DECOMPOSITIONS OF DIRECT SUMS OF CYCLIC p-GROUPS

DALTON TARWATER AND ELBERT WALKER

Throughout we will be considering only p-primary Abelian groups G which are direct sums of cyclic groups. Such groups have many basic subgroups. Recall that B is a basic subgroup of G if B is a direct sum of cyclic groups (which is automatic here), pure, and G / B is divisible. Since G is a direct sum of cyclic groups, G itself is basic in G. If $G=\sum_{i=1}^{\infty} Z x_{i}$, where $o\left(x_{i}\right)=p^{n_{i}}, \quad n_{1}<n_{2}<\cdots$, then $B=$ $\sum_{i=1}^{\infty} Z\left(x_{i}-p^{n_{i+1}-n_{i}} x_{i+1}\right)$ is basic in G with $G / B \approx Z\left(p^{\infty}\right)[1$, Lemma 31.1, p. 103]. Let G be any direct sum of cyclics, and suppose B is basic in G with $G / B \approx Z\left(p^{\infty}\right)$. Write $G=\sum_{i=1}^{\infty} G_{i}$, where G_{i} is a direct sum of cyclic groups of order $p^{n_{i},} n_{1}<n_{2}<\cdots$, and where no $G_{i}=0$. Tarwater [6] showed that $G=X_{1} \oplus X$ with

$$
\begin{aligned}
B & =\left(B \cap X_{1}\right) \oplus X, \quad X_{1}=\sum_{i=1}^{\infty} Z x_{i} \\
B \cap X_{1} & =\sum_{i=1}^{\infty} Z\left(x_{i}-p^{n_{i+1}-n_{i}} x_{i+1}\right),
\end{aligned}
$$

and $o\left(x_{i}\right)=p^{n_{i}}$. In particular, if C is any basic subgroup of G with $G / C \approx Z\left(p^{\infty}\right)$, then there is an automorphism α of G such that $\alpha(B)=C$. More generally, he indicated in [5] that if G is any direct sum of cyclic groups with basic subgroups B and C such that G / B and G / C are isomorphic and have (the same) finite rank, then there is an automorphism α of G such that $\alpha(B)=C$. The idea is to show that $\quad G=X_{1} \oplus \cdots \oplus X_{n}=Y_{1} \oplus \cdots \oplus Y_{n} \quad$ with $\quad B=\left(B \cap X_{1}\right)$ $\oplus \cdots \oplus\left(B \cap X_{n}\right), \quad C=\left(C \cap Y_{1}\right) \oplus \cdots \oplus\left(C \cap Y_{n}\right), \quad X_{i} \approx Y_{i}$, and with $X_{i} /\left(B \cap X_{i}\right) \approx Y_{i} /\left(C \cap Y_{i}\right) \approx Z\left(p^{\infty}\right)$. Now P. Hill [3] has proved that if G is any direct sum of cyclic groups and B and C are basic in G with $G / B \approx G / C$, then there is an automorphism α of G such that $\alpha(B)=C$. Hill's proof involves extending height-preserving automorphisms of subgroups, and employs a two stage transfinite induction. One would hope that the general case follows from the case when $G / B \approx G / C \approx Z\left(p^{\infty}\right)$, or at least that most of the group

Received by the editors November 19, 1970 and, in revised form, December 10, 1970.

AMS 1970 subject classifications. Primary 20K10, 20K30; Secondary 20K25.
Copyright © 1972 Rocky Mountain Mathematics Consortium
theory involved takes place there. This is the case, as an examination of our development will show.

We state the following theorem, whose corollary is quite important in our subsequent proofs.

Theorem 1 (Tarwater [6], Hill [2]). Let B and C be basic subgroups of the direct sum of cyclic groups G such that $G / B \approx G / C \approx$ $Z\left(p^{\infty}\right)$. Then there is an automorphism α of G such that $\alpha(B)=C$.

Corollary 1. Let G be a direct sum of cyclic groups and let B be basic in G such that $G / B \approx Z\left(p^{\infty}\right)$. Suppose $G=Y_{1} \oplus Y$ with Y_{1} unbounded. Then $G=X_{1} \oplus X$ with $B=\left(B \cap X_{1}\right) \oplus X, X_{1} \approx$ $Y_{1}, X \approx Y$.

