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SPECTRAL REPRESENTATION OF SELFADJOINT
EXTENSIONS OF A SYMMETRIC OPERATOR

RICHARD C. GILBERT !

ABsTRACT. It is shown that the spectral multiplicity of a
minimal selfadjoint extension A of a simple closed symmetric
operator A; with deficiency indices m, n cannot exceed
m + n. In the case that A; has deficiency indices 1, 1, it is
shown that any minimal selfadjoint extension A can be repre-
sented as a multiplication operator in a space Lp?(—®, ®),
where P(t) is a 2 by 2 nondecreasing Hermitian matrix function
of t. In this case the spectrum and spectral multiplicity of A
are studied by use of P(t) and its relation to the matrix ®() =

2o[(t = A)"1 —¢(1 + 2)"1]1dP(¢t), where A is a complex
variable. A criterion is given for when the spectral multiplicity
of A is two and for when it is one. It follows from this criterion
that if A; has a selfadjoint extension Ay in the original space
with a singular spectral function, then the spectral multiplicity
of any minimal selfadjoint extension A is one.

1. Introduction. Let A; be a closed symmetric operator with defi-
ciency indices m, n in a Hilbert space $;. We suppose that A, is
simple, i.e., that A; does not have a reducing subspace in which it is
selfadjoint. A selfadjoint operator A in a Hilbert space  is called an
extensionof A, if ; C § and A; C A. A selfadjoint extension A is said
to be minimal if the only subspace of $ © §,; which reduces A is
{0}. In this article it is shown that the spectral multiplicity of a minimal
selfadjoint extension of A; cannot exceed m + n. In the case that A,
has deficiency indices 1, 1 a spectral representation is given for any
minimal selfadjoint extension A of A; in the form of a multiplication

Received by the editors July 16, 1970.

AMS 1970 subject classifications. Primary 47A20, 47B25, 47A10; Secondary
47E05.

Key words and phrases. Symmetric operator, deficiency indices, selfadjoint
operator, selfadjoint extension, spectrum, spectral multiplicity, spectral function,
generalized spectral function, spectral matrix, spectral representation, multiplica-
tion operator, singular Sturm-Liouville operator, Cayley transform, isometric
operator, unitary operator, unitary extension, generating subspace, analytic
function with nonnegative imaginary part, resolution of the identity, resolvent,
generalized resolvent, generalized resolution of the identity.

IThis research was supported by the National Science Foundation Grant No.
GP-12886.

Copyright © 1972 Rocky Mountain Mathematics Consortium

75



76 R. C. GILBERT

operator in a space Lp%(— %, %) where P(t) is a 2 by 2 nondecreasing
Hermitian matrix function of ¢, the “spectral matrix”. The spectrum
and spectral multiplicity of A are studied by use of the spectral matrix
and its relation to the matrix

() = f; [(t= N1 — ¢ + )-1] dP().

The work complements that of Donoghue [4], who restricted himself
to the case that ® = §,, ie., to the case that A is a selfadjoint
extension of A, in the original space $,. A different approach to the
spectral representation of A using an abstract analog of the expansion
theorems connected with ordinary differential operators was provided
by the author in [8] and in previous articles. Some of the methods of
the present article are close to those of Kac [9], who carried out a
similar project for singular Sturm-Liouville operators.

2. Generating subspaces. Let A; be a closed symmetric operator

with domain ®(A,) in a Hilbert space $,. Let A\ be a fixed nonreal
number. Let

2,(\) = (A} — NE)D(A)), Mi(ro) = H1 0 2,(Ao),
m, = dim wel(X()), n; = dlm WEI(AO),
Ui(ho) = (A} — ME)(A; — ME)~ L.

Here E stands for the identity operator. U,(A) is called the Cayley
transform of A;; it is an isometry mapping £;(Ao) onto £,(Ao). It is
true that A; = AU (Ao) — ME)(U(Ao) — E)~L. my, n, are called the
deficiency indices of A, with respect to Ao and depend only on the
half-plane (upper or lower) in which A, lies.

According to Naimark [11], all selfadjoint extensions of A; may be
constructed as follows: Let A; be a closed Hermitian operator in a
Hilbert space §,. (By Hermitian it is meant that (Aof, g) = (f, Axg)
for all f, g € ®(Ay), but it is not necessarily true that ®(A,) is dense
in §,.) Let £5(Ao), My(No), ma, na, Uz(hg) be defined as for A;
Suppose that m; + my = n; + ny and that my = n;. Then the operator
A’ = A, ® AyintheHilbertspace = 9§, @ $yisaclosed Hermitian
operator with £'(Ao) = £;(Ao) ® 2(Ao), M'(Ao) = M1 (Ao) D My(Ao),
U'(Ao) = Ui(ho) @ Us(ho), and with equal deficiency indices m; + mo,
ny + ng. Now let V be an isometric operator mapping 2:'(Ao) onto
M'(\o) and satisfying the condition that if & My(o) and
Ve My(Ag), then f=0. Then, Ug) = U'(Ao) ® V is a unitary
operator in §, and it is the Cayley transform of a selfadjoint operator
Ain 9 which is an extension of A;.
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What has been done above, briefly, is to tack a Hermitian operator
A, onto A; so as to obtain a Hermitian operator A’ with equal defi-
ciency indices. A selfadjoint extension A of A’ is then obtained by a
method similar to the one used by von Neumann to extend a symmetric
operator A’ with equal deficiency indices to a selfadjoint operator in
the original space. If $, = {0}, then, of course, Naimark’s method
reduces to von Neumann’s. Naimark’s method, and, in particular,
the operator V which is tacked onto U’()o) is studied in more detail in
Gilbert [6].

