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ON A - m SETS, ALMOST PERIODIC FUNCTIONS 
AND GROUP TOPOLOGIES 

A . M . FINK AND G. H . MEISTERS 1 

1. Introduction. Markov [1], in a paper in 1933, introduced a 
combinatorial property of subsets of the real line which he used to 
prove that certain stability properties of solutions of differential 
equations implied their almost periodicity. The only property of these 
sets that he used is the one that we reproduce below as Theorem 1. 
It turns out that this combinatorial property makes sense and is 
useful in arbitrary groups. 

2. A — m sets. 
DEFINITION 1. A set S in a group (G, + ) is called a A — m set 

(m a positive integer) in case (1) given elements of G, tu t2, ' ' ', tm+i, 
not necessarily distinct, there exist i ^ j such that ti — tj G S; and 
(2) S is symmetric with respect to the identity of G, i.e., — S = S. 

We can make several remarks. Since all the t{s may be equal, 
0 G S for all A — m sets. Furthermore, the choice t\ = t, 12 = 0 
implies that every A — 1 set contains t or — t for t an arbitrary element 
of G. Since S is symmetric, it contains both. Thus the only A — 1 set 
is G itself. 

We first restrict ourselves to the additive group of reals. It may be 
verified that Ek = U„"=_ . [n - 1/fc, n + Ilk] (k ^ 3) is a A - (k - 1) 
set but not a A — (k — 2) set. 

As these examples indicate, A — m sets in R can contain gaps; 
however, in some sense they cannot be too sparse. The next two 
results make this precise. 

THEOREM 1. Every A — m set in Ris relatively dense, i.e., if S is a 
A — m set, then there exists an L(S) > 0 such that S O [t, t + L(S)] 
7̂  Ofor all real t. 

PROOF. The proof is by induction on m. The statement for A — 1 
sets is clear since R is the only such set. Assume the theorem true for 
A — (m — 1) sets. Let S be a A — m set. If S is also a A — (m — 1) 
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set then it is relatively dense by the induction hypothesis. Hence we 
may assume that S is not a A — (m — 1) set. There exist tx, • • -, tm 

such that ti — tj (f S. Let L = 2 max \U\ + 1 . If S is not relatively 
dense, there exists t such that [t, t + L] D S = 0 . Now there exists 
w such that w + ft G [ ft t + L] for all i. Consider the m + 1 real 
numbers v( = u + tiy i = 1, • • -, m, and t>m+1 = 0. Now ±(t>i — £>m+1) 
= ±Vi $ S and u* - ^ = ft - ft $ S, 1 ^ j ^ ra. Thus S is not 
a A — m set. This contradiction shows that S is relatively dense. 

The converse of Theorem 1 is not true. The integers are certainly 
relatively dense in R. But if n is a given positive integer, then let 
ti = Vpi, i = 1, * • *, n, where pi is the ith-prime. Then ft — tj is not 
an integer if i ^ j . This is easy to see. If Vp* — Vpj = m an integer, 
then pi= m2 + 2m Vpj + pj implies that Vpj is a rational number. 
This of course is false. Thus the integers are not a A — (n — 1) set. 
We might also remark that Theorem 1 is true for any subgroup of the 
reals. 

We now let G be an arbitrary group written additively with 
identity 0. 

THEOREM 2. If S is a A — m set, then there exist t\, - - -,tm in G 
such that G = (JZi{ti + S}. 

PROOF. Suppose no m translates of S cover G. Let to = 0, t\ (f S. 
If ti, t2, • * *, £fc have been picked fc ^ m — 1, then since T = 
Un=o{£n + S} 7̂  G, pick tk+i G G — T. By choice of the tk, U — tj 
^ S, i ^ j , 0 ^ i, j ^ m. This contradicts S being a A — m set. 

We now discuss the lattice properties of A — m sets. Let D = 
{S C G: there exists an m such that S is a A — m set}. We will need 
a special case of Ramsey's theorem, see Ryser [2]. 

RAMSEY'S THEOREM. If m is a given integer, there exists N(m) such 
that for every set E with cardinal (E) ^ N(m) and every division of 
the 2-element subsets of E into two classes, there exists an m-element 
subset F of E such that all of the 2-element subsets of F are in the 
same class. 