Proof. Let C_{1} be basic in Y_{1} with $Y_{1} / C_{1} \approx Z\left(p^{\infty}\right)$. Then $C=C_{1}$ $\oplus Y$ is basic in G and again $G / C \approx Z\left(p^{\infty}\right)$. By Theorem 1, there is an automorphism α of G with $\alpha(C)=B$. Then $X_{1}=\alpha\left(Y_{1}\right)$ and $X=$ $\alpha(Y)$ have the desired properties.

Theorem 2. Let G be a countable direct sum of cyclic groups and let B be basic in G. Then $G=\sum_{i \in I} X_{i} \oplus X$ with
(a) $B=\sum_{i \in I}\left(B \cap X_{i}\right) \oplus X$, and
(b) $X_{i} /\left(B \cap X_{i}\right) \approx Z\left(p^{\infty}\right)$.

Proof. We may suppose that G is unbounded. Write $G=\sum_{i=1}^{\infty} G_{i}$, where G_{i} is a direct sum of cyclic groups of order $p^{n_{i}}, n_{1}<n_{2}<\cdots$, and where no $G_{i}=0$. Let $G_{i}[p]=S_{i} \oplus B \cap G_{i}[p]$. Let A_{i} be a summand of G_{i} such that $A_{i}[p]=S_{i}$, and let B_{i} be a summand of B such that $B_{i}[p]=B \cap G_{i}[p]$. All this is possible since G_{i} is a direct sum of cyclic groups of fixed order $p^{n_{i}}$ and B is pure in G. Now $G=\sum_{i=1}^{\infty}\left(A_{i} \oplus B_{i}\right)$. Indeed, $G[p]=\sum_{i=1}^{\infty}\left(A_{i} \oplus B_{i}\right)[p]$, and every element in $\sum_{i=1}^{\infty}\left(A_{i} \oplus B_{i}\right)[p]$ has the same height in $\sum_{i=1}^{\infty}\left(A_{i} \oplus B_{i}\right)$ as it does in G since B_{i} is also a direct sum of cyclic groups of order $p^{n_{i}}$. Thus we have a decomposition $G=\sum_{i=1}^{\infty}\left(A_{i} \oplus B_{i}\right)$ with $E\left(A_{i} \oplus B_{i}\right)=n_{i}, 1 \leqq n_{1}<n_{2}<\cdots, B \cap A_{i}=0$, and $B_{i} \subseteq B$. We want to stipulate that infinitely many of the B_{i} are nonzero. Suppose not. Pick a basis of G by picking one for each A_{i} and B_{i}. Suppose $B_{k_{1}}=0$. Then $A_{k_{1}} \neq 0$. Let $a_{k_{1}}$ be a member of the basis chosen for $A_{k_{1}} .{ }_{m}^{m}$ Write $a_{k_{1}}=p^{n_{k_{1}}} \sum_{i=n_{k_{1}+1}}^{m_{1}} g_{i}+b_{k_{1}}$, with $g_{i} \in A_{i} \oplus B_{i}$, $E\left(\sum_{i=n_{k_{1}}+1}^{m} g_{i}\right)=2 n_{k_{1}}$, and $b_{k_{1}}^{k_{1}} \in B$. Pick $B_{k_{2}}=0$ with $k_{2}>m_{1}$. Then $A_{k_{2}} \neq 0$. Let $a_{k_{2}}$ be a member of the basis chosen for $A_{k_{2}}$. Write $a_{k_{2}}=p^{n_{k_{2}}}\left(\sum_{i=n_{k_{2}+1}}^{m} g_{i}\right)+b_{k_{2}}$ with $g_{i} \in A_{i} \oplus B_{i}$, $E\left(\sum_{i=n_{k_{2}}+1}^{m} g_{i}\right)=2 n_{k_{2}}$, and ${ }^{2} b_{k_{2}} \in B$. Continue the process. In the basis originally chosen for G, replace all the $a_{k_{i}}$ by $b_{k i}$. The resulting