In the following, E(t) will stand for the spectral function of a self-
adjoint operator A in a Hilbert space 9. It is assumed that E() is
normalized by the conditions E(—® ) = 0, E(® ) = E, E(t — 0) = E(t).
Lh. {---} and c.Lh. {-- -} will stand for the linear hull and closed
linear hull, respectively, of the set {* - -}. A will stand for an interval
[a,b), and E(A)= E(b) — E(a). A subspace ® is said to be a
generating subspace for a selfadjoint operator Aif Lh. {E(A)f:fE€ @,
A is arbitrary } is dense in .

TueoreM 1. Let A be a selfadjoint operator in a Hilbert space 9.
Let U = U(\o) be the Cayley transform of A for a nonreal number \,.
Let & be a subspace of . Suppose that Lh. {Uf . f€ &, k=0, =1,
+2, -+ -}isdensein §. Then, ® is a generating subspace for A.

Proor. Suppose h is perpendicular to Lh. {E(A)f:fE ®, A is
arbitrary}. Then, (E( A)f, h) = 0 for all' A and for all fE€ &. Hence,
(F(s)f, h) =0 for all 5, 0 = s = 2m, and all fE &, where F(s) is the
spectral function of U. (F(s) and E(t) are related by the equation
E(t) = F(s), where t= Relo+ (ImAXg) cot(s/2) if ImAy <0, and
t= —Relo — (ImAg)cot(s/2) if ImAo>0, 0<s<2r.) Thus,
(UX, h)= [ e*sd(F(s)f, h)=0 for all fE® and all k=0,
*1, -+ -, and therefore h is perpendicular to Lh. {U*:f€ &, k= 0,
*1, - -+ }. Hence, h = 0. This proves the theorem.

ReEmaRk. Actually, it can be shown that for any subspace ©,
clh. {E(A)ff€ ®, Ais arbitrary} = cLh. {U¥:f€ &, k=0, =1,
+2, -} =clh {RQ\) f: fE€ &,ImA F 0},where R(\) isthe resolvent
of A

TueoreM 2. Let A be a minimal selfadjoint extension of the simple
closed symmetric operator A,. Let Ao be a nonreal number. Let
U = U(\o) be the Cayley transform of A corresponding to Ao. Then,
Lh. {UK: fE€ Mi(Ro) ® My(ho), k=0, =1, - - - } is dense in H, and
Lh. {UY: f&€ M (ho) ® My(Xo), k =0, x1, - - -} isdensein .

Proor. Let % = c.Lh. {UK: fE€ My(ko) ® My(ho), k= 0, £1, - - -}
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U maps A onto A, because A is invariant under U and U~L Since
U is a unitary map, it follows that U maps A* onto A*. We shall show
that A* = {0}, and therefore A = §.

We note that since M,(No) ® My(No) C A, it follows that A" C
8 (No) D 2(ho). Let fE AL Then, f=fi +f,, where fi E
81(_—);0), and _fz € 2,(\); and Uf= Ufy + Ufy, where Uf€ A+ C
£,(0) ® L:2(Ao), Ufi € &1(00) C $,, and Ufz € E(A) C H,. Tt
follows that Uf; € £,(Ao), and Ufy € £;3(Ao). We have thus shown
that if P is the operator of orthogonal projection on £,(Ao), then UPf =
PUf for all f E A", From this it follows that U maps PA" onto PA*.
Since U restricted to £,(\o) is the Cayley transform U, of A, we have
that U, maps PA" onto PA*. This means that A, is reduced by
PA*, and the part of A, in PA* isa selfadjoint operator. Since A, is
simple, PA*+ = {0}. Thus A+ C H,. Since A" reduces U and there-
fore A, and since A is minimal, %+ = {0}, which is what we set out to
prove.

Since U maps 51)21(7_\_0) &) ED?Z(X_O) onto M;(Ng) B My(Ao), the fact
that Lh. {UX:f& M (o) ® Mo(Ag), k=0, £1, ---} is dense in $
immediately implies that Lh. {U*f:f€& MM;(\o) ® My(Ag), k=0,
=1, - - -}is dense in 9. This completely proves the theorem.

THEOREM 3. Let A be a minimal selfadjoint extension of the simple
closed symmetric operator A,. Let Ny be a nonreal number. Then,
M1(No) B Ma(No), Mi(No) ® Ma(No), and [Mi(No) + Jy(No)] ¢ are all
generating subspaces for A. (Here, [ ] ¢ stands for closure.)

Proor. That M;(Xg) ® My(No) and M (No) ® My(No) are generating
subspaces for A follows immediately from Theorems 1 and 2. In order
to prove that M;(Ag) + M (Ao) is a generating subspace, we observe
that [P,UM,(Ng)] ¢ = My(Ao), where P, is the operator of orthogonal
projection onto My(Ag). (This follows from Gilbert [6, Theorem 2, item
(4)].) Also, U maps M;(Ao) into M;(No) @ My(No). Hence,

[M1(No) + UM (No)] ¢ = My(No) D Ma(Ao).
Therefore,
clh. {UKf: fE€ [T(no) + D (No)] 5 k=0, =1, -+ -}
= c.lh. {kafE 9321()\0) &) 9)‘2<A0), k= 0, il, c }

Since the latter set equals § by Theorem 2, [W;(Ao) + P, (No)] ° is
a generating subspace for A by Theorem 1. This proves Theorem 3.
(The author wishes to express his appreciation to Professor Robert

McKelvey for pointing out that ;(Ao) + M, (No) generates the space.
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The proof given here is different from McKelvey’s.)

REMARK 1. We have used [M;(\o) + P;(Xo)] ¢ in Theorem 3 rather
than M;(No) + M(No) for the purely technical reason that we have
been discussing generating subspaces rather than generating linear
manifolds or generating sets.

