ä||2] "2, 

which occurs when h0 = h. Expression (2.9) agrees exactly with the 
well-known Hypercircle Inequality (e.g. Davis, 1963). 

h + p go 

1^1! 

Figure 2.2: Geometric aid to solution ol 

the minimax problem. 

Reviewing the situation, we see that h and Loh are intuitivel) 
reasonable estimators for h and l^h, respectively, in the case when i 
bound on ||fo|| is known. Even when such a bound is not known these 
estimators are still reasonable, since ||/i|| must be finite for h to be i 
member of H, but in this case the error bound (2.9) is inapplicable 
since r is unknown. Notice, however, that it is quite possible for othe 
constraints, e.g. 

(h, Ah) ^ 1 

where A is a positive mapping of H into itself, to preclude h from bein| 
a reasonable estimator of the solution function. This situation i 
illustrated in Figure 2.3. 

http://llg.1l
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elliptic 
constraint 
(h, Ah) < 1 

linear 

constraints 

Figure 2.3: Illustration of elliptic constraint, preventing 
h from being a good estimator. 

2.5. Relevance of a reproducing kernel. Let H be a Hilbert space 
of functions {h(x); x G D } where D is some real or complex domain. 
Suppose H possesses the reproducing kernel K(x, y), so that the 
ordinate evaluation functionals {Ljh = h(xj), V/i G H ; j = l , 2 , •• -, n} 
are all bounded if D contains the abscissae {x,-; j = 1, 2, • • -, n}. 

Given an optimal linear rule 

(2.10) L0h ^ X WjLjh = 2 Wjhix,), V/i E H, 

it is of practical interest to know 
(i) how to adjust the abscissae so as to minimise the optimal error 

norm ||R||, 
(ii) for what subset of H the optimal estimation rule is exact, 
(iii) how rapidly (if at all) ||K|| tends to zero as n tends to infinity. 
The first two points are discussed in another paper (Larkin, 1970), 

the main results of which are as follows: 

THEOREM 2.1. If the distinct abscissae {xß j = 1, 2, • • -, n} are 
regarded as fixed in D, the optimal approximation rule (2.10) is 
characterised by the fact that it is exact for the subspace of 
H spanned by {K( • , Xj);j = 1, 2, • • -, n}. 

THEOREM 2.2. If the weights {wyy j — 1, 2, • • -, n} are prescribed, 
the optimal approximation rule (2.10) has the property that it is exact 
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for the subspace of H spanned by {(dldXj)K( • , Xj); j = 1, 2, • • -, n} 
provided that the derivatives, and distinct abscissae within D, exist. 

Clearly, an approximation rule which is optimal with respect to 
both weights and abscissae will, in general, be exact for the subspace 
of H spanned by the In functions {K( • , Xj), (dldXj)K( • , x,); 
7 = 1 , 2 , - - M I } . 

In general, the determination of optimal abscissae is a more difficult 
problem than that of finding optimal weights. However, if we extend 
the meaning of "optimality with respect to the abscissae" to cover the 
situation where ||R|| attains a smallest value (not necessarily a mini­
mum) then, as pointed out by Rabinowitz and Richter (1970), existence 
of optimal abscissae is trivial if D is compact. 

Assuming D to be separable and K(x, y) to be continuous over 
D2, it is not difficult to see that ||R|| can be made arbitrarily small if 
a sufficiently large number of suitable chosen abscissae are used. 
Suppose the countably infinite sequence S = {xf,j = 1,2,3, • • •} is 
dense in D, then the set of functions {K( • ,Xj);j = 1 , 2 , 3 , • • •} is 
complete in H. [Proof If go( * ) is the Riesz représenter of some 
bounded, linear functional Lo and 

L0K( • , Xj) = (K( • , xj), go) = go(xj) = 0, Mxj G S; 

therefore, by the boundness of Lo and continuity of K(x,y), g0(x) 
vanishes for all x in D.] Hence, by the equivalence of closure and 
completeness (e.g. Davis, 1963), {K( • , Xj);j = 1, 2, • • •} must span H. 
However, we noted in §2.1 that for fixed abscissae {xf9j = 1, 2, * * -, n} 
the optimal weights are found by projecting g0 onto the subspace of 
H spanned by {K( • ,Xj);j = 1,2, • • -,n}so ||fì|| may be made arbitrarily 
small by a suitably large choice of n. 

The asymptotic behaviour of || R\\ for large n will, of course, depend 
upon the particular linear functional L0 which is being approximated. 
An illustration, for the case of optimal approximation with respect to 
a seminorm, is given in §2.6. 

EXAMPLE. Let H be the Bergman-Hilbert space H of functions 
analytic within the unit circle in the complex plane, with inner product 
defined by 

Cf.g)= \\f(z)gz)-dxdy; z=x+iy; VfigEH, 
l*l<i 

and reproducing kernel function 

(2.11) K(z,F) = 7T-'(l - zt)~2. 
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Let 

Loh = I"" h(z) • dz; \a\ < 1, Mh E H, 
J -a 

and let {Zj : \Zj\ < l;j= 1,2, • • -, n} be given, distinct abscissae. 
From (2.11) the représenter of L0 is found to be g0(z) = 
2ö7T ~ *(1 — a2z2) ~l. The optimal weights for the quadrature rule 

(2.12) I* h(z) -dz= L0h^ 2 wMzil *h £ H> 
J ~a j=i 

satisfy the linear equations Gw = v where the (j, fc)th element of the 
Gram matrix G is given by 

Gjk = 7T-l(l ~ ZjZk)-
2, j , k = 1,2, • • -, n, 

and the vector v is given by 

Vj = 2arr~l(l — a2^-2) -1, a real; j = 1, 2, • • -, n. 

2.6. Extension to seminorms. In practical situations it may be re­
quired that a linear approximation rule be exact for some prescribed 
subspace of functions (e.g. polynomials of order less than some fixed 
order) and "good" for the remainder of the space. One way of achiev­
ing this is to minimise \Bh\ subject both to constraints (2.1) and the 
required exactness conditions. 

The problem is conveniently formulated as follows (e.g. Handscomb, 
1965): 

Let F be a vector space and R a linear functional on F. Let s(J) 
be a seminorm on F and define the norm of R with respect to s as 

||fl|| = sup |H/|. 
/ G F;.v(/) ^ 1 

Thus R can be bounded in this norm only if Rf vanishes on the null 
space of s. 

For the function space Lp
(m)(X); l ë p < <», an extension of the 

Riesz representation theorem due to Sard (1948) states that any linear 
functional R on F, which is bounded with respect to the seminorm 

</)= [jx tfm,(*)|" • H{dx} ] ll", V/ÊF, 

may be represented in the form 

(2.13) R / = \ x r{x) •/<""(*) • n{dx) 
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where r(x) G Lpt(X); Up + Up ' = 1. The Holder inequality applied 
to the integral representation (2.13) enables us to find numerical 
bounds on \Rf\ where the weights {wj; j = 1, 2, • • -, n} in the optimal 
linear approximation rule are constrained so that \Rf\ vanishes over 
the null space of s( • ). 

In the case of a Hilbert space the theory of reproducing kernels 
provides another viewpoint on the problem. Suppose the reproducing 
kernel Hilbert space H is the direct sum of an orthogonal pair of 
subspaces Hi and H2, i.e. any h G H may be uniquely represented as 

(2.14) h=hx + h2; hi 1 H2 and h2 ± Hi. 