set is still a basis for G. This gives in the obvious way a new decomposition $G=\sum_{i=1}^{\infty}\left(A_{i} \oplus B_{i}\right)$ with $E\left(A_{i} \oplus B_{i}\right)=n_{i}, \quad 1 \leqq n_{1}<n_{2}<$ $\cdots, B \cap A_{i}=0, B_{i} \subseteq B$, and with infinitely many of the B_{i} nonzero. Since G is countable, G / B is countable. Suppose its rank is $\boldsymbol{\aleph}_{0}$. Then $G / B=\sum_{i=1}^{\infty} X_{i} / B$ with $X_{i} / B \approx Z\left(p^{\infty}\right)$. (From this case it will be obvious how to handle the case where G / B has finite rank.) Let $A=\sum_{i=1}^{\infty} A_{i}$. We need the following technical fact. Suppose $x_{i} \in X_{i}$. Then $x_{i}+B=a+B$ with $a \in A$ and $E(a)=E(a+B)$. Indeed, $x_{i}+B=\sum_{j=1}^{\infty}\left(a_{j}+b_{j}\right)+B \quad$ with $\quad a_{j} \in A_{j}, \quad b_{j} \in B_{j}$, and with $E\left(\sum_{j=1}^{\infty}\left(a_{j}+b_{j}\right)\right)=E\left(\sum_{j=1}^{\infty}\left(a_{j}+b_{j}\right)+B\right)$. But dropping the b_{j} does not affect either of the two equalities since $b_{j} \in B$. In particular, there are elements in $A \cap X_{i}$ of arbitrary order whose orders are the same $\bmod B$. Now relabel the B_{i} so that $B_{11}, B_{21}, B_{12}, B_{31}, B_{22}, B_{13}$, $B_{41}, B_{32}, B_{23}, B_{14}, \cdots$ are the nonzero B_{i} in order of increasing exponents $k_{11}<k_{21}<k_{12}<k_{31}<\cdots$. Let $a_{11} \in A \cap X_{1}, E\left(a_{11}\right)$ $=E\left(a_{11}+B\right)=k_{11}$. Let $a_{21} \in A \cap X_{2}, E\left(a_{21}\right)=E\left(a_{21}+B\right)=k_{21}$. Let $a_{12} \in A \cap X_{1}, E\left(a_{12}\right)=E\left(a_{12}+B\right)=k_{12}, a_{11}=p^{k_{12}-k_{11}} a_{12} \bmod B$. Let $a_{31} \in A \cap X_{3}, E\left(a_{31}\right)=E\left(a_{31}+B\right)=k_{31}$. Let $a_{22} \in A \cap X_{2}$, $E\left(a_{22}\right)=E\left(a_{22}+B\right)=k_{22}, a_{21}=p^{k_{22}-k_{21}} a_{22} \bmod B$. Let $a_{13} \in A \cap X_{1}$, $E\left(a_{13}\right)=E\left(a_{13}+B\right)=k_{13}, a_{12}=p^{k_{13}-k_{12}} a_{13} \bmod B$. Continue in this fashion. Pick a basis of G by picking a basis of each A_{i} and each $B_{i j}$. Let $b_{i j}$ be a member of the basis picked for $B_{i j}$. Replace $b_{i j}$ by $a_{i j}+b_{i j}$. From our construction, the resulting set is still a basis of G. Let $y_{i j}=a_{i j}+b_{i j}, Y_{i}=\sum_{j=1}^{\infty} Z y_{i j}$. Then Y_{i} is a summand of G, being generated by a subset of a basis of $G . \quad Y=\sum_{i=1}^{\infty} Y_{i}$ is a summand of G since it too is generated by a subset of a basis of G.