Remark 2. Let A; be a simple closed symmetric operator with
deficiency indices m,, n; with respect to the nonreal number Ao. Let
A be a minimal selfadjoint extension of A;. Since M 1(Ro) B My(xo) is
a generating subspace for A and has dimension m; + my, it follows
that the spectral multiplicity of A cannot exceed m, + my. Since
my = ny, it also follows that the spectral multiplicity cannot exceed
m, + n,.

3. Boundary values of analytic functions with nonnegative imagi-
nary parts. In the remainder of the paper certain facts will be needed
about boundary values of analytic functions with nonnegative imagi-
nary parts. These facts are collected here. Following Kac [9], we
define an R-function 6(A) to be a function which is analytic in the
upper and lower half-planes and satisfies the conditions 8(A) = 6(A)~,
ImAImOA)=Z 0 (ImA #0). Here 6(A)~ stands for the complex
conjugate of #(\), and Im stands for imaginary part. Each R-function
admits a representation of the form

1) oW =atpat [T =N o+ ) dut)

where B8 = 0 and « are real constants, and u is a nondecreasing func-
tion for which [Z. (1 + 2)~'du(t) < . Conversely, if () has a
representation of the form (1), then 6(A) is an R-function. « and B in
the representation (1) are unique, and w is unique if it is normalized
in some way, say, by the conditions

mO0)=10,  py= (12)[put—0) + put+ 0)].

The particular normalization used for p will not be important to us.
w is called the spectral function of 6.

0(A) is called an R;-function if it is the difference of two R-functions.
Each R;-function 6(\) admits a representation (1) in which a, B are
real numbers and p is a function of bounded variation on each finite
segment such that /=« (1 + 2)~1|du(t)| < .

The following properties are true for R,-functions. (See Kac [9]
or Aronszajn and Donoghue [3].)

(I) Ift,, tp are continuity points of u,
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(ko) = () = (Ur) lim [ Im (s + in) d.
-0+ 7t

This is called the Stieltjes inversion formula.

(II) If at the point ¢ there exists a finite or infinite symmetric
derivative u()(t) = limpo.(L/2R)[(t + h) — w(t — h)] (which is
true a.e.), then u)(t) = (1/r) lim, o Im 6(¢t + in).

(III) lim, o, 6(t + tn) exists and is finite a.e.

(IV) m|6(t + )| is uniformly bounded in any rectangle 0 < n < h,
a=t=Db.

The following property is true for R-functions.

(V) If lim,oIm 8(t + ) exists and is finite at the point ¢, then
n(¢) exists, and u)(t) = (1fr) lim, o+ Im 6(t + ).

The following property involves an R-function and an R;-function.

(VI) Suppose ¢(A) is an R,-function with spectral function wu(t),
and suppose Y (A) is an R-function with spectral function ¥(¢). Suppose
at the point t = ¢, there exists a finite symmetric derivative

[du(O/(d)v(t)] -,
= hl_igi {[n(to + h) — u(to — h)] [¥(to + h) — ¥(to — h)] 7'} = k.
Suppose v()(ty) exists and ¥')(¢y) # 0. Then,
nl_ig1+ [Im p(to + i)/Im ¢(to + )] = k.

If #(A) is an R-function with spectral function wu(t), we define
Qa+[ K] to be the set of all points ¢ for which lim,_o. 8(t + ) exists
and is finite and nonreal. By Q,[u] we denote the complement of
Qa+[m]. As indicated by Kac [9], Q,+[m] is in a certain sense the
carrier of the absolutely continuous part of m, and Q,[u] is the
carrier of the singular part. We note that by property (III),
lim, o+Im6(t + i) = 0 a.e. on Q;[u], and therefore by property
(V), u")(t) = O a.e.on Q5[ ] .

Let Q,[u] consist of all points ¢ for which 0 < u()(t) < . From
properties (III) and (V) it follows that Q,,[u] C Q,[u#] and that
Qa[ ] \Qa- [ 1] has Lebesgue measure zero.

4. Representation of A as a multiplication operator. Let A; be a
simple closed symmetric operator in a Hilbert space §,. Let A;
have deficiency indices 1, 1 with respect to the nonreal number A,.
Let A be a minimal selfadjoint extension of A; in a Hilbert space §.
Let E(t) be the spectral function of A. Let g;, go be nonzero elements
in M;(No), V(No), respectively. We define the matrix S(t) =
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low(®)||7x=1 by means of the equations ou(t) = (E(t)gg) j,
k =1, 2. For each t, S(t) is a Hermitian matrix. S(¢) is a nondecreasing
function of ¢.

Leto(t) = Ull(t) + 0'22(t). Let

8i(t) = do(t)(d)o(t)
= lim {[ou(t + h) — ow(t — h)] [o(t + h) — o(t — h)] "'}
ho0 +

The 8;(t) exist everywhere except on a set of o-measure zero, and

0=S8(t)=1, 0=082(t) S 1, 812(t) = 8a1(t)~, dui(t) + 8a2(t) = 1,

811()822(t) — 812(£)821(t) = 0. By Ls*(—o,®) (or, more simply,
Ls?) we shall denote the Hilbert space consisting of all complex-

valued vector functions f = [fi(t), fo(t)] whose components are
o-measurable and for which

1718 = J_ 2 FOR(D)8u(H)do(t) < ®.