Suppose furthermore that the inner product over H may be repre­
sented as 

(f,g)=(f,g)i + °tf,g)2; « > 0 , V/.gGH, 

where ( -, • )x and ( • , • )2 are norms over Hi and H2 respectively and 
seminorms over H. We then have 

LEMMA. The reproducing kernel K„(x, y) for H may be expressed 
as 

KJx, y) = Ki(x, y) + K2(x, y)la 

where Ki(x, y) and K2(x, y) are the reproducing kernels for Hi 
and H2 respectively. 

PROOF. By definition of KJ^x, y) we have 

h(x) = (h( • ), K«( • , x))i + a(h( • ), K»( • , x))2, y/h G H 

However, by (2.14) we can decompose h( • ) and Ka( • , x) as 

h( • ) = hi( • ) + h2( • ), K„( • ,x) = K,i( -,3E)+ K«2( • ,x), 

where hi and K«i, are orthogonal to H2, and /i2 and Ka2 are orthogonal 
to Hi. Thus 

fc(x) = (/ii( • ), Kd ',x))i + a(h2( • ), Ktt2( • ,x))2 = ^(x) + Ä2(x). 

The only element of H common to Hx and H2 is, of course, the zero 
element, so we can successively take h2 = 0 and hi = 0 to find 

hi(x) = (hi( • ), K ^ • ,x))1? h2(x) = a(h2( • ), K„2( • ,x))2, 

from which the required result is obvious. 

COROLLARY. If H can be represented as the direct sum of m 
orthogonal subspaces H = ^jfLi H& and 
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m 

( f , g ) = E<*(/>g)fc { o * > 0 ; f c = l , 2 , - - M i l } , V / , g G H , 

where ( - , - )kisa norm over Hk, k = 1, 2, • • -, m, then the reproducing 
kernel for H may be expressed as 

where Kk(x, y) is £/i£ reproducing kernel for Hfe, k = 1, 2, • • % m. 

Now, allowing {a*; fc = 2, 3, • • -, m} successively to approach zero, 
and referring to Theorem 2.1, we see that if the weights in the linear 
approximation rule 

(2.15) Uh =* J ) Wjh(xj) 

are chosen to minimise the seminorm ||go — ^J=IWJK( • ,Xj)\\\, then 
the rule will automatically be exact for the functions 

{Kk( • , xj);j = 1, 2, • • % n; k = 2, 3, • • -, m; m g n}. 

In particular, if the orthogonal complement of Hi in H is finite 
dimensional, there exists m such that {Hk;k = 2, 3, • • -,m} are all 
1-dimensional. In this case K&( • , Xj) trivially spans Hk for all j , k, 
so the linear approximation rule which is optimal in this sense is 
necessarily exact for all h in the null space of || - \\i. 

Thus, by judicious choice of the seminorm || • \\i we can arrange 
for the optimal linear approximation rule (2.15) to be exact for some 
finite-dimensional space of specially favoured functions, while having 
a relatively small error for functions near the origin in its orthogonal 
complement Hi. This is the situation for the original "best approxima­
tion" rules (Sard, 1949), although these were derived by different 
techniques. 

EXAMPLE. The following example of a practically useful quadrature 
rule has been discussed in the literature from several different view­
points (Krylov, 1959; Stern, 1967; Larkin, 1970). Let H = L2<

2>[0,1] 
with inner product defined by 

if.g) = H /"(*) • g"(*) • dx + a2/(0)g(0) + «3/'(0)g'(0). 

Let H2 be the space of constant functions on [0,1] and H3 the space 
of straight lines through the origin; Hx is the orthogonal complement 
of H2 © H3 in Hi, i.e. that subspace of L2

(2)[0,1] whose members 
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have vanishing ordinate and derivatives at the origin. 
The inner product in H2 is defined by 

(f ,g)2=/(0)g(0) 

and the reproducing kernel is the unit function on [0,1] . The inner 
product in H3 is defined by 

( / , g ) 3 =/ ' (0 )g ' (0 ) 

and its reproducing kernel is xy. The inner product in Hi is defined 
by 

</,g)i= £/"(x)g"(x)-dx, 

and its reproducing kernel is 

K(riA== r-yW + yW-, o^y^x, 
KiV, y> I _ x 3 / 6 + x 2 y y 2 ; x ^ y ^ l . 

The reproducing kernel for H is given by 

r - y3/6 + (/2x/2 + yxla5 + l/fl&; 0 ^ y ^ x, 
(*' ^ t - x3/6 + x2t//2 + xyla3 + lien; x ^ y ^ l . 

Defining L0 by 

Uh = J' fc(x) • dx, Vh G H, 

we find 

go(x) = x4/24 - x'V6 + x2/4 + x/2a3 + l/a2. 

The optimal weights and abscissae, which minimise the seminorm 

go( • ) - E WJK( ' » *&) 

are given by 

X! = { - (n - l)/i/2; Wi= \ - (n/2 - l)/i = wn, 

Xj = aci + (/ — 1)^; Wj = h;j = 2, 3, • • -, n — 1; 

ac„ = 2 + (n — l)fc, 

where the "step-length" parameter /i is defined by 
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h= ( n - 1 + V2/3)-1. 

The minimal value of HHJIi can be expressed in terms of /i, by sub­
stituting in the optimal abscissae and weight values, to obtain 

| |H | | l ,min=^12V5, 

confirming the result given by Stern (1967). 
2.7. Limitations of optimal approximation. We have seen that the 

theory of optimal linear approximation provides a useful framework 
for the construction of numerical approximation rules, of which quad­
rature rules form the typical example. However, there is an important 
class of problems which, although superficially amenable to the tech­
niques of optimal approximation, actually serves to emphasise its 
limitations. 

Leaving aside possible computational difficulties, which in practice 
seem no more severe with optimal approximation than with most 
other useful techniques, the three main areas of deficiency (which 
incidentally are shared by other approximation techniques) are as 
follows: 

(i) The error functional R must be linear. There are important 
practical situations, especially occurring in the experimental sciences, 
in which a Hilbert space formulation necessitates that the given in­
formation, the required information and the estimation error all be 
treated as nonlinear quantities. Optimal approximation in its linear 
form is thus inapplicable to this kind of problem. An illustration is 
given below. 

(ii) Often the given information is not only insufficient to determine 
the required information but is also inexact. We might elect to 
"smooth" the given information in some aesthetic sense, or even make 
a statistical estimate of the true values of the given quantities, but 
would this be the right approach? Under what circumstances would 
this preprocessing be an appropriate preliminary to optimal approxi­
mation? In its classical form the theory of optimal approximation 
gives no clue as to how best to extract the best possible signal from 
given, noisy data. 

(iii) We know that, even for the problem of linear approximation, 
extra, nonlinear information is required in order to bound the error 
of approximation; typically, one requires a bound on the norm of the 
function sought. Often this information is either not precise enough 
to give realistic error bounds, or is simply not available. It would be 
useful to have a theory which could provide an error estimate, even of 
a probabilistic nature, from the "working" information alone. 
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By way of illustration, consider the following example, which is a 
simplified version of one discussed elsewhere (Larkin, 1969). Suppose 
an experimental scientist wishes to estimate a function f(x), or one of 
its attributes, such as its integral over a range [a, b]. From funda­
mental physical considerations f(x) is known to be nonnegative (e.g. 
f(x) may represent the density of some physical quantity like mass, 
heat, or some other form of energy). Measurements are made in an 
attempt to determine the ordinates {f(xj); a ^ Xj^ b;j = 1, 2, • • -, n} 
but the corresponding values obtained {fj; ; j = 1, 2, • • -, n} are in­
accurate for two reasons: 

(a) The measuring instrument has a less than perfect resolution; 
instead of measuring f(xj), under ideal (noise-free) circumstances 
it measures the values 

rb 
Qjf = qj(x)f(x) ' dx'> j = 1, 2, • • -, n, 

J a 

where the {^( • ); j = 1, 2, • • -, n} are known nonnegative functions. 
(b) The experimental circumstances are not ideal; that is to say, 

the values {fi*; j = 1,2, • • -, n} are compounded of the values 
{Qjfij = 1, 2, • • -, n} together with extraneous "noise" of a probabilis­
tic nature. 