THEOREM 3. The collection D is a filter of sets containing 0. 

PROOF. Each member of D is nonempty and contains 0. The collec­
tion D is closed under supersets. Thus it remains to show that D is 
closed under intersections. Let S be a A — m set and T a A — n 
set, say with m=n. Now T is also a A — m set so we may assume 
m = n. Let £ = {fl9 2̂? ' ' *>£iV(m+i)} be an arbitrary collection of 
elements of G with N(m + 1 ) as in Ramsey's theorem. Divide the 



A - m SETS, PERIODIC FUNCTIONS AND GROUP TOPOLOGIES 2 2 7 

2-element subsets of E into two classes, Ex and E2, by {U, tj} G E\ 
if and only if U — tj G S. By Ramsey's theorem, there exists an 
(m + l)-element subset F of E such that every 2-element subset of 
F is either in Ex or E2. Since S is a A — m set, this cannot be in E2. 
Hence all 2-element subsets of F are in Ex; that is, there exist sub­
scripts j u - • ',jm+i such that tjk — tjH G S for all 1 ̂  k, n ^ m + l. 
Since T is a A — m set, one of the differences is also in T. That is 
« i - ^ Ë S n Tfor some i ^ j . So S H T is a A - N(m + 1) set. 

For the group of reals, it is easy to see that 

oo 

Pkj = U (jn - Ilk, jn + Ilk) 
n = - °° 

for j and k positive integers is in D and f\,j>o FkJ = {0}. Thus for 
G = R the collection D is a filter of sets with 0 the only common 
element. 

3. Group topologies. The properties of the collection D are 
reminiscent of the properties of the neighborhood system of zero 
in a topological group. The only property missing is the property 
that given S G D, there exists T G D such that t\ — t2 G S for all 
ti, t2 G T. If some subcollection of D which is a filter had this differ­
ence property, then this subcollection forms a base for a totally 
bounded topological group according to Theorem 2. 

Recall that a topological group G is totally bounded if for every 
neighborhood U of 0, there exist elements a1? a2, * • *, an such that 
G = Uf=i {at + U}. (It is easily verified that left and right totally 
bounded are equivalent.) The converse of the above statement is true. 
The neighborhoods of the identity in a totally bounded topological 
group form a filter of A — m sets. It is easy to see they form a filter. 
The rest is contained in 

THEOREM 4. If S is a symmetric neighborhood of 0 in a totally 
bounded group G, then S is a A — m set. 

PROOF. Let T be a symmetric neighborhood of 0 such that T + T C 
S. Let G = [J?=i{T + ti}. Then if su s2, ' ' *, sn+i are given elements 
of G, then there exist if^j and k such that siy Sj G {T + tk}. 
Then Si — tk = u G T and Sj — tk G T. Since T is symmetric, £fc — Sj 
= VELT. Then * - sj = w + t; G T + T C S, and S is a A - n set. 

That it is possible to get families of A — m sets which are filters 
and satisfy the difference property can be seen by considering almost 
periodic functions. Indeed, the notion of A — m set is intimately 
connected with almost periodic functions. Recall that on an arbitrary 
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group G, a complex valued function / is von Neumann left almost 
periodic if and only if, for € > 0, there is a finite set of group elements 
a l v • • -, an such that for each t E G, there is an i(t) such that \f(t + x) 
~f(aHt) + x)\ < e f° r all x G G. Right almost periodicity is defined 
analogously. It is well know that left and right almost periodicity are 
equivalent (Turing [9] ). 

THEOREM 5. A function f is von Neumann almost periodic on a 
group G if and only if for every e > 0, {x : \f(x + i) — f(t)\ < e for 
all t EL G} is a A — m set. 

PROOF. I f / i s almost periodic, let öi, • • -, an be chosen as above for 
e/2. If ti, ' ' -, tn+i are given then there are numbers i, j , k, i ̂  j , 
such that 

l f ( f t + * ) - / ( f l f c + x ) | < € / 2 

and 

\f(tj + x) - f(ak + x)| < e/2 for all x. 