Here fi(t)~ stands for the complex conjugate of fi(t). The inner
product of two elements f, i € Ls? s given by

- 2
FRs= [T, 3 HOmO-sx(0da(t)
Jk=1

The symbol 3. 7« f(t)h(t)~do(t) is often used for the
integral above. By Ts we denote the selfadjoint operator in Lg?2
consisting of multiplication by ¢ For further details concerning
the space Lg? and the operator Ts, see Kac [9] or Dunford and
Schwartz [5, XIIL.5.9]. °

By Theorem 3, M;(Ao) + M (Xo) is a generating subspace for A.
Hence, elements of the form X ,J~ E( Aj)(ajg; + b;gs) are dense in §.
Without loss of generality, we can assume that the A; are disjoint.
Let the operator W be defined by the equation

m

W[ 2 Ea)ae + b ]=[F axa). $ pxay)],

ji=1 7=1

where X( 4,) is the characteristic function of the interval A;. Then,
it can be shown that W is well defined. Suppose, for example, that
h=E(A)f= E(A’)f’ = h', where f = ag, + bgg, ff=a'gi+ b'g,.
Then, Wh = [aX( A), bX( )] Wh' = [a'X(A'), b'’X(A')]. We wish
to show that ||[Wh — Wh' ”s = (. Now,

Wh=[aX(A— A')+ aX(AN A'),bX(A — A") + bX(A N A")],
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Wh' = [a'X(A'— A)+a'X(AN A'),

b'’X(A'— A)+b'’X(AN A')],
so that

Wh— Wh' = [aX(A— A')—a'X(A' — A)+ (@a—a'X(A N A'),
bX(A— A')=b'X(A' — A)+ (b—b"X(AN A')].

From this expression we can see that
[Wh — Wh'|§ = (E(A— A")f, )+ (E(A" — A)f', f')
@) + (E(AN A)Y)F=f), (f= "))

Since E(A)f= E(A')f', we have that E(A — A')f+ E(AN A")f
= E(A'"— A)f"+ E(AN A’)f’, and therefore E(A — A')f=
E(A'— A)f'=0, and E(AN A")f=E@AN A’)f From these
last equations and (2) it follows that |[Wh — Wh'|§ =0 which is
what we wished to prove. One may proceed similarly if h and h’
involve more terms.

By arguments similar to the above we can also show that W is
linear and isometric. W can therefore be extended to all of §. It
can then be shown that W is an isometry which maps $ onto Lg2
and takes the spectral function of A into the spectral function of Ts.
Thus, A and T are umtarlly equxvalent via the operator W,

Now let the matrix P(t "P;k ”1k 1 be defined by the equa-
tions pu(t) = fo (1 + & )da,k(s) P(t) is a nondecreasing Hermitian
matrix function of . Let p(t) = p11(t) + poa(t). dp(t) and do(t)
are equivalent measures. Let Au(t) = dpu(t)/(d)p(t). The Au(t)
have the same properties previously enumerated for the 8u(t). Lp?
and Tp are defined like Ls2 and Ts. It is not difficult to see that the
multiplication operator Ts in Lg? is unitarily equivalent to the multi-
plication operator Tp in Lp? under the map [fi(t), fo(t)] —
[Aie)t — i)=Y, fo(t)(t —i)~']. It turns out that in what follows it
will be more convement for us to use Lp2 and Tp rather than Lg2
and Ts. This is because of the relation between the measures
dpix(t) and certain analytic functions ®@4(A) to be defined.

Let us summarize the preceding results in the form of a theorem.

TueoREM 4. Let A; be a simple closed symmetric operator in a
Hilbert space $,. Let A, have deficiency indices 1, 1 with respect
to the nonreal number . Let A be a minimal selfadjoint extension
of A, in a Hilbert space §. Let E(t) be the spectral function of A.
Let g, go be nonzero elements in M;(Ao), M;(No), respectively. Let



SELFADJOINT EXTENSIONS OF A SYMMETRIC OPERATOR 83

the matrix P(t) = ||pi(t)|/x=1 be defined by means of the equations
pi(t) = J¢ (L + s)d(E(s)g; &), j, k=1, 2. Let p(t) = pui(t) + pasl),
and let Au(t) = dpu(t)l(d)p(t). Then, A is unitarily equivalent to the
multiplication operator Tp in Lp2, where Lp? is the Hilbert space
consisting of all vector functions f (t) = [fi(®), fo(t)] whose com-
ponents are p-measurable and for which

® 2
I712=] . 2 OO Bxldp(t) < .

Under this equivalence, g, < [(t — i)~%, 0], and go < [0, (t — i)~1].

Remark. Let gi(¢) = [(¢t —i)71,0], go(t)= [0,(t —4)"']. Let
P;(j = 1,2) be the operator of orthogonal projection of Lp2 onto the
space perpendicular to g;. Let ,U be the Cayley transform of Tbp,
ie, (Uf)(t): (t = Xo)(t — ho)"'f(#). Let the image of £;(A) in
Lp2 be denoted by £;(Xo). Then &;(xo) is the closed linear hull
of the elements ngl, (PgU)ngl, (PQU)QPQg‘I, SRR ((7—1P1)g‘2,
(0-1P))28,, (U-'P))3%8,, ---. Let ®(A)) be the image of
®D(A)) in Lg% and let A, be the image of A,. Then, ®(4,) is the
closure in the graph norm of Tp of the linear hull of the elements

(t = No)~1Pagi(2), (t — No)~UBLU)Pyg,(2), (t — No)~1(P2U)2Pyg\ (1), - - -,
(t = Xo)~1Pygs(t), (t — Xo) ~{(PLU~1)Py o 1),

(t = Xo) " (PLU-1)2P (1), - -
A, is the restriction of Tp to SAD(AI).

Let p"(t) = dp(t)(d)t = limy,0+(1/2h) [p(t + h) — p(t — h)], and
similarly for pf,';:(t). Let £ be the set of points ¢ for which p()(¢) exists,
0 < p")t) = =, and for which the Aj(t) all exist. Then, p(~&) = 0,
where, ~£ stands for the complement of £. (See Kac [9].) Let 9 be
the set of all points t €£ for which the rank of A(f) = || Au(t) k=1 is
2, ie., for which det A(t) = Au(t) Agz(t) - Alz(t) Agl(t) >0, If
fE€ Lp? one may show (see Kac [9]) that 7l = f [fi®)2 dp(®)
+ slR(t)Pde(t), where f(t)= [fi(t), fa(®)], fa(t)= fi(t) AiT (D)
* () Aoy () A2()) on £ N {t: A() >0}, fi(t) = fol?) AB3 (1)
on £ MN{t:A,(t) =0}, fo(t)= [detA(t)] VZA[2(t)fz(t) on 9.
From this representation it follows that the multiplication operator
Tp in Lp2 (and therefore A in §) is unitarily equivalent to the multi-
plication operator in L,%(£) @ L,)(9). We summarize these results in
the following theorem.