Since the observations and the required integral all represent linear 
operations on / , we might be tempted to regard / as an element of a 
linear space and then use the techniques of optimal approximation. 
However, it is important to realise that any approximation rule we 
construct should not imply an f(x) which becomes negative any­
where within its domain, whatever (physically realisable) set of obser­
vations the rule may be used upon. There could well exist a set of 
positive values for {Qjf; j = 1, 2, * * *, n} which would imply an 
inadmissable estimator f constructed by the methods discussed 
earlier, indicating that optimal, linear approximation would not be 
appropriate to this problem. In addition, of course, we have to devise 
a justifiable technique for filtering out the signal from the noise. 

A Hilbert space formulation of the above problem could be 
achieved in many ways, perhaps the simplest being to write 

f(x) = h2(x); a^x^b, 

where h( • ) is taken to be an element of some real Hilbert space H 
of functions with domain [a, b]. In this case, the quantities {Qjf; 
j= 1,2, • • -, n} and the required integral all become positive, 
quadratic functionals on H. 
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Thus, we see that a satisfactory treatment of this problem of the 
interpretation of experimental data involves both probabilistic con­
cepts and essential nonlinearity, two features which are notably absent 
from the usual theory of optimal approximation. 

3. Gaussian measure on the Hilbert space. 
3.1. General philosophy. A natural way of introducing the re­

quired probabilistic concepts into the theory of optimal approxima­
tion would appear to be to construct a probability measure space on 
the Hilbert space in which the approximation is being performed. A 
Gaussian measure would be preferred, partly for its mathematical con­
venience and partly for its intuitive attractiveness in assigning rela­
tively high likelihood to "smooth" functions (i.e. functions of small 
norm) and in preserving the "independence" of sections of functions in 
LQ[X) over disjoint subsets of their domain X. 

However, it turns out that an infinite-dimensional Hilbert space 
cannot support a fully countably additive Gaussian measure. In order 
to retain countable additivity, and with it the complete apparatus of 
Lebesgue integration theory, it is necessary to extend the Hilbert 
space H, by completing it with respect to a "measurable norm" (Gross, 
1962), to form a Banach space B. This elegant solution to the count­
able additivity problem was proposed by Gross and discussed in a 
series of papers (1960, 1962, 1963, 1967). For convenience of pre­
sentation a companion paper (Kuelbs, Larkin and Williamson, 1971) 
gives an outline of that part of the theory of Gaussian measure in 
separable Hilbert spaces, and derived Banach spaces, necessary as a 
foundation for the applications described below. Here we shall merely 
use the relevant concepts, definitions and results, as required. 

The idea of Sul'din was to evaluate the mean-square error in a 
linear approximation rule, evaluated over the Wiener measure space 
of continuous functions on the real segment [0,1] and to minimise this 
with respect to the weights and/or abscissae (possibly subject to 
exactness conditions for low order polynomials). Interpreted in the 
light of Gross' theory, the underlying Hilbert space H is the space of 
absolutely continuous functions, vanishing at the origin, with square-
integrable derivatives on [0,1] , and inner product given by 

(/>g)= \l
of'(x)g'(x)-dx, V/.gGH. 

The norm 

11/111= sup l/l 
xE [O.I| 
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is measurable on H, and B, the completion of H with respect to || - \\i 
is the space of continuous functions on [0,1] , which is known to 
support the countably additive Gauss-Wiener measure. 

As it happens, the approximation rules resulting from this program 
are nothing other than rules for optimal approximation in the afore­
mentioned Hilbert space. However, once adjusted to the idea of 
probability distributions over a function space we can cheerfully 
contemplate use of standard statistical techniques, such as deter­
mination of the joint, finite-dimensional distribution of the known 
and unknown quantities, and construction of maximum likelihood or 
minimum variance estimators. For example, an estimator for the 
integral of the nonnegative function f in the problem at the end of 
§2, in the form 

rb n rb 

f(x) • dx =* ]£ wj \ q/x) •/(*) • dx 

may be constructed by minimising the functional integral 

2 

L l fa k2(X) t1 " t WjqÀX) ] ' dX\ ' "t{d'l} 

with respect to the weights. Here B is, of course, the completion of 
H with respect to some suitable (measurable) norm. 

3.2. Evaluation of functional integrals. The companion paper gives 
conditions under which an integral over B results as the limit of a 
sequence of integrals over finite-dimensional subspaces of the under­
lying (real) Hilbert space H, i.e. for the validity of the relation 

f F(h) • p{dh} = lim [ F(Pnh) • v{dh} 

(3.1) f r 
= lim F(Pnh) • n{dh}= F(h) • n{dh}, 

n_>oo J B J B 

where {Pn; n = 1, 2, 3, • • •} is an increasing sequence of projections 
converging to the identity, and v{ • } and /Lt{ • } are Gaussian measures 
appropriately defined on H and B, respectively. Alternative expres­
sions for the general element of the integral sequence are easily found 
by the usual transformation rules for finite-dimensional integrals; 
some useful examples follow. 

We shall denote the n-fold Lebesgue integral 

TOO TOO TOO / • ( „ ) 

• • • A(xi, x2, * * *, xn) ' dxidx2 • • * dxn by A(x) • dx. 
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Let F( • ) be a functional on H, k a real, positive constant and 
g = {g,-; j = 1,2, 3, • • •} a (not necessarily orthonormal) basis for H. 
Let Pn be the operation of projection of elements in H onto the ri­
dimensionai subspace spanned by gn = {gi, g2, • • Sgn}- Let x = 
{xi,x2, ' * ',xn} be an nth order vector of real numbers and define 
h to be that element of H with minimal norm, subject to the con­
straints 

(3.2) & & ) = *,; j = l , 2 , ••-,»». 

The minimising element h may be expressed as h = x 'G _ 1g n , where 
the nth order Gram matrix G has (g,-, gfc) for its (J, k)th element. We 
also have | |h\\2= x'G~lx. 

Referring to the measure definitions given in the companion paper, 
it may be verified that 

J H v ; l ' /(-)exp[-(A/2)||Ä||2] -dx 

(3.3) 
v f f(n) t 

= J F(V25r7^7n)exp[-7rJ , i] -dt, 

where fn = {fi,f%, ' ' ',fn} is a Gram orthonormalisation of gn. 
The positive, real number k will be called the "dispersion parameter" 
of the weak distribution on H. 

Let Tn be the continuous, linear transformation mapping H onto 
Rn defined by the relations 

r Tn:h^x 

I (Kgj) = **; 7 = 1,2, • • -,n. 

Tn has the generalised inverse Tn
+, i.e. that mapping from Rn into 

H which associates with any | E f i n the element h G H of smallest 
norm subject to constraints (3.2). In terms of this generalised inverse, 
we have 

(3.4) f F ( P M - , m = ' M F { T - t ^ [ - m l T - ^ ' i ^ . 
JH J » e x p [ - (A/2)||rn+x||2] dx 

For typographical convenience we shall sometimes denote the 
quantity 

\ F{Pnh)-v{dh} by En[F;g]. 