If $S_{i}=\sum_{j=1}^{\infty} Z\left(y_{i j}-p^{k_{i j+1}-k_{i j} y_{i j+1}}\right)$, then $S_{i}=B \cap Y_{i}$. Suppose $b=\sum_{j=1}^{n} m_{j} y_{i j} \in B \cap Y_{i}$. We use induction on n. If $n=1,0=b \in S_{i}$ since $B \cap A_{i}=0$. Suppose any shorter linear combination of the $y_{i j}$ that is in B is in S_{i}. Now $b-m_{1} y_{i 1}+p^{\dot{k}_{i!2}-k_{i 1} m_{1} y_{i 2}=}$ $\left(p^{k_{i 2}-k_{i 1}} m_{1}+m_{2}\right) y_{i 2}+\sum_{j=3}^{n} m_{j} y_{i j} \in B$, and by induction is in S_{i}. Since $-m_{1} y_{i 1}+p^{k_{i 2}-\dot{k}_{i 1}} m_{1} y_{i 2} \in S_{i}$, it follows that $b \in S_{i}$ and hence that $B \cap Y_{i}=S_{i} . \quad B \cap Y_{i}$ is pure in Y_{i} and $Y_{i}\left(\left(B \cap Y_{i}\right) \approx Z\left(p^{\infty}\right)\right.$. Since $Y_{i} \subseteq X_{i}$ and the sum $\sum_{i=1}^{\infty} X_{i} / B$ is direct, it follows that $B \cap Y=\sum_{i=1}^{\infty}\left(B \cap Y_{i}\right)$. Write $G /(Y \cap B)=Y /(Y \cap B) \oplus K /(Y \cap B)$. Since Y is a summand of $G, G / Y \approx K /(Y \cap B)$ is a direct sum of cyclics, whence $K=W \oplus(Y \cap B)$. Thus $G=Y \oplus W$, and $B=$ $(B \cap Y) \oplus(B \cap W)$. But $Y+B=G$ by construction, since $Y_{i}+B=X_{i} \quad$ for all i. Therefore $G=Y \oplus(B \cap W)$, whence $W=B \cap W$. We have proved Theorem 2.

It should be noted that the above result follows from Hill's theorem [2]. The next two theorems reduce everything to the countable case.

Theorem 3. Let G be a direct sum of cyclic groups, and let B be basic in G. Then $G=\sum_{i \in I} X_{i}$ with $B=\sum_{i \in I}\left(B \cap X_{i}\right)$ and $\left|X_{i}\right| \leqq \aleph_{0}$.

Proof. Let Λ be a basis of G. Consider the set of all independent families $\left\{X_{i}\right\}_{i \in I}$ of subgroups of G such that
(a) $\left|X_{i}\right| \leqq \aleph_{0}$ for all $i \in I$,
(b) $\sum_{i \in I} X_{i}$ is generated by a subset of Λ,
(c) $B \cap\left(\sum_{i \in I} X_{i}\right)=\sum_{i \in l}\left(B \cap X_{i}\right)$, and
(d) $B \cap X_{i}$ is basic in X_{i} for all $i \in I$.

Partial order these families in the obvious way. Zorn's lemma clearly applies. Let $\left\{X_{i}\right\}_{i \in I}$ be a maximal family. Let $X=\sum_{i \in I} X_{i}$, and $\quad Y=\sum_{i \in l}\left(B \cap X_{i}\right)$. Write $\quad G / Y=X / Y \oplus K / Y$ with $\quad K \supseteq B$. Conditions (c) and (d) enable us to do this. Since X is a summand of $G, G / X \approx K / Y$ is a direct sum of cyclic groups, so $K=C \oplus Y$ and $G=X \oplus C$. Also $B=Y \oplus(B \cap C)$ since $K \supseteq B$. If $C=0$, we are done. So suppose not. Write $G=X \oplus H$, where H is generated by the elements of Λ not in X. Let K_{1} be any nonzero countable subgroup of C. Since $B \cap C=D$ is basic in $C, C / D$ is divisible, and $\left(K_{1}+D\right) / D$ is in a countable divisible subgroup C_{1} / D of C / D. Then $C_{1}=S_{1}+D$ with $\left|S_{1}\right| \leqq \kappa_{0}$ and $K_{1} \subseteq S_{1}$. Now $\left(S_{1}+D\right) / D$ $\approx S_{1} /\left(S_{1} \cap D\right)$ is divisible. Put $S_{1} \cap D$ in a countable pure subgroup $P \quad$ of D. We have $\left(S_{1}+P\right) /\left(\left(S_{1}+P\right) \cap D\right)=\left(S_{1}+P\right) / P \approx$ $S_{1} /\left(S_{1} \cap P\right)$ is divisible and P is pure in $S_{1}+P$, being pure in D and hence in G. Set $S_{1}+P=T_{1}$. Thus we have $T_{1} /\left(T_{1} \cap D\right)$ is divisible, $T_{1} \cap D$ is pure in T_{1}, whence $T_{1} \cap D$ is basic in T_{1}. Furthermore, $\left|T_{1}\right| \leqq \aleph_{0}$, and $K_{1} \subseteq T_{1} \subseteq C$. For each $t \in T_{1}$, write $t=x+h, x \in X, h \in H$. Write $h=\sum_{a_{\lambda} \in \Lambda} n_{\lambda} a_{\lambda}$, andwrite $a_{\lambda}=x^{\prime}+c^{\prime}$, $x^{\prime} \in X, c^{\prime} \in C$. Adjoin all such c^{\prime} to T_{1}, getting a countable subgroup K_{2} of C. From K_{2} get a countable subgroup T_{2} of S_{2} in the same way T_{1} was gotten from K_{1}. Let $T=\bigcup_{i=1}^{\infty} T_{i}$. Now $\sum_{i \in 1} X_{i} \oplus T$ is generated by a subset of Λ by construction. Hence $\sum_{i \in I} X_{i} \oplus T$ is a summand of G. Since $T \subseteq C, T$ is a summand of C. Thus since $B \cap(X \oplus C)=(B \cap X) \oplus(B \cap C)$, we have $B \cap(X \oplus T)=$ $(B \cap X) \oplus(B \cap T)$. Also $B \cap T=\bigcup_{i=1}^{\infty}\left(B \cap T_{i}\right)$ is basic in T. Since T is countable, it follows that $\left\{X_{i}\right\}_{i_{I}}$ is not maximal after all. This concludes the proof.