THEOREM 5. Let the hypotheses of Theorem 4 hold. Let £ be the
set of all points t for which p!)(t) exists and 0 < p")(t) = ©, and for
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which the A(t) all exist. Let G be the set of all points t € £ for
which det A(t) > 0. Then, Ty (and therefore A) is unitarily equivalent
to the multiplication operator in L,)(£) ® L% ). Thus, the spectrum
of A is determined by the behavior of p; and if the p-measure of 9
is positive, the spectral multiplicity of A is 2, but if the p-measure of
G is zero, then the spectral multiplicity of Ais 1.

5. Spectrum and spectral multiplicity of A. Let the hypotheses of
Theorems 4 and 5 hold. Let P, be the operator of orthogonal projec-
tion onto $,. If R(A) is the resolvent of A, then the operator
R;(A\) = P,R(A), restricted to §,, is called a generalized resolvent
of Aj; and the operator E,(t) = P,E(t), restricted to ,, is called a
generalized spectral function of A,. If § = §,, then, of course,
R;(A\) = R(A) is called simply a resolvent, and E,(t) = E(t) is called
simply a spectral function. R;(A) and E,(t) are related by the equation

Ri(\) = 2o (t — \)"ME,(¢).

Now let the matrix ®(A) = |[@;x(A)[|7x-1, A complex, be defined by
the equations

3)  Du) =Agog) + O+ DRWg. g) k=12
It can be checked that

(4) ®u0) = [~ [t = N1 = 1 + )71 dpa(s)

®;i(A) is analytic for A in the upper or lower half-planes.

From equation (4) and the properties of R-functions given in §3,
we shall see that the behavior of py(t) is determined by the behavior
of ®;(A) as A approaches the real axis (and the Aj(t) are determined
by the p(t)). Hence, in order to compute p(t) and the Aj(t) and
thus (by Theorem 5) study the spectrum and spectral multiplicity of
A, we shall study the ®;(A) and their behavior as A approaches the
real axis. Firstly we shall obtain expressions for the ®;(A) which can
be used in studying this behavior.

Let Ao be a fixed selfadjoint extension of A; in ;. (Since A; has
equal deficiency indices 1, 1, there exists such a selfadjoint extension
Ao.) Let A\ have positive imaginary part. According to M. G. Krein,

(5) RiA)f = Ro\)f — [ 8(0) + Q)] ~(f; g))g
where Ro(\) is the resolvent of Ay,

(6) gA\) = g1+ (A — Ao)Ro(N)g1,

(7) QM) = iITmXo + (A — Xo)(g1, gN)),
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and 6(\) is an R-function. There is a one-one correspondence be-
tween selfadjoint extensions A of A; and R-functions 6(A). If 6(A) is
identically equal to a real constant, then A is an extension of A; in
Py, ie, $= P,. QQ) is a fixed R-function with positive imaginary
part in the upper half-plane. It depends on A; and A, but not on A.
It is true that g(A\) € M;(A). (The proofs of these facts may be found
in Achieser and Glasman [1, Appendix I, §4], and in Gilbert [7].)

We shall now make particular selections for g;, g and Ao which
will simplify our computations. Let Ao = i. Let g; € (i), ||a:]| = 1.
Let

(8) go = g(—i) = g, — 2iRo(—i)g1-

Then, g, € M;(—1), and it can be checked that ||g| = ||gi|| = 1.
Using equations (6) and (8), we can show that

9) (Ro(N)g2, g2) = (Ro(A)g1, £1)s

(10) (g), g1) = (g2, 80)) = 1 + (A — i)(Ro(N)g1, £1),
(11) (g1:80)) = (8), g2) = 1+ (A + i)(Ro(M)gy, 81)-
From the above equations and equation (5) it follows that
(12) (Ri(M)g1, 81) = (Ri(\)ga> 8e),

and therefore, by equation (3), that
(13) ®11(A) = Poa(A).

From equations (7) and (11) we see that

(14) QM) = X + (A2 + 1)(Ro(M)g1, g1)-
Equation (14) implies that Q(X) is an R-function with spectral function
q(t) = (Eo(t)gy, g1), where Ey(t) is the spectral function of A,.
From equations (3), (5), (10), (11), (14) it can be seen that
(15) @A) = [ 6A)QMN) — 11 [ 6(A) + Q)] ~*.

Using equations (5), (8), (10), (11), (14), we can show that the terms
(A2 + 1)(Ri(\)g1, g2) and (A2 + 1)(Ry(A)ge, g1), which appear in
®,5(A) and @y, (N) by equation (3), are given by

A2+ 1)(Ri(A)g1, g2) = W+ i)(A — ©)7IQN) — AA + i)(A — i)~ !
(16) —2i(A + i)(BRo(i)g1> g1)
= A+ )N = )7OM) — i1 2[ 6() + Q)] Y,
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A2+ )(Ri(A)ge, g1) = W — A + §)71Q() — AN — )N + ) !
(17) + 2i(A — i)(Ro(—1)g1 g1)
— A=A+ ) OM) + i12[6(N) + Q)] L

Since equation (4) shows that ®,,(A) and ®22(A) are R-functions,
it is true that py(ts) — py(t1) = (Um) lim,_os S22 Im®y(t + im) dt,
j =1, 2, at continuity points ¢, t; of p;;(t) and pso(t). Hence, by (13),
pui(tz) — pui(t1) = poalta) — paa(t1), and

p(ts) — p(ty) = 2[p1i(t2) — p11(t1)] = 2[paa(ta) — paa(ty)] -
Since
Au(t) = dpu(t)(d)p(t)
= lim [pa(t + h) — pi(t — W] [p(t + h) — p(t — h)] 71,

h—0+

it follows that
(18) A(t) = Ag(t) = 1/2
forallt € £. Also, by (4),

19 2nM) = [ (=N = o1+ )71 dp(e).