In the case of a complex Hilbert space En [ F; g] may be con-
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structed in a manner formally equivalent to that in the real case. 
However, the vectors x, g, _t and / are now complex and we find that 
the nth order real integral becomes a 2nth order integral 

£n[F,g] = | < 2 n > F ( V S ^ [ & 7 H - J l ' / j + t ( fe ' / /+ifyR)]) 

X exp[-7r(!R'-iR +li'li)] dtR -db, 

using the obvious notation 

where JR,li, fR and/ j are all real vectors. In particular, the measure 
of a cylinder set may be expressed in this form by choosing F( • ) to 
be an indicator function. Strictly speaking, Gross's theory should be 
extended to cover the case of complex H; however, in this paper we 
restrict our complex examples to tame functions, for which no difficulty 
arises. 

EXAMPLE 1. Let us evaluate the measure of the set S = {h G H : 
(h, g) > a} for some fixed g G H and real a. H is real in these 
examples. 

The indicator function Is of the set S is a tame function based on 
the one-dimensional subspace of H spanned by g, so that 

*>{S} = f h(h) • v{dh} 

(3.5) = f" ZS(V2S\ • *g/||g||)exp l-Ttt2] -dt 
J — oo 

exp r — 7rt2] - dt 
(al\\g\\) • VKÏ2Ï r - ! 

= Ugll-'VX/^ I"" exp [ - Xf2/2||gp] • dt. 
J a 

Notice that the result depends only upon the norm of g, not its direc­
tion. 

EXAMPLE 2. For any fixed g E H , (h, g) is a tame function, and so 
is eis{h>g) for any real s. We thus have 

J exp [is(h, g)] • v{dh} = Ex [exp|>(7i? g)] ; g] 

= J "^ exp [is V2^7\ • ||g||t - irt2] 



GAUSSIAN MEASURE IN HILBERT SPACE 399 

Hence, identifying coefficients of powers of t in the absolutely con­
vergent Taylor expansions for the exponential function, we find that 

(2n)! (3.7) jH(h,g)2n'Hdh}={-^ 
\2n 

(2X)n ' 

while expectations of odd powers of (h9 g) vanish identically. 
EXAMPLE 3. Let A be a finite-trace class operator mapping H onto 

itself, then the functional \\h\\i = (h, Ah)112, V/i G H, is a measurable 
norm on H (Gross, 1960). The functional 

F(h) = exp [is(h, Ah)], s real, 

has a continuous extension to B, the Banach space formed by com­
pleting H with respect to || • \\i. Hence formula (3.1) is valid for this 

F ( - ) . 
Let b — {by,] = 1, 2, 3, • • •} be the complete orthonormal sequence 

of eigenfunctions of A, with corresponding, nonzero eigenvalues 
& ~ {pfd ~ 1» 2, 3, * • •}. We then have 

En[F;b] = J (U)exp \%^- 'l'Qi-iTt'i\ -dt> 

where Q is the nth order matrix whose (J, k)th element is given by 

Qjk = (bk, Abj) = Sjkfy; j , k = 1, 2, • • -, n. 

Thus 

En[exp [is(h, Ah)] ;b] 

= n j " e x p [ - ^ ( l - ^ ^ )A-dt 
(3.8) J - i J - ~ L V X ' J 

-rt(1-^'»)' 
The infinite product converges since A has finite trace and, in par­
ticular, identification of coefficients of s leads to the conclusion 

(3.9) f (h, Ah) • v{dh} = f (h, Ah) • iL{dh] = t r a C e [ A ] . 
J H J B A 

3.3. The relative likelihood of a function. Although we have noted 
that a Hilbert space H cannot support a fully countably additive 
Gaussian measure, the work of Gross shows that, at least for the pur-
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pose of averaging a usefully large class of functionals on H, such 
additivity as the weak Gaussian distribution on H possesses is "good 
enough". Accordingly, it is tempting, and intuitively convenient, to 
regard exp [— (\/2)||/i||2] as the "relative likelihood" of h in H. 

Clearly the relative likelihood of h is maximised when \\h\\ is mini­
mised, so an optimal approximation rule may be regarded as a maxi­
mum likelihood estimator for a bounded, linear functional. The mini­
mising element h referred to in earlier sections may be thought of as 
the "most likely" element of H which could have resulted in the given 
values of the given bounded, linear functionals. We shall see later 
that, as one would expect in the case of a Gaussian distribution, the 
minimum variance estimator agrees with the maximum likelihood 
estimator of a bounded, linear functional, i.e. it also agrees with 
optimal approximation theory. 

3.4. Distributions of linearly transformed quantities. Let L be a 
linear operator having the Hilbert space H as its domain. We define 
an inner product on the range R [ L] by means of the relation 

(3.10) (flt gl)fi[L] = (L+/i, L+g l)H ; V/Ì, g l G H [ L ] , 

where, for any hi Œ R[L], L+h is that element h EL H with smallest 
norm satisfying the relation Lh = hi. Notice that 

||L|, = sup \\Lh\\^ = sup ll^ll" < ! 
I|L" " P „ \\h\\H ™l \\h\\H ' 

since L+L is a projection operator on H. Hence L is a bounded, linear 
mapping from H to the linear space R[L], and it follows that R[L] 
must be complete. Thus R[L] is a Hilbert space, which we shall 
denote by H\, and L+ is the generalised inverse of L. 

THEOREM 3.1. Given a canonical normal cylinder set measure on 
H, the mapping L : H—» Hi induces a canonical normal cylinder sei 
measure on Hu having the same dispersion parameter as that on H. 

PROOF. We have to show 
(a) The inverse image under L of any cylinder set Ci C Hi is a 

cylinder set C C H, and 
(b) Vi{Ci} = ^{C} where v and vx are the canonical normal cylindei 

set measures on H and H\, respectively. 
For simplicity of presentation we restrict H to a real Hilbert space 

Since v and vx are finitely additive over their respective cylinder sel 
algebras, it suffices to demonstrate (a) and (b) for the case 

Ci= {hiEHi:(hi,gi)Hi A a} 
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where a is a real number and A may denote any one of the relational 
symbols {< , =;, = , > }. 

Consider the set 

S = { / i e H : ( M L + L ] * L +
g l ) H A a } 

= {h(EH: (L+Lh, L+ g l ) H A a} 

= {h G H :(Lh, gi)Hl A a } = C. 

Thus C is a cylinder set in H. 
Furthermore, from result (3.5) we know that 

exp [ - 7Tt2] - dt if A = ^ or > , J' 
fMte|)-VSSF 
I exp [ - iTt2] - dt if A = ^ or < , 

V ' • fH|g||)-vœr 

and a similar result for v{C}. Also, writing g = [L+L] *L+gi we have 

| |g | |*= {[L+L^L+g^iL+L^L+g^ 

= (L+g„ [L+L]*L+g l)H 

since [ L+L] is a projection operator on Jf. Thus 

||g||* = (L+LL+g1; L+ g l ) H = (LL+gi.gO«, = llgxllâ, 

since LL + is the identity operator on Hx. Therefore ^i{Ci} = ^{C} 
and the required result is proved. 