Theorem 4. Let G be a direct sum of cyclic groups, and let B and C be basic subgroups of G such that $G / B \approx G / C$. Then $G=\sum_{i \in I} X_{i}$ $=\sum_{i \in I} Y_{i}$ with
(a) $X_{i} \approx Y_{i}$ and countable for all $i \in I$;
(b) $B=\sum_{i \in I}\left(B \cap X_{i}\right) ; C=\sum_{i \in l}\left(C \cap Y_{i}\right)$; and
(c) $X_{i} /\left(B \cap X_{i}\right) \approx Y_{i} /\left(C \cap Y_{i}\right)$ for all $i \in I$.

Proof. By Theorem 3, there are decompositions $G=\sum_{i \in I} X_{i}=$ $\sum_{i \in I} Y_{i}$ with each X_{i} and Y_{i} countable and with condition (b) holding. The proof is completed by two applications of the following theorem which we state for the reader's convenience.

Theorem (Richman and Walker [4]). Let m be an infinite cardinal number. Let f be a function from the set X to the cardinal numbers such that

$$
f(x)=\sum_{i \in I} f_{i}(x)=\sum_{i \in I} g_{i}(x) \quad \text { for all } x \in X
$$

where $\sum_{x \in x} f_{i}(x) \leqq m \geqq \sum_{x \in x} g_{i}(x)$ for all $i \in I$. Then there exists a partition of I into subsets S_{α} of cardinal $\leqq m$ such that

$$
\sum_{i \in S_{\alpha}} f_{i}(x)=\sum_{i \in S_{\alpha}} g_{i}(x)
$$

We come now to the main theorem.
Theorem 5. Let G be a direct sum of cyclic groups and let B and C be basic subgroups of G such that $G / B \approx G / C$. Then there is an automorphism α of G such that $\alpha(B)=C$.

Proof. By Theorem 4, we may suppose that G is countable. (We will assume that the rank of G / B is $\boldsymbol{\aleph}_{0}$. How to treat the finite case will become clear from this case.) Using Theorem 2, we write

$$
G=\sum_{i=1}^{\infty} \quad X_{i} \oplus X=\sum_{i=1}^{\infty} Y_{i} \oplus Y
$$

with

$$
\begin{gathered}
B=\sum_{i=1}^{\infty}\left(B \cap X_{i}\right) \oplus X, \quad C=\sum_{i=1}^{\infty}\left(C \cap Y_{i}\right) \oplus Y \\
X_{i} /\left(B \cap X_{i}\right) \approx Y_{i} /\left(C \cap Y_{i}\right) \approx Z\left(p^{\infty}\right) \quad \text { for all } i
\end{gathered}
$$