From equations (15) and (19) and the properties of R-functions, we
see that the behavior of p, and therefore the spectrum of Tjp, is deter-
mined by the behavior of the imaginary part of the function 2&,;(A) =
2[ O(A)Q(N) — 1] [ 6(A) + Q(A)] ~! as A approaches the real axis. This
behavior has been studied by McKelvey [10, §6], for the case that
A, is a singular Sturm-Liouville operator and by Aronszajn [2]
and Donoghue [4] for the case that 6(A) is identically equal to a real
constant.

Let us turn now to the computation of Ajy(t) = Ay(t)".

Suppose that t € £ and that 0 < p)(t) < ®. From

(20) Ays(t) = hlilgl+ {[p12(t + h) — p12(t — h)] [p(t + h) — p(t — h)] 7}
we see that

(21) Aa(t) = pih (B)lp(2)

and that p{) (¢) and pJ} (t) = p{3 (t)~ exist and are finite. We already
know that A“( ) = Ag(t) = 1/2, and therefore that p{] (¢) and p{) (¢)
exist and are finite. If £ = [£), &], { = [{1, L] are arbitrary vectors
with complex components, then by (4),
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(22)  @WED= [ [t N1 = d1+ 2)-1 dP(9)E D),

where (®(A § ) =71 ®uN&L and  similarly for (P(£), {).
Since each p,k (t) exists and is ﬁmte d(P(t)¢, £)I(d)t exists and is finite,

for d(P(t)€, {)i(d t_ZJk lek( )&  Since (22) shows that
(®A)E, €) is an R-function, by property (II) of R-functions,

(23) dP(t)€ Ol(d)t = (1fr) lim Im (D), §),

n—-0+

where A = t + in. By (23) and polarization,

2

24)  dP®E Ot = 1/2mi) lim Y [@u(\) — Bi(N) ] &L

-0+ jk=1

If we now take £ = [0, 1], ¢ = [1, 0], we obtain

(25) pi3 (1) = (L2mi) lim [®15(0) = @21(1)7]-
7—->0+

From (19) and property (II) of R-functions we know that
(26) p!(t) = (2r) lim Im®,().

7-0+

From (21), (25) and (26) it follows that if t € £ and 0 < p)(¢) < o,
then we can compute A 5(t) by the formula

@) Bialt) = (i) lim [@120) ~ Puin)] [ tim Im@,,(0).

n—0+

Suppose now that ¢t € £ and that p)(t) = . Then, from (20) we
see that

Jim {[pia(t + ) = pralt = R)] [p(¢ + h) = p(t = B)] 71}
exists and is finite. If € = [0,1],¢ = [1,0],
(28) pi2(t) = (P(1)€, ) = u(t) + iv(t),
where
u(t) = (UPE)E + §), £+ §) — (UYP@)E - 1), €= 0),
o(t) = (U4)(P()(E + i), & + il) — (L4)(P()(§ — iL), § — if).
It follows that

ki = lim {[u(t+ h) = u(t — h)] [p(t + h) — p(t — h)] -}

h—0+

and
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ke = lim {[o(t + h) — o(t — B)] [p(t + h) — p(t = h)] !}

h—0+

exist and are finite, and that
(29) Ayo(t) = ky + iko.
Now, u(t) is the spectral function of the R;-function
e1(A) = (L4)@A)NE + (), €+ ) — (L)@N)(E— ¢).€—0).
and v(t) is the spectral function of the R;-function
P2(N) = (L4)(@W)(€ + L), £ + i) — (L4)(PA)(€ — ik), € — iL).

p(t) is the spectral function of the R-function 2&;,(A). Hence, by
property (VI) of R-functions,

(30) ki = (1/2) lim [Im¢,(\)/Im ®y,(A)],
-0+
(31) ke = (1/2) lirgl [Im @A)/ Im @1, (A)] -

From (29), (30), (31) we see that
A () = (112) lim {[Im @A) + i Im @o(A\)]/Im P13 (A)}

7—-0+

= (140) lim {[(@N), ) — @A), §)]1/Im @, (A)}

-0+

= (1/4i) lim {[®;2(A) — ®3;(A)"]/Im D };(A)}.

n—0+

Thus, if t € £ and p')(t) = ®, we can compute Ajy(t) by means
of the formula

(32) Ao(t) = (1/4i) lim {[®@2(A) — Pgy(A) "]/ Im P (N)}.

-0+

Let us summarize the above results in the form of a theorem.