In a rather more intuitive fashion, the above result may be 
paraphrased as: 

THEOREM 3.1. If the relative likelihood of hin H is exp (— (A/2)||/i||2) 
and L is a linear mapping from H onto Hx (where the inner product 
on Hi is defined by relation (3.10)) then the relative likelihood of 
Lh = hi in Hi is exp ( - (A/2)||L+hi||2). 

EXAMPLE. Let g = {gi,g2> * ' *>gn} be linearly independent ele­
ments of a real Hilbert space H, and take Hi to be the real ri­
dimensionai Euclidean space Rn. 

Define the mapping L : H - » Hi by means of the relation 

Lh= {(h,gl),(h,g2),--;(h,gn)} 
(o . l l ) 

= {Xi, X2, ' * *> *n} == X, V/l G H. 

The element h in H having smallest norm subject to (3.11), for some 
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fixed x, is given by h = x'G~lg where the (J, fc)th element of the 
Gram matrix G is (gJ? g^). Hence 

\\h\\2 = \\L+x\\2=x'G-lx 

and the relative likelihood of x in Rn is exp (— (kl2)x'G~lx). However, 
the canonical normal distribution is countably additive on the finite-
dimensional space Kn, so a genuine probability density function exists, 
given by 

p.*, ^ - (^ r - - , [ - y M . 
This result has applications to the problem of estimating the value of 
a given linear functional from given values of a finite number of other 
linear functionals, with or without the extra complication of "noise" 
affecting the data. Those applications are discussed in another paper 
(Larkin, 1971). 

3.5. Nonlinear transformations. We consider first the problem of 
finding the distribution of a real, scalar, nonlinear functional on H. 
Suppose there exists a measurable norm || • \\i on H with respect to 
which the real functional F(h) is continuous. The integral over B, 
the completion of H with respect to || • | |b of exp [itF(h)] then exists 
for any real t and may be found by means of relation (3.1). 

THEOREM 3.2. The characteristic function of the probability distri­
bution of F is given by 

<t>F(t) = J exp [UF(h)] • ix{dh}. 

PROOF. Consider 

1 (T Sin (at) r . , ± , x J J = — j—t • exp [ - itx] • 4>F(t) • dt 
TT J —T t 

= — • exp [— itx] exp [itFih)] • ix{dh} • dt. 

The conditions for reversing the order of integrations apply, so that 

; = i- J J7^ S m (Q^ - exp [it(F(h) - x)] • dt • ti{dh}, 

i.e. 

/ = | g(F, T) • fn{dh}, 
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where 

dt_ 
t 

lim g(F,t)=<j 

g(F, D = — j T Sin («0 • Cos [t(F(h) - x)] 

It may be verified that 

0; F < x - a, 

h F= x- a, 

1; x — a< F < x + a, 

| ; F = x + a, 
V 0; F > x + a, 

and hence, F( • ) being continuous and therefore measurable on 

lim / = [ I(h:x- a< F(h) < x + a) • fx{dh} 

= ti{hGB:x- a< F<x + a}. 

Thus, the probability density function for x = F(h) is given by 

p(x) = lim lim —r̂ — r—— • exp [ — itx\^>p(t) • d£ 

i.e. 

1 er Sin (ctf) 

Tra J - r t 

= lim lim — exp [it(u — x)]<f>F(t) • du • dt, 
a_*o r-» 4na J -T J -a 

1 (a 

p(x) = lim — - f (x — u) - du 
a^o 2a J -a 

= lim - M f (t>) • dt; 
a_>0 AOL J x-a 

where 

Thus 

1 fT 

€(v) = lim —— 4>F(t) exp [ — itv] • df. 
T->*> 27T J — T 

<M*) = [ exp [itF(h)] • ju,{d/i} 
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is the characteristic function for F, as required. 
Using similar arguments it may be shown that, if F = {Fi(h), F2(h), 

• • *, Fn(h)} is a finite order vector whose elements satisfy the same 
conditions as F( * ) above, then: 

THEOREM 3.3. The characteristic function of F is given by 

<t>E(ì)= f exp[it'F(h)] - tx{dh}. 
J B 

EXAMPLE. Let A be a finite-trace class operator mapping H onto 
itself; then, as shown in a previous example (relation (3.8)), the char­
acteristic function of the scalar functional F = (h, Ah) is given by 

Mt)=n(i--f- - * ) - 1 ' 2 

where {^j,j = 1, 2, 3, • • •} are the eigenvalues of A. 

4. Stochastic processes. For the sake of completeness we give here 
a brief indication of the relevance of functional integration to the 
theory of stochastic processes. Let H be a real Hilbert space of 
functions (h(x) : x £ X} for some domain X, and suppose H possesses 
the continuous reproducing kernel K(x, y) :x,y E. X. If the norm 
\\h\\i = supvex|h(x)|; Vh G H, is measurable, then H can be com­
pleted with respect to this norm to form a Banach space B which is 
capable of supporting a countably additive Gaussian measure fi{ • }. 
The ordinate evaluation functionals are all bounded on B and 
{h(x) : x Œ. X ; h Œ. B} is a. Gaussian stochastic process. 

The covariance kernel of the process is easily found. Since h(x)h(y), 
for fixed x, y G X, is a tame functional based on the two-dimensional 
space spanned by K( - , x) and K( • , y) we have 

c(x,y)= \B HxMy) • p.{âh) 

- dhi dh2 

where 

r = \K(x,x) K{y,x)l 
lK(x,y) K(y,y)i-

Hence C(x, y) = K(xy y)lk. 
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Conversely, given a finite, positive-definite covariance function 
C(x, y) on X2, and a positive dispersion parameter A, there is a unique 
Hilbert space of functions on X with reproducing kernel K(x, y) = 
XC(x, t/), (Moore's Theorem). A measure space supporting the Gauss­
ian stochastic process with the given covariance function may then 
be constructed as described earlier. 

For example, consider the Hilbert space H of real, absolutely con­
tinuous functions on [0,1] which vanish at zero and have square-
integrable first derivative, with inner product given by 

(/>g)= \l
of'(x)-g'(x)-dx; V / , g G E 

The norm defined by 

11/111!= sup \h(x)\; MhGH, 
x G [0,11 

is measurable on H, and completion of H with respect to || • || i leads 
to the usual Wiener space B of continuous functions on [0,1] . 

In particular, taking F(h) = [(h(x) — h(y))l(x — y)a] 2 we find 
/B F(h) * ti{dh} = \~ l | x — t/|1_2a, which approaches zero or infinity 
as y approaches x, according as a is less than or greater than \ . In 
other words, although B consists entirely of continuous functions, 
almost none of these are differentiable anywhere. 

5. Applications in numerical analysis. 
5.1. Type of problem considered. Without wishing to offer a formal 

definition of the term "numerical analysis", we consider two broad 
classes of problems with which the numerical analyst finds himself 
confronted: 

(a) Problems with complete information. These include properly 
posed linear or nonlinear algebraic or differential equations whose 
true solutions can, in principle, be approximated arbitrarily accurately 
by means of a sufficiently large number of exact arithmetic operations. 

(b) Problems with incomplete information. Many examples arise 
in connection with the interpretation of experimental measurements. 
For example, one may be presented with a finite number of ordinate 
values, measured at given abscissae but known to be subject to obser­
vational error, and be required to estimate ordinate values at inter­
mediate abscissae. 

