PRESERVATION OF COPRODUCTS BY $\operatorname{Hom}_{\mathbb{R}}(M, -)$ tom head

The functor $\operatorname{Hom}_{R}(M, -)$ from the category of left *R*-modules into the category of abelian groups always preserves products but preserves coproducts only in special cases. An obvious sufficient condition for the preservation of coproducts is that *M* be finitely generated. In several significant special cases (for example, when *M* is projective or *R* is left Noetherian) finite generation is also necessary. H. Bass has stated [1, p. 54] that finite generation is not in general necessary for the preservation of coproducts and he has given a necessary and sufficient condition which we state in slightly altered form: $\operatorname{Hom}_{R}(M, -)$ *preserves coproducts if and only if M is not the union of any nest of proper submodules of the form* $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_i \subseteq \cdots$ (*i a positive integer*). In this note we present a simple example of a nonfinitely generated module *M* for which $\operatorname{Hom}_{R}(M, -)$ preserves coproducts and we discuss the effect of some additional hypotheses on coproduct preservation.

We make four assumptions that hold throughout this note: R is a ring with identity. All modules are unitary left R-modules. A map is an R-homomorphism. N is the set of positive integers.

THEOREM. There exists a Boolean ring **R** which has cardinal \aleph_1 and contains a maximal ideal **M** which is neither finitely nor countably generated but for which $\operatorname{Hom}_{\mathbf{R}}(\mathbf{M}, -)$ preserves coproducts.

PROOF. For each ordinal number β let S_{β} be the set of all ordinals α such that $\alpha < \beta$. Let Ω be the least ordinal of uncountable cardinal. The validity of our example will be seen to stem from the following fact: A subset X of S_{Ω} is cofinal (i.e., for every $\alpha \in S_{\Omega}$ there is a $\beta \in X$ such that $\alpha < \beta$) if and only if it is uncountable.

Let **R** be the subring of the ring of all subsets of S_{Ω} that is generated by the set of all 'segments' $\{S_{\alpha} \mid \alpha \leq \Omega\}$. Then **R** is a Boolean ring with identity S_{Ω} and has cardinal \aleph_1 . Let **M** be the ideal of **R** generated by the set of all 'short' segments $\{S_{\alpha} \mid \alpha < \Omega\}$. Then **M** is proper and maximal. Let $A_i \in M$ $(i \in N)$. For each *i* in *N* we have an $\alpha(i) < \Omega$ such that $A_i \subseteq S_{\alpha(i)}$. Since $\{\alpha(i) \mid i \in N\}$ is countable (= not cofinal),

Copyright © 1972 Rocky Mountain Mathematics Consortium

Received by the editors November 23, 1970.

AMS 1970 subject classifications. Primary 16A62, 13C99, 06A40; Secondary 16A64, 16A46, 16A50.

there is a $\beta < \Omega$ such that $\alpha(i) < \beta$ for all $i \in N$. Then $S_{\beta} \in M$ but not in the ideal generated by $\{A_i \mid i \in N\}$. Thus M is neither finitely nor countably generated.

Let $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_i \subseteq \cdots$ $(i \in N)$ be a nest of ideals of R that has M as its union. For each $\alpha < \Omega$, $S_\alpha \in M$ and consequently $S_\alpha \in A_i$ for some $i \in N$. We define a function $f: S_\Omega \to N$ by letting $f(\alpha)$ be the least positive integer for which $S_\alpha \in A_{f(\alpha)}$. There is an $n \in N$ such that $f^{-1}(n)$ is uncountable (= cofinal). Thus for every $\alpha \in S_\Omega$ there is a $\beta \in f^{-1}(n)$ such that $\alpha < \beta$ and we have $S_\alpha \subset S_\beta \in A_{f(\beta)} = A_n$. Then $S_\alpha \in A_n$ for all $\alpha < \Omega$ and $A_n = M$. We conclude that $\operatorname{Hom}_R(M, -)$ preserves coproducts.

Assume for the remainder of this note that M is a left R-module for which $\operatorname{Hom}_{R}(M, -)$ preserves coproducts. We will discuss three conditions under which M must be finitely generated.

If M is the coproduct of countably generated modules then M is finitely generated: Suppose $M = \coprod \{A_i \mid i \in I\}$ where each A_i $(i \in I)$ is nonzero and countably generated. From the coproduct preservation property we conclude that I is finite. Then M is countably generated. Let $\{g_i \mid i \in N\}$ be a set of generators for M. For each $i \in N$ let A_i be the submodule of M generated by $\{g_j \mid j \leq i\}$. Since $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_i \subseteq \cdots$ $(i \in N)$ and $\bigcup \{A_i \mid i \in N\} = M$, we conclude that $M = A_n$ for some $n \in N$. Then M is generated by $\{g_i \mid i \leq n\}$.

From this observation it follows that the example M of the theorem is minimal in two senses: There is no example (for any ring R) of a nonfinitely generated R-module M, for which $\operatorname{Hom}_R(M, -)$ preserves coproducts, that has either smaller cardinal or a generating set of smaller cardinal.

If M is projective it is finitely generated: Every projective module is the coproduct of countably generated modules by a theorem of Kaplansky [2]. Our first observation then implies that M is finitely generated. For a more direct proof see [1, p. 53].

By our theorem above, the hypothesis 'M is projective' cannot be weakened to 'M is a submodule of a (finitely generated) free module', nor can it be weakened to 'M is flat' since Boolean rings are regular and all modules over regular rings are flat [3, p. 134].

If R is left Noetherian then M is finitely generated: Suppose M is not finitely generated. Then there is a strictly ascending nest $A_1 \subset A_2 \subset \cdots \subset A_i \subset \cdots$ $(i \in N)$ of submodules of M. Let $K = \bigcup \{A_i \mid i \in N\}$. For each $i \in N$ let $K/A_i \subseteq Q_i$ be an embedding of K/A_i in an injective module. We have a map $h: K \rightarrow$ $\prod \{Q_i \mid i \in N\} \text{ given by } h(k) = (k + A_1, k + A_2, \dots, k + A_i, \dots)$ for each $k \in K$. Since R is left Noetherian, a coproduct of injective R-modules is injective. Thus h can be extended to a map $h_1: M \rightarrow \prod \{Q_i \mid i \in N\}$ and for any such h_1 we have $p_i h_1(M) \supseteq p_i h(M) = K/A_i \neq 0$ for every $i \in N$. Since the existence of such an h_1 would violate our coproduct preservation hypothesis, we conclude that M is finitely generated.

ACKNOWLEDGEMENT. The present note was written while the author was attending a N.S.F. summer institute in Research Participation for College Teachers at the University of Oklahoma. The author's interest in the topic arose in a seminar conducted by B. R. McDonald.

References

1. H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.

2. I. Kaplansky, Projective modules, Ann. of Math. (2) 68 (1958), 372-377. MR 20 #6453.

3. J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, Mass., 1966. MR 34 #5857.

UNIVERSITY OF ALASKA, COLLEGE, ALASKA 99701

NEW MEXICO STATE UNIVERSITY, LAS CRUCES, NEW MEXICO 88001