THEOREM 6. Let the hypotheses of Theorems 4 and 5 hold with
Ao = i. Let Ry(\) be the generalized resolvent of A, corresponding
to the selfadjoint extension A. Let Ay be a selfadjoint extension of
A, in the space 9, with resolvent Ro(\). Let g, have norm 1, and
let go = g, — 2iRo(—1)g,. Let

(33)  Di(N) = Ag, gx) + W2+ I)(Ri(N)g, g), j k=12

Then, A“(t) = Agg(t) =1/2 fOT adl te€ £. If t€ £ and 0< p(')(t)
< o, then
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(34) Aps(t) = Agy(t)” = (1/4d) lim [D1o(A) = Doy (A)7]/ lim Im®y,(a).

n—0+ -0+
Ift € € and p"(t) = o, then
(35) App(t) = Agy()- = (U4i)lim {[@15(A) — @o1(A)~]/Im D, (A)}.

n—-0+
The expressions (A% + 1)(Ri(A\)g1, g&2) and (A% + 1)(Ri(A)ge, g1) in
equations (33) for ®15(A) and ®y;(A) are given in terms of Q(\) and
0(\) by equations (16) and (17). Here Q(A\) = A + (A2 + 1)(Ro(A)g1, g1)
and O(\) is the R-function corresponding to A in Krein's formula
(5). ®11(A) is given in terms of Q(A) and O(\) by equation (15).
We now wish to evaluate the limits in (34) and (35). This can be

simplified by the following remarks. We first observe that equations
(33), (18) and (17) show that

lim [@;5(A) — Pay(A) 7]

n—0+

= lim {A + )X — )7'QN) — X + )X — i)"1Q(\)
n—0+
36
) = A+ A —)7IOMN) — 4] 2[6() + Q(A)] !
+ (A + i) A—t )JTHOM) ~—412[6(0)~ + Q(A)7] ~1}
Since Q — [Q— %[0+ Q] !=2i+ 0—[0+z]2[0+Q] Lt
follows from (36) that

lim [®,5(A) — @3 (M)7]

n—-0+
= lim {0+ )X — )"10A) — A+ D)X — i)"100)

(37) n—->0+
= (AN =76 + 4] 2[ 6(r) + Q( -

+ (N + A — )76+ i]2[ 60) 7 + Q)] 1}

Equations (36) and (37) can be used in equation (34).

Suppose that ¢t € £ and p")(t) = . From (19) and property (II)
of R-functions it follows that lim, o+Im®;;(A) = . Using (33),
(16) and (17), we see, then, that

lim {[q)lz(A) QZI(K)_] /Im @11()\)}

70+

(38) = 7,1-1»1;1+< {A+ A — )7 Q) + 2iQ5(N) — Qoe(N)]
= A+ DA = )R + 2iQ(0) " — QM) 7] }
“{Im®;;(A) )},
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where we have put Q;;(A) = 0A)QN)[ OA) + Q)] L Qie(A) =
Q1) = Q[ OA) + QW] 1, DusfA) = — [ 8A) + Q)] L. Then,
@ (A) = Q1(A) + Qpo(A). For arbitrary complex numbers &, & it
can be checked that Y %_;Qx(\)&E is an R-function. It follows
that Q;;(A\) and €yy(A) are R-functions, and Q;5(A) = h(A) is an
R,-function. Hence, by property (IV) of R;-functions, m{;;(A)[,
mQa(A)| and mQes(A)|, where X = t + in, are all bounded with respect
to m. If we factor (A + i)(\ — i)~! out of (38), put A =t + i and
take a limit asm — 0+, we obtain

lim {[®2(A) — @21 (A) "]/ Im Py, (A)}

n—-0+

= 9i(t + i)(t — i)~}

. 1i1(1)1 {[Im Q;,(A) + 2i Im Q15(\) — Im Qyo(A)] [Im P, (A)] 1}

(39)
+ 4(t+ i)t — i)~z + 1)t

: lirél {[nQu(\)~ + 2mQi2(A)~ — 9Deo(A) 7] [Im @y (A)] ~'}
70+
Using the boundedness of the mMQ(A)] and the fact that
lim, o Im®,;(A\) = ©,weseethatfort € £ and p!)(t) = »,
lim {[®12(\) — P21(A) ]/ Im Py (A)}

n—>0+

(40) = 2i(t + i)(t — i)~

- lim {[Im Q;;(A) + 2i Im Q;5(A) —Im Q22(A)] [Im P, (A)] ~1}.

-0+

Now let ou(t) = (1/m)lim, o+ fo Im Q(s + in) ds. Then the
ok(t) are spectral functions of the Q(A). The matrix |loj(t)%-,
is a nondecreasing Hermitian matrix function of t. Let o(t) =
011(f) + 05(t).  Then, p(t) — p(t1) = 2[0(t2) — o(t)] at con-
tinuity points ¢, t; of p and 0. It follows that p and o are equivalent
measures. Let 8(t) = dou(t)/(d)o(t). The &i(t) exist and are
finite o-almost everywhere, and 0=8,,(H) =1, 0= 8(H) =1,
812(t) = 821(t), 811(t) + 8a2(t) = 1, det ||8(t)]| = 0. Since p and o
are equivalent measures, we can assume without loss of generality
that £ was chosen so that the 8;(¢) exist and are finite on £. (Note.
The o;(t) and §;(t) here are to be distinguished from the oj(t)
and 8;x(t) of §4.) /

Now suppose that t € £, p)(t) = ®, §55(t) > 0. Since oi3 (t) =
822(t)p!"(t)/2 = oo, it follows from property (II) of R-functions that
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(41) lim Im Qoq(t + i) = .

n—0+
Hence, we write (40) in the form

lim {[®;2(A) — Po1(A)"]/Im Py, (A)}

n—-0+

) = 26+ =)

- lim {[(Im Q;,/Im y,) + 2i(Im Q;5/Im Qyy) — 1]

n—-0+

- [(Im Qpy/Im $) + 1] 71}

Since {};3 = — Q{3 and {1}, = Q + Q2(),, we see that

(43) Im Q,5/Im s = — Im Q Re {y/Im Oy — Re Q,
Im Ql I/Im 022 = Im Q/Im ()22
(44) + 2 Re Q Im Q Re (yy/Im £y,

+ (Re Q)2 — (Im Q)2
Since |Re yo| = |Dyo] = |6 + Q| = (Im Q) it follows that

(45) [Re Qg Im Q| = 1.
From (41) it follows that lim, 0. |8 + Q|~! = o, and hence,
(46) lim |6+ Q|=0,
n—0+
(47) lim ImQ = 0.
n—-0+
Since