Consequently |/(ft + x) — /(ft + x)\ < e for all x. This is equivalent 
to \f(ti — tj + x) — f(x)\ < e for all x. That is, given ti, • • -, tn+i, 
there exist i ^ j such that ft — ft G {£ : |/(£ + x) — f(x)\ < e, all 
xGG}. 

Conversely, suppose Be= {x : |/(JC H- t) — /(f) | < e, all t EL G} is 
a A — m set for each € > 0. According to Theorem 2, there exist 
tl9 • • -, ftn such that G = U^i{ft + B€}. If t E G is given, then 
— t E {ti + B€} for some i. Then — ft — £ G Be so that 
|/( — ft — t + x) — f(x)\ < e for all xEG This is equivalent to 
\f(t + JC) —/( — ft + x)| < e for all x G G. Thus the —ft serve as 
the a{ in the definition of almost periodicity. 

The A — m version of almost periodicity on a group appears to be 
a more direct generalization of the Bohr definition on the reals, R. 

We now turn to the construction of a collection of A — m sets 
using almost periodic functions on a group that will serve as a basis 
for a topology. Recall that a collection of sets ÜB will serve as a 
neighborhood base for the identity 0 in a group if !B satisfies 

(1) i f ( 7 G J 3 t h e n 0 G ( 7 ; 
(2) if U, VE <R then there i s a W G ß such that W (Z U D V; 
(3) if U E !B then there is a V G !B such that - V C U; 
(4) if U E !B then there is a V E <R such that V + V C [ / ; a n d 
(5) if 17 G E and t E G then there is a V E !B such that VCt + 

U-t. 
Furthermore, if U EB implies that there are elements a1? • • *,an 
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such that Ui^iitfi + U} = G, then this is a neighborhood base for a 
totally bounded topology. This is sometimes called precompact. Note 
that we are not requiring that the topology be Hausdorff. A topo­
logical group will be Hausdorff, if, given 0 / x E G, there is a 
U G!B such that x ^ U. 

I f / i s a complex valued almost periodic function on G, and v(x) = 
sup{|/(x + t) — f(t)\ : t G G}, then v is called the translation 
function off. It has the following properties: 

(i) t>(x)^0,t>(0) = 0; 
(ii) v(-x) = v(x); 

(iii) v(x + y) ^ v(x) + i;(y); 
(iv) v is its own translation function; 
(v) i f / i s continuous in some topology T, then t> is also continuous 

in that topology; 
(vi) v(x + y — x) = wx(t/) where 

w*(y) = sup |Ü(X + ! / + £ ) — v(x + £)|, 

ux(t/) is the translation function of £>x(t/) = v(x + j/). 
The proofs of these properties are given in Besicovitch [3] for 

G = R, but the proofs carry over to any group without much change. 
If ( G , T ) is a given topological group then ^(G^) is the collection 

of complex valued uniformly continuous functions on (G,T) and 
o#(G, T) C ^ ( G , T) is the collection of almost periodic functions on 
G which are continuous in (G, T). Let T(G, T) be the collection of 
translation functions v for / G JÏ(G,T); and for v G T ( G , T ) we let 
N(ü, e) = {£ G G : Ü(£) < e }. Then it is easy to verify that 

(a) 0 G % 6 ) ; 
(b) N(vi + ü2 ,min(€i,62)) C N(vU€i) H N(v2,e2); 
(c) - N ( Ü , € ) = N(t?,€); 

(d) N(v,el2) + N(v,el2) C N(t>,€); 
(e) N ( I ) , € ) £ T ; 

(/) a + N(ua,€) — ad N(v, e),ua= translation function of üfl. 
From (a)-(f) it follows that S = {N(t;,e) : e > 0, Ü G T ( G , T ) } 

satisfies (l)-(5) and thus is a base for a topology which makes G a 
topological group. We now have 

THEOREM 6. Let (G,T) be a topological group. Then there exists 
a topology rfor G such that 

(1) (G, f ) is a totally bounded topological group; 
(2) T C T ; 

(3) ^ ( G , r ) = <fc(G,f); 
(4) (G, f) is Hausdorff if and only ifjf(G, r) separates points; 
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(5) if (G, T) is totally bounded, thenr = r; 
(6) if T i C r2 then fi C f2. 