We shall be concerned with applying the foregoing mathematical 
apparatus to the formulation and numerical solution of problems of 
type (b). However, it is worth noting that some, if not all, of type (a) 
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problems may usefully be treated as if they were of type (b). For 
example, when performing a digital iteration to a zero of a known 
function one can never perform more than a finite number of arith­
metic operations. At any stage one can ask "On the basis of the 
information I now have (i.e. a finite number of given and/or computed 
values), what is the best estimate I can make of the required solution?" 
Clearly, this is a problem of type (b). 

5.2. Philosophy of approximation. It is common practice to con­
struct "rules", for example quadrature formulae, for estimating some 
definite property of a function from a knowledge of other properties. 
Such a rule is usually expected to give useful output when applied, 
without special modification, to a wide variety of input functions. 
Thus, Simpson's rule 

Fs(h) = (al3)[f(-a) + 4f(0) + f(a)] 

is often used to approximate the value F (J) = f*af(x) • dx, 
although it is clear that some / ( • ) may be chosen so as to make the 
error \R(f)\ — \F(f) — Fs(f)\ arbitrarily large. Of course, rules 
like this can be tailored to deal accurately with a prescribed, 
fairly limited class of functions, but a rule designed to be exact for, 
say, low order polynomials will generally give poor results when 
applied to functions having singularities near the approximation 
region, in the complex plane. However, there is practical value in a 
rule which, like Simpson's rule, is exact for a small class of functions 
and tolerably good for a much wider class. 

Roughly speaking, our approach to problems of type (b) will be as 
follows: 

In any particular problem situation we are given certain specific 
properties of the solution, e.g. a finite number of ordinate or deriva­
tive values at fixed abscissae. If we can assume no more than this 
basic information we can conclude only that our required solution is 
a member of that class of functions which possesses the given prop­
erties—a tautology which is unlikely to appeal to an experimental 
scientist! Clearly, we need to be given, or to assume, extra informa­
tion in order to make more definite statements about the required 
function. 

Typically, we shall assume general properties, such as continuity 
or nonnegativity of the solution and/or its derivatives, and use the 
given specific properties in order to assist in making a selection from 
the class K of all functions possessing the assumed general properties. 
We shall choose K either to be a Hilbert space or to be simply related 
to one. 
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Golomb and Weinberger (1959) drew attention to the fact that if a 
best approximating function can be regarded as a member of a Hilbert 
space, then the specific information referred to above may be inter­
preted as a set of values of linear or nonlinear, functionals, each of 
which helps to localise the required function to a more and more 
limited region of the space. For example, knowledge of the values 
of a finite number of bounded, linear functionals constrains the re­
quired function to lie in a hyperplane, and knowledge of an upper 
bound on its norm further limits the function to lie in a hyperdisc. 

In the present approach, an a priori localisation is achieved effective­
ly by making an assumption about the relative likelihoods of elements 
of the Hilbert space of possible candidates for the solution to the 
original problem. Among other things, this permits, at least in 
principle, the derivation of joint probability density functions for 
functionals on the space and also allows us to evaluate confidence 
limits on the estimate of a required functional (in terms of given 
values of other functionals) without any extra information about the 
norm of the function in question. 

The relationship between the present approach, which might be 
termed "Functional Estimation", and classical Approximation Theory 
is illustrated schematically in Figure 5.1. The examples below will 
help to substantiate and clarify the picture. 

Functional Estimation 

Approximation Theory 
Figure 5.1 Relationship between Approximation Theory and Functional Estimation 
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5.3. Estimation of linear functionate. Using the same notation as 
in §2 we can write the error in a linear approximation rule as 

Rh =(h, g0)- i u ^ g j ) , MhŒH. 

Notice that R is a tame functional on H so it makes sense to write its 
mean-square value as 

e2(w) = | \Rh\2 • v{dh] 

= L \(h'Z°- 2^&) \ 2 »{dh} . 

By a previous example (equation (3.7)) we have 

e*(w) = ||R||2/X = | | g o - i ^ & | | 2 / x . 

The mean-square error e2(w) is minimised by choosing w so as to 
minimise ||R||, clearly leading to the same result as the usual theory 
of optimal approximation. 

This approach is analogous to the familiar statistical method of 
Minimum Variance parameter estimation which, for the case of a 
normal distribution, we would expect to agree with the method of 
Maximum Likelihood. That this expectation is correct can be seen 
from another example (relation (3.12)), which gives the joint relative 
likelihood of the vector 

x = {x0, xu x2, ' ' ', xn} = {(h, go), (h, gi), (h, gz), '"AK gn)} 

as 

X(x) = exp [ - (\l2)x'Gn-+\x\, 

where the (n + l)th order Gram matrix Gn + 1 is given by [Gn+l]jk = 
(gj, gfc); j> k = 0, 1, 2, • * -, n. It is now only a matter of algebraic 
manipulation to show that X(x) is maximised, subject to given values 
for {Xj\ j = 1, 2, • • -, n} by choosing x0 = ^j=i WjXj where the 
{Wj;j = 1,2, • • -, n} are the usual optimal weights. 

Thus, for the case of the linear approximation problem, we have 
agreement between classical optimal approximation and functional 
estimation. The following sections extend the results obtainable by 
functional estimation beyond the scope of optimal approximation 
theory. 
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5.4. Confidence limits on linear functionals. We now consider the 
problem of placing confidence limits upon the optimal estimate of the 
value of a bounded, linear functional, even in the absence of norm 
bounds. 

Let x = {xi, x2, ' ' ', xn} be a vector of values of bounded, linear 
functionals on a real Hilbert space, having a joint relative likelihood 
function 

X(x) = Xn/2 exp ( - (\/2)x ' Ax), 

A being the inverse of the Gram matrix formed from the representers of 
the bounded, linear functionals in question. 

We partition x and A as 

, - m t C — A - \R s] t 
(5.1) |_£ J n"4

m LS' T \ »-^ 

r (R-ST^S')-1 - (K-sr-is^-isr-11-1 

L- ( T - S'R-^-iS'K-1 ( T - S'R^S)"1 J 

with the objective of simultaneous estimation of the components of 
the vector v in terms of given values of the components of the vector 
u. Let 

y = l o g g t e ) ] = (n/2) logX - (kl2)(u'Ru + 2v'S'u + v'Tv). 

For a maximum likelihood we must have 

4 s - = TT - ^(u 'Ru + 2ü'S't/ + D'7Ü) = 0, d\ 2X 2 V - - - - - - / 

a = ~ M S s t̂tfc + 2 Tifcüfc ) 
d ü i x fc=l * = 1 ' 

= 0; j ' = 1,2, • • -, n — m. 

These equations are easily solved for the maximum likelihood esti­
mates 

0 = - T-^S'u, X = nlu'(R~ ST~lS')u. 

Furthermore X(x) may be written in the form 

X(x) = A»'2exp{- (\I2)[U'(R- ST~lS')u 
(5.2) ^ 

+ (t>' + w'ST-1)T(t ;+ T-iS'i i)]} 
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from which it follows that the conditional likelihood of v, given 
w, is 

(5.3) X{v\u) = \<»-™>/2- e x p { - (A/2)(Ü'+ u'ST-^Tiv + T~lSfu)} 

and the marginal likelihood of u is simply 

(5.4) Au) = Xm/2 • e x p { - (A/2) • u'(R - ST-lS')u}. 

Note that equation (5.3) immediately provides an alternative proof 
that — T_1S 'u is a Maximum Likelihood estimator oft;. 

Now consider the quadratic forms 

<?i = (12+ r - 1 S ' w ) T ( ü + T-iS'ii), Ç2 = M ' ( K - ST~lS')u, 

which satisfy 

Ql + Ç>2= x'Ax. 