Now we are going to use Corollary 1 several times. We want to arrange for X_{1} and Y_{1} to have isomorphic unbounded summands; that is, that $X_{1}=K \oplus L$, and $Y_{1}=M \oplus N$ with $K \approx M$ and K unbounded. The crucial thing is to maintain $X_{1} /\left(B \cap X_{1}\right) \approx$ $Y_{1} /\left(C \cap Y_{1}\right) \approx Z\left(p^{\infty}\right)$. If some X_{i} and Y_{j} have isomorphic unbounded summands, just renumber. Otherwise, for $i>1$, write $X_{i}=K_{i} \oplus L_{i}$ so that L_{i} and Y_{1} have no isomorphic summands, L_{i} is unbounded, and $\quad K_{i} \subseteq B$. Similarly, write $\quad X=K \oplus L$. Now $H=X_{1} \oplus$ $\sum_{i=2}^{\infty} K_{i} \oplus K$ and Y_{1} clearly have isomorphic unbounded summands.

So write $H=S_{1} \oplus S, Y_{1}=T_{1} \oplus T$ with $S_{1} \approx T_{1}$ unbounded summands, $S \subseteq B$, and $T \subseteq C$. Further, choose S_{1} and T_{1} so that they are direct sums of cyclic groups of distinct orders; that is so that each Ulm invariant of S_{1} and of T_{1} is 0 or 1 . Now write $S_{1}=\sum_{i=1}^{\infty} D_{i}$, $T_{1}=\sum_{i=1}^{\infty} E_{i}, \quad D_{i} \approx E_{i}$ and unbounded, and $\sum_{i=2}^{\infty} D_{i} \subseteq B$, $\sum_{i=2}^{\infty} E_{i} \subseteq C$. We now have

$$
\begin{aligned}
G & =D_{1} \oplus \sum_{i=2}^{\infty}\left(D_{i} \oplus L_{i}\right) \oplus(L \oplus S) \\
& =E_{1} \oplus \sum_{i=2}^{\infty}\left(E_{i} \oplus Y_{i}\right) \oplus(Y \oplus T)
\end{aligned}
$$

Since $\left(D_{i}+L_{i}\right) /\left(B \cap\left(D_{i} \oplus L_{i}\right)\right) \approx Z\left(p^{\infty}\right)$ and L_{i} is unbounded, we can write, for $i \geqq 2, D_{i} \oplus L_{i}=V_{i} \oplus V_{1 i}$ with $V_{i} \approx D_{i}$ and $V_{1 i} \subseteq B$. Similarly, write $E_{i} \oplus Y_{i}=W_{i} \oplus W_{1 i}$ with $W_{i} \approx E_{i}$ and $W_{1 i} \subseteq C$. Finally, set $D_{1}=V_{1}, \quad E_{1}=W_{1}, \quad V=\sum_{i=2}^{\infty} V_{1 i} \oplus L \oplus S, \quad W=$ $\sum_{i=2}^{\infty} W_{1 i} \oplus Y \oplus T$. We then have

$$
\begin{gathered}
G=\sum_{i=1}^{\infty} V_{i} \oplus V=\sum_{i=1}^{\infty} W_{i} \oplus W \\
B=\sum_{i=1}^{\infty}\left(B \cap V_{i}\right) \oplus V, \quad C=\sum_{i=1}^{\infty}\left(C \cap W_{i}\right) \oplus W \\
V_{i} /\left(B \cap V_{i}\right) \approx W_{i} /\left(C \cap W_{i}\right) \approx Z\left(p^{\infty}\right) \quad \text { and } \quad V_{i} \approx W_{i} \text { for all } i,
\end{gathered}
$$

and our condition on the Ulm invariants of S_{1} and T_{1} guarantees that $V \approx W$. Theorem 1 completes the proof.

There are several immediate corollaries to Theorem 5 that we can draw.