PROOF. We take for f, the topology generated by the collection !B 
described above. Then (G,f) is a topological group. Each N(v,e) 
is a A — m set by Theorem 5 so by Theorem 2, (G,f) is a totally 
bounded topological group. By (e) above T C T . 

To show (3) we l e t / G J\-(G,T) and e > 0. If t; is the translation 
function of/ then Ü E T(G, r) so that if x — y G N(v, e), then 

\f(x) - f(y)\ =i sup \f(x +t)- f(y + t)\ 

= sup \f(x -y+t)- f(t)\ = v(x -y)<€. 
t 

T h u s / G T^G,?). To show the converse, it is sufficient to show that 
^? (G , r )C JHß9r) and that 7z(G,f) C ^?(G,f) holds for totally 
bounded topologies. The above inclusion for <A follows from the fact 
that the definition of almost periodic does not depend on the topology. 
Thus the inclusion is just the continuity inclusion. To see that 
T / ( G , f ) C ^ ( G , f ) for (G,f) totally bounded, let / G T/(G,f). 
Then there exists a symmetric neighborhood V of 0 such that x — y G V 
implies that |/(JC) - / ( y ) | < e. Let G = {J?=i{ai + V}. If x G G , 
there exists a,{ such that x — a* G V. Thus for any t Œ G, (x + t) — 
(t + ai) ŒV and hence |/(x + t) - f(t + a{)\<e for all t G G. 
Thus / is von Neumann almost periodic. This finishes the proof of 
(3). To see that (4) is right, suppose (G, f) is Hausdorff. Then for 
a / b, there is an N(v,e), v G T(G,T) such that a — b (£ N(v,e). 
That is ü(a — fo) ̂  e > 0. Then t;(x — &) satisfies t; G Jî(G, T), 
ü(fo) = 0, and ü(a — fo) ̂  € > 0. Conversely, if cA(G, r) separates 
points, let a / O . Then there is a n / G ^ 4 ( G , r) such that |/(a) — 
/(0) | = € > 0. Then for Ü the translation function of / we have 
v(a) = sup,|/(f + A) - /(*)| ^ \f(a) - / (0) | = €. Hence a $ 
N(v,el2). But a topological group is Hausdorff if every nonzero 
point is excluded by some neighborhood of 0. 

To see that (G,T) = (G,f) if r is totally bounded, note first that 
it suffices to prove that T C f. Let U be a neighborhood of 0 in 
(G,r). Since (G,T) is completely regular there exists a uniformly 
continuous [4, p. 14] function / : (G,T)-* [0,1] such that /(0) = 0, 
/(x) = 1 on G - [7. Since (G,T) is totally bounded, / G Jt{G,j) by 
the proof of (3). Let v be the translation function o f / Then for 
x$U, v(x) = sup, | / (x+ t) - f(t)\^ \f(x) - / (0) | = 1. Hence 
N(v, i) C U. Hence U is a neighborhood of 0 in r. 

The last statement of the theorem is obvious. 
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COROLLARY 1. If(G9r) is a totally bounded topological group, then 
Jî(G, T) = ^ ( G , r). This follows immediately from (3) and (5). 

4. The reals. In the case when G is the reals one can say a few more 
things. We will be interested in the two cases when r is the discrete 
topology D or T is the usual topology u. 

In the case of the discrete topology (R, D), we have ^ (R , D) = 
^?(R, D) = {all von Neumann almost periodic functions}. This set 
contains nonmeasurable functions so that some sets in D are non-
measurable A — m sets. 

In the case (R, u) we have the following properties of (R, u). (R, Ü) 
is 

(1) A Hausdorff totally bounded topological group. 
(2) a Lindelöf completely regular topological group, hence normal, 
(3) not compact, not locally compact, nor even pseudocompact. 
The discussion of the previous section and Theorem 6 immediately 