These expressions may be reformulated as 

from which it may be verified that rank(Ç2) = n — m and rank(Ç2 

= m. Thus, by Cochran's theorem (Cochran, 1934), the quantitie 
Qi and Q2 are distributed as independent X2 variâtes, with (n — m 
and m degrees of freedom respectively. The statistic 

q = (ml(n - ra))Qi/Ç2 

then follows the Fisher F n _ m m distribution law, whose probability 
density function is given by 

= r(n/2) / n- m \("-™)/2 

M ) ~ r(m/2)r((n - m)/2) ' \ m / 

(5.5) (n_m)/2-i 

' {1 + ( ( n - m)lm)q}^; q > °* 

In practice this result may be used as follows: corresponding to an 
desired confidence level a, we can determine a value qa from th 
cumulative table of f(q); thence we can say, with confidence a, tha 
the required vector v lies within the (n — ra)-dimensional ellipsoi 
defined by 
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(t?+ r - 1 S ' t t ) ' r ( i ; + TlS'u) 
(5.6) " " 

^ ((n - m)/m)<7« • w '(R - ST~lS ')u. 

Note. In the complex case Qi and Q2 have 2(n — m) and 2m real 
degrees of freedom respectively, and relations (5.5) and (5.6) must be 
modified accordingly. 

EXAMPLE. Take H to be the Szegö-Hilbert space H of functions 
analytic within the unit circle C and continuous on C, with inner 
product defined by 

(/>g)= \cm-W) -\dz\; V/,gGH. 

This space possesses the reproducing kernel K(z, t) = ll2ir(l — zi). 
Suppose we are given the values 

z 

0.0 

0.8 

- 0 . 4 - -0.5i 

/(*) 
1 + 2i 

1 + 2i 

1 + 2i 

The above technique permits us to estimate /(0.5i) = 1 H- 2i with 
95% confidence that |/(0.5i) - / ( 0 . 5 t ) | g 1.26 and 99% confidence 
that | / ( 0 .5 i ) - / (0 .5 i ) | ^1 .84 . The inclusion of further tabular 
points with f= 1 + 2i leaves f unchanged but narrows the con­
fidence intervals; e.g. given, in addition, the values 

_z f(z) 

- 0 . 2 + 0.7i 1 + 2i 

0.2 - 0.7i 1 + 2i 

we have 95% confidence that |/(0.5i) - /(0.5i) | ^ 0.34 and 99% 
confidence that |/(0.5i) - / ( 0 . 5 î ) | ^ 0.46. 

The above technique provides a rational basis for dealing with the 
estimation problem posed in the Introduction (and, of course, with 
more complicated linear problems). 

5.5. Estimation of bounded linear junctionals from noisy data. Let 
the linearly independent elements {ĝ ; j = 1,2, • • - ,n} , in a real 
Hilbert space H, be the representers of the bounded linear functionals 
{Lj;j= 1,2, • • -, n}. We shall suppose that approximate values of 
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the quantities _s = {Ljh; j = 1, 2, • • -, m; m < n] are given, and that 
we wish to estimate the values of the remaining quantities t = 
{Ljh;j = m + 1, m + 2, • • -, n}. 

The joint distribution of the nth order vector x= {s, t} is given by 
(3.12), and we presume that the given, approximate values q result 
from additive contamination of_s by a random "noise" vector jr, whose 
relative likelihood function is assumed to be of the form 

(5.7) Al) = Mm/2 * exp ( - (fil2) r'Br). 

Here B is assumed to be a known matrix, and jx may or may not be 
known. 

This problem is discussed elsewhere (Larkin, 1971) and the follow­
ing maximum likelihood estimates are found for the unknown quan­
tities: 

Partitioning the matrix G as 
<^m-+ <^n — m -» 

G = 

we have 

•17 

V W 

î 
m 
i 
Î 

n — m 

i 

(5.8) 

J = (1 + (XIli) • B - ' t / - 1 ) - ^ , 

1 = (klfi) • B~lU-% and 

i = Y'u-% 
where, if JU. is assumed to be known, k satisfies the equation 

(5.9) 2 ' ( [7 + (XIii) • B~l)-lU(U + (klfi) • B - ' ) - ' £ = m/(2\) 

and, if X and fi are both unknown, die ratio t> = X/pt satisfies the 
equation 

a ' ( t / + PB~l)-lU(U+ O B - 1 ) - ^ 

q_'(U+ PB~l)-lB~l(U + t>B~l)-lg ~ ' 
(5.10) 

Modifications appropriate to the case of a complex Hilbert space and 
a singular matrix G - 1 are also discussed. Notice that equations (5.8) 
indicate that _t should be found by optimal approximation from a 
"smoothed" signal vector J, where klfi plays the role of a "smoothing 
parameter". 

5.6. Simple nonlinear problems. The most striking feature of func­
tional estimation, as compared with optimal approximation, is its 
capacity to deal effectively with certain nonlinear problems. Progress 
in this direction is limited by the difficulty of evaluating function 
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space integrals in closed form, but at least some simple, nonlinear 
estimation problems turn out to be analytically tractable. 

Suppose we are given values of the functionals {Fj(h);j — 1, 2, 
n} and wish to estimate the value of F0(h). In principle, we might 
find the multivariate distribution of the vector F = {Fj(h);j = 0 ,1 , 
2, • • -, n} by inverse Fourier transformation of the (n + l)-dimensional 
characteristic function given by Theorem 3.3. Substitution of the n 
known values then leads to the conditional distribution of F0, given 
{Fj,j = 1,2, • • - ,n} . This distribution comprises all the information 
we can legitimately infer about F0, on the basis of the foregoing 
theory. Unfortunately, this program is impracticable except in certain 
special cases, so we are led to consider alternative techniques for 
estimation of F0. 

For example, if the functionals Fj(L); j = 0, 1, 2, • • -, n, are all 
homogeneous and of the same degree in h, we might consider a linear 
minimum variance estimator derived as follows: 

Take 

(5.11) S = / JFO(Ä) - S WjFj(h) J' • ß{dh}. 

Assuming all the required functional integrals exist, minimisation of 
S with respect to the weights w — {w^j = 1,2, • • -, n} leads to the 
linear equations 

(5.12) Cw= d, 

where 

and 

4 = f F0(h) • Fj(h) • fji{dh}. 

Thus, if a denotes a vector of given values of the {Fj(h);j = 1, 2, • • -, 
n}, we have j ^ 0

 = d'C'1^, noting that C is Hermitian. The minimal 
value of S is given by 

Smi„ = f |F0(/i)P • ti{dh} - d'C-id. 
J B 

Note that the dispersion parameter X disappears from equations 
(5.12) under the assumed homogeneity conditions; otherwise A will 
appear explicitly in these equations. 
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EXAMPLE. Consider the Paley-Wiener-Hilbert space H of real, 
band-limited functions, square-integrable on the real line, with inner 
product given by 

(e.g. de Branges, 1968). This space possesses the reproducing kernel 
function 

Sin[a(x - y)] 
Klx, y) = -1 ^ - , a real, 

TT(X - y) 

where [—a, a] is the support of the Fourier transform of any member 
ofH. 