Sjk(t) = Szz(t) hlllgl {[O'jk(t + h) - (Ijk(t - h)]

. [0’22(t + h) - Ugg(t - h)] _l},
one sees that

hlifgl {[oj(t + h) = ou(t — h)] [oae(t + h) — aga(t — h)] 71}

-0+

exists and is finite, and hence, by property (VI) of R-functions,
lim, o+ [Im Q/Im y,] exists and is finite. From this fact and (43),
(45), (41) one concludes that lim,_o.Re Q(t + i) exists and is finite
(which we denote by Re Q(t)), and that

n—-0+
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From (44), (41), (47), (45), it is seen that
(49) lim [Im Q,,/Im ] = [Re Q(t)]

-0+
Thus, ift € £,pN(t) = o, 8x(t) > 0,
lim {[4)12()\) - ‘1321()\)_] /Imd)“()\)}

n—-0+

(50)
= 2i(t + i)(t — i) '[Re Q(t) — i] [Re Q(¢t) + ] ~

Now suppose that t € £, p(t) = 822(t) = 0. Then, §,(t) = 1,
812(t) = 82.(t) = 0. Smceo-ll(t) = 8n(t ) ()2 = o,

(51) lim Im Q;,(t + i) = o,

n—-0+

Since
dix(t) = lim {[o(t + h) — ou(t — h)] [en(t + h)—a,(t — h)] 1}
h—0+
exists and is finite, property (VI) of R-functions shows that §(t) =
lim, o, [Im Q/Im Q,,]. Hence,
(52) lim [Im 912/1m Qll] = lim [Im 922/Im Qll] = 0.
70+

n—-0+
From (40) and (52) it follows that if t € &, p")t) = ®, §55(t) = O,
then
(53) Tim {[@120) = ©(0) 1/ @1 (N)} = 2ilt + )t — i)
7’—)
We are now in a position to prove the following theorem.

Tueorem 7. Let the hypotheses of Theorems 4, 5, 6 hold. Let
O(\) have the spectral function wu(t), and let Q(A) have the spectral
function q(t). Then,

Qa+[q] N Qur[p] NE CT,

and

9\{Qa+[q QO— ﬂa}

has p-measure zero.

Proor. We shall show that if tE Qa+[q] N Qas[m] N £, then
det A(t) >0, and if t € £\(Qa+[g] N Qasr[n]), then detA(t)=0
a.e. with respect to p-measure.

Suppose t € Qa4+ [q] N Qar[w]. Then, if A =t + i, lim,_0+ Q)
and lim,_+ 6(A) exist and are finite and nonreal. Let lim,_,.Q\) =
a + bi,b> 0,and letlim, o, 8(A) = ¢ + di,d > 0. From (15),
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(54) Im®;, = [(J]62+ 1) ImQ+ (|]Q2+ 1) Im6] |6 + Q|2

Hence, if t € Qa4.[q] M Qos[K],

(55) 7-0+

= [(¢2+d?>+ 1)b+ (a®2+ b2+ 1)d][(a+ ¢)®>+ (b + d)?] L
From (55), (19) and property (V) of R-functions, it follows that if
t € Qar[q] M Qar[n], then pUt) exists, and 0 < p’)t) < .
Therefore, if t € Qz4[q] N Qav[M] N £, we can use equation (34)
to compute A,(t). From (36) we obtain

nlﬁ [P12(A) — P21(A)7]
(56)  =(t+i)(t —i)~![(c2+d2—1)2bi+ (a® + b2 — 1)2di + 4(ad — bc)]
Jla+¢)2+ (b+ d)} L
By (34), (55), (56), we have
Ap(t) = Agy(t)~ = (12)(t + i)t — i)~!
(57) -[(c2+ d2— 1)b + (a2 + b2 — 1)d + 2i(bc — ad)]
“[(c2+ d2+ 1)b + (a® + b2+ 1)d] L.

From (18) and (57) it is seen that if ¢ € Q,i[q] N Qui[p] NE,
then

det A()=bd[(a+c)® + (b +d)? [(c +d2 +1)b + (a2 + b2 + 1)d] -2
> 0.

This means that Qg4 [g] N Quv[u] NE C 3.

We now wish to consider points ¢ in E\(Q,+[q] N Qus[H]) =
£NQlq] U QW) = € N Qlg) U E N Qlu]). Let
A= £NQq] and B= £ NQ[u]. We shall show that
detA(t) =0 for all ¢t € A except on a set of p-measure zero and
that det A(t) = 0 for all t € B except on a set of p-measure zero.
This will prove the theorem.

We know by the properties of R-functions that lim,_.Im Q(t + in)
= 0 for almost all ¢ in A and that lim,_¢+Re Q(t + in) exists and is
finite for almost all ¢ in A. Let A, consist of all ¢t € A for which
0 < p’At) < o, and let A consist of all ¢t € A for which p)(t) = o.
Let A,' consist of all t € A; for which lim,_o.Im Q(¢t + in) = 0,
lim,o+Re Q(t + i) exists and is finite, and lim,_o+Re® (¢t + in)
exists and is finite. (Since 0 < p")(t) < ® on A, we already know



94 R. C. GILBERT

that lim, o Im ®,,(¢t + in) exists and is finite and positive on A,.)
Let A" = Aj\A,’. By the properties of R-functions, A,” has
Lebesgue measure zero. Since p‘/(t) < © on A,, it follows as in the
proof of Lemma 5 of Kac [9] that A,” also has p-measure zero.
Hence, we calculate det A(t) for t € A, and for t € A..

On A," we can calculate Ay(t) by means of (34). Writing
@, =0Q— [Q2+ 1][ 6+ Q] ! and using the fact that lim,_o,Im Q
= 0, lim,_o.+Re Q exists and is finite, lim,_¢.®;; exists and is finite,