give property (1). It is completely regular by a general theorem on 
topological groups, Lindelöf since û C u and hence normal. Since 
a Lindelöf topological group is pseudocompact if and only if it is 
compact and a totally bounded locally compact group is compact, 
the proof of (3) is completed by showing that (R, u) is not compact. 
We exhibit an almost periodic function, i.e., a uniformly continuous 
function on (R, w), whose range is not compact. Let fix) = sin x + 
sinV2x, then - 2 < / ( * ) < 2. But sup / = 2. In fact, if 
€ > 0 is given, there exists a 8 > 0 such that \x — (4k + l)7r/2| < 8 
implies that |sin x — 11 < c/2. By a well-known approximation 
theorem there exists an integer n such that, for some integral k and 
m, \2nfr - (4fc + 1)| < ÔTT/2 and \2nV2h - (4m + 1)| < &r/2. 
Then \n - (4k + 1)TT/2| < 8 and |nV2 - (4k + 1)TT/2| < 8 so that 
|sin n - 1|_< e/2 and |sin V2n - 1| < e/2. Thus \f(n) - 2| < e. 

Beside D and ü, what other totally bounded topologies for R are 
there? To look at this question, suppose (R, r) is a totally bounded 
group. Then ^ (R, T) is an algebra of functions that are almost periodic. 
Now one goes back to the construction off to see that one does not 
need ^4(R, r) to do this. What one needs is an algebra of functions in 
<s4(R, D). In fact, if one starts with ^ (R, r), considered as in Jt(R, D), 
and constructs the topology f by using the translation functions from 
this algebra, one gets a totally bounded topology (R,f) such that 
^ ( R , T ) CO£(R,f). But f C r implies the reverse. So 7/(R, r) = 
^ (R, f ). This implies r = f. We have thus shown that 

THEOREM 7. If (R, r) is a totally bounded group, then there exists 
an algebra A of almost periodic functions such that r is generated by 
{N(v,e) .visa translation function of a function in A}. 

file:///2nfr
file:///2nV2h
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This result is particularly interesting in view of a result of Halmos 
[5]. He shows that there exists a topology c such that (R, c) is a 
compact Hausdorff topological group. According to Theorem 7, this 
topology could be constructed in the above way. In particular, if the 
algebra A C < ?̂(R, u), then c C u. However, this is impossible, as can 
be easily seen by a simple Baire category argument (pointed out to 
the second author by Larry Baggett). For suppose that c C u and 
that (R, c) is a compact Hausdorff topological group. Then each 
closed interval [a, b] in R is a compact set in (R, c), and since 
(R, c) = UrT=°°-°° [w> w + 1] and (R, c) is a Baire space, there exists 
an integer m such that [m,m + 1] contains a nonempty open subset 
U ELC. Choose t0 €E U and define V = U — t0. Then V is an open 
neighborhood of zero and V C [ —10 + m, —10 + m + 1]. Since 
(R, c) is compact it is also totally bounded and so there exist real 
numbers t\, ' * -, tn such that 

n n 

R = U (V + tj) C U [tj - t0 + m,tj- t0 + m+ 1] 

which is clearly a contradiction. 
If T C u, then (R, f) has another interesting property. The Arzela-

Ascoli Theorem is true. If F C 7/(R, f) is a family which is uniformly 
bounded and uniformly-equicontinuous in (R, f), then F is a family 
in Ä4(R, U) that is homogeneous in Bochner's [6] terminology. This 
means that for each e > 0 and T(F) the translation functions of the 
family F, PIDETCF)!* \V(X) < e} is a A — m set containing an interval 
about 0. This implies that F is compact in the uniform norm, see [6] 
or [8]. 

It is not necessary that (R, r) be totally bounded for the Arzela-
Ascoli Theorem to hold in c4(R, r). In particular, if T is a semigroup 
of nonnegative real numbers with no finite limit point, and O G T 
then the set of almost periodic functions with exponents in F and con­
tinuous in (R, u) is an algebra A containing the constants and separat­
ing points. The Arzela-Ascoli Theorem holds in A, see Fink [7] or 
[8]. 

5. Concluding remarks. For some purposes (G,f) may be a 
substitute for the Bohr compactification of a group. If one is concerned 
with arguments about uniformly continuous functions, then (G, f) 
has essentially all the structure that the Bohr compactification has, 
and one does not need to embed G into a larger group. 

The generation of totally bounded group topologies by functions 
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can also be done with almost automorphic functions. In fact Veech 
[10, Lemma 2.12] has proved the hard part, that the A — m sets 
arising from e-translation sets of almost automorphic functions satisfy 
condition (4) of the axioms for a neighborhood base. 
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