Suppose we are given the values a = {a, = h2(xj); j = 1, 2, • • -, n] 
and wish to estimate the value of S-b h2(x) • dx, for some real, fixed b 
Note that h(x)h(y) is a tame function for fixed x, y and, for a real Hil­
bert space, 

[ [/,(*)%)] » • Hdh) = «(*>*)%>?/)+ 2K*Kv) 

= _o2_ r 2 S i n 2 [ q ( x - y)] i 
W 2 1 a2(x - y)2 S 

Hence, discarding the factor a^khr2 and appealing to the Fubin 
theorem, we can define 

a2(xj - xk)
2 J 

Cb r 2Sin 2[a(x, . -x)] y , . , n 

and use 

(5.13) £0(fr) = d 'C" 1 « = w'a, say, 

as an estimator of S-b h2(x) • dx. 
For illustrative purposes let us choose n = 3, a = 1, fo = 7r, XI = 

— 7T, x2 = 0, x3 = IT. This leads to weights 

Wl = 1.58467316633354 = u?3, u;2 = 2.92881509301435. 

This quadrature rule does not treat constants exactly, since 2 J = I U 

^ 1, but this is hardly surprising, since the unit function is not ; 
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member of this Hilbert space. However, numerical experiments sug­
gest that if 

(5.14) xj= -b + 2b(j- l ) / ( 2 n - 1); j = 1,2, • • - ,n , 

then 
1 n 

and 

which indicates that limiting versions of quadrature rule (5.13) may 
well treat constants exactly. 

An alternative approach might be to determine an h G H which 
maximises 

Ah) = exp(- (\l2)\\h\\2) 

subject to the constraints 

Fj(h)=<V> j=l,2,--;n. 

We can then use F0(h) as an estimator of F0. Often this approach 
will lead to a generalised eigenvalue problem (Larkin, 1969), but for 
illustrative purposes we consider here a problem similar to that just 
discussed. 

Suppose we are given values of the bounded, linear functionals: 
Fj(h) = (h> &') Ä °&> j = 1> 2, ' ' "> n> a n d wish to estimate the value of 
the quadratic functional F0(h) = (h, Ah), where A is a finite-trace 
class operator on H. From a previous result (equation (2.4)) we know 
that h = a ' G _ 1 g where g = {g1? g2, * * *,gn} and the Gram matrix 
G is defined by Cjk = (g,, g*), j , k = 1, 2, • • -, n. Hence 

(5.15) F0(n) = (Ä, Ah) = a ' G - i M G - 1 « 

where the general element of the nth order matrix M is M,-* = (g,-, Agk); 
j,k = 1,2, • • -,n. 

We now choose H to be the Hilbert space used in the previous 
example, 

Fj(h) = h(xj); j=l,2,--;n, 



416 F. M . LARKIN 

F0(h) = r h2(x) • dx. 
J —b 

Thus we have 

Fo(h) = f ( % ) , K(y, x)) • (h(z)9 K(z, x)) • dx 
j —fo 

= | ^ (h(y),(h(z),K(y,x)K(z,x)))-dx; 

i.e. Fo(fo) = (/i, Ah) where 

Ah(y) = (h(z), \b K(y, x)K(z, x) • dx ) 

= Jb % , x)h(x) -dxGH. 

The matrix M is thus given by 

Mjfe = (&> ̂ gfc) = J _oo &(y) J _b
 K(y> *)g*(*) ' dx dy 

rb 

= J _b &(*)gfc(*) ' dx> 

i.e. for j , k — 1, 2, • • -, n, 

(5.16) M,,= ^ - f SinM»-^)] - S i n K » - ^ ] 
7T2 J - b (X — Xj)(x — Xk) 

and G has the form 

(5.17) Gjk = S f a [ « f r - ^ ) ] . 

For fixed {XJ; j = 1, 2, • • -, n} we can use (5.16) and (5.17) to find 
numerically the matrix Q = G~lMG~l which characterises the quad­
rature rule (5.15). However, for the equispaced abscissae given by 
(5.14) it turns out that the elements of Q vary in sign and their 
absolute magnitudes increase rapidly with n. This feature makes 
(5.15) unsuitable for practical use, since small changes in the {a,} 
can result in large changes in F0(h). 

We thus have three superficially attractive approaches to the prob­
lem of approximate quadrature of a nonnegative function whose 
ordinate values {f(xj);j — 1,2, • • *,n} are given at prescribed 
abscissae, mathematically equivalent to the following procedures: 
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(a) Find the optimal interpolant to {f(xj);j= 1,2, • • *,n} and 
integrate it over the required range. 

(b) Find the optimal interpolant to {fil2(xj); j = 1, 2, • • •, n} 
and integrate its square over the required range. 

(c) Use the quadrature weights derived by means of the minimum 
variance technique described earlier. 

Although approaches (a) and (b) both avoid the necessity of func­
tional integration, they will both be unreliable in practice —the 
former because the optimal interpolant may go negative even though 
the ordinate values may all be positive, and the latter because of 
intolerable numerical errors arising from the use of inexact arithmetic. 
Approach (c) suffers from neither of these defects, remaining a serious 
contender for practical use. 

5.7. The case of unbounded junctionals. We have examined the 
question of what can be inferred about the value of a bounded, linear 
functional from a knowledge of the value of another bounded, linear 
functional, but it is instructive to consider what happens when the 
norm of one of these tends to infinity. 

If g! and g2 are the representers of two bounded, linear functionals 
on some Hilbert space H, whose numerical values are X\ and x% 
respectively, the joint distribution of x = {xÌ9 x2} is given by relation 
(3.12), where 

G = r | | g i " 2 <&>& 
Li 
L(gl>g2) H&H 2 

so that 

G"1 [|g.r-w-to.»)w-[_{*i^ -<**?]• 
The a priori distribution of x2 is N(0, ||g2||/V\) while, from equation 

(5.3), its conditional distribution given Xi is 

V ' »gill2 ' L K \ ) 

Thus, as ||gi | | -^ °°, the conditional mean of x2, given x1? approaches 
zero, indicating that a knowledge of the value of an unbounded, 
linear functional contributes nothing to a knowledge of the value of a 
bounded, linear functional, except possibly to reduce the variance of 
its distribution about the a priori mean. 

EXAMPLE. Let H = L2(0,1) so that 

( />g)= \[ fit) • g(t) • dt, V / ,gGJf . 
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Let 

Lnh = h(t) • dt = xn, 
J 0 

&w = 

Ljh = ^ J ' '+* MO • dt, e ^ t j ^ l - e;j = 1,2, 

Thus 

0; t<tj-€, 

112e; tj-€^t^tj + €, j = 1, 2, • 

10; Ç; + € < t^ 1, 

g n ( * ) = l ; O g ^ l . 

The Gram matrix G is then of the form 

l/2e 1 

0 1 

l/2c 

• , n - 1. 

M l - 1 ; 

G = 

0 

1 1 

l/2e 1 

1 1 

assuming that the supports of {g,;j = 1,2, • • •, n — 1} do not overlap, 
and it may be verified that the optimal approximation to x„ is xn = 

Thus, as € —» 0 and the norms of {L,; j = 1, 2, • • -, n — 1} tend tc 
infinity, a knowledge of the values of {Ljh;j= 1,2, • • -, n — 1} 
which for numerical purposes is a knowledge of the ordinate values al 
the abscissae {xj;j = 1, 2, • • -, n — 1}, does not permit us to modify 
the a priori distribution of Lnh. In this case the {gj',j— 1,2, * * • 
n — 1} approach orthogonality with gn as c —> 0, so we cannot ever 
reduce the a priori variance of Lnh by measuring ordinate values! 

Alternatively, this example illustrates the need for restricting con­
sideration to a reproducing kernel Hilbert space when basing esti­
mates upon ordinate values. 
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