Corollary 2. Let G be a direct sum of cyclic groups, let m be a cardinal number $\geqq 1$, and let \mathcal{B} be the set of all basic subgroups B of G such that the rank of $G / B=m$. Suppose $\mathcal{B} \neq \varnothing$. Let $\delta(\mathcal{B})$ be the symmetric group on \mathcal{B}, let $A(G)$ be the automorphism group of G, and let $\phi: A(G) \rightarrow \delta(\mathcal{B})$ be the canonical map. Then $\operatorname{Im}(\phi)$ is transitive and $\operatorname{Ker} \phi$ is the center of $A(G)$, which is the group of p-adic units.

Proof. Theorem 5 says that $\operatorname{Im} \phi$ is transitive. Suppose $f \in \operatorname{Ker} \phi$. Then f maps every basic subgroup $B \in \mathcal{B}$ onto itself. Let $G=$ $Z x \oplus H$, and suppose $f(x) \notin Z x, f \in \operatorname{Ker} \phi$. Then $f(x)=n x+h$,
$h \in H, h \neq 0$. Let B be a basic subgroup of H such that H / B has rank m, and such that $h \notin B$. This is easy to arrange. Then $Z x \oplus B \in \mathcal{B}$, but $f(x)=n x+h \notin Z x \oplus B$. Therefore, if $f \in \operatorname{Ker} \phi$, then f maps every cyclic summand of G into itself. This forces f to be in the center of the endomorphism ring of G [1, proof of $56.3, \mathrm{p} .217$]. But the center of the endomorphism ring of G is the ring of p-adic integers [1,56.3, p. 217]. Thus $\operatorname{Ker} \phi$ is the group U of p-adic units. That the center of $A(G)$ is exactly U follows in our case from an argument entirely analogous to the proof of 56.3, p. 217 in [1]. This completes the proof.

Let B be basic in G, G a direct sum of cyclic groups. Let \bar{G} be the torsion completion of G. Then B and G are basic in \bar{G}, and there is an automorphism α of \bar{G} such that $\alpha(B)=G$. This is well known. However, one can achieve the same thing not by passing to \bar{G}, but merely by going to a bigger direct sum of cyclic groups in which G is basic.

Corollary 3. Let G be a direct sum of cyclic groups. Then there is a direct sum of cyclic groups H with G basic in H such that if B is any basic subgroup of G, there is an automorphism α of H such that $\boldsymbol{\alpha}(B)=G$.

Proof. Let C be a lower basic subgroup of G [1, p. 105]. That is, C is basic in G with the rank of G / C as large as possible. There is an isomorphism $\alpha: G \rightarrow C$. Thus there is a direct sum of cyclic groups H with G a lower basic subgroup in H. Let B be any basic subgroup of G. Then $H / B \approx H / G$. Theorem 5 completes the proof.

Corollary 4. Let B be a direct sum of cyclic groups, let \bar{B} be its torsion completion, let G and H be pure in $\bar{B}, G, H \supseteq B$, let G and H be direct sums of cyclic groups, and let $G / B \approx H / B$. Then there is an automorphism $\boldsymbol{\alpha}$ of \bar{B} such that $\alpha(G)=H$ and $\alpha(B)=B$.

Proof. By Theorem 5, there is an isomorphism $\alpha: G \rightarrow H$ with $\alpha(B)=B$. But α extends to an automorphism of \bar{B}.

References

1. L. Fuchs, Abelian groups, Akad. Kiadó, Budapest, 1958; republished by Internat. Series of Monographs on Pure and Appl. Math., Pergamon Press, New York, 1960. MR 21 \#5672; MR 22 \#2644.
2. Paul Hill, Automorphisms of countable primary abelian groups, Proc. Amer. Math. Soc. 25 (1970), 135-140. MR 41 \#334.
3. _- The covering theorem for upper basic subgroups, Michigan Math. J. 18 (1971), 187-192.
4. Fred Richman and Elbert Walker, Extending Ulm's theorem without group theory, Proc. Amer. Math. Soc. 21 (1969), 194-196. MR 39 \#1553.
5. J. Dalton Tarwater, Orbits of basic subgroups, Notices Amer. Math. Soc. 17 (1970), 149. Abstract \#672-233.
6. -_, Orbits of basic subgroups of primary abelian groups under automorphisms, Texas J. Sci. 23 (1971), 431-432.

Texas Tech University, Lubbock, Texas 79409
New Mexico State University, Las Cruces, New Mexico 88001
Rice University, Houston, Texas 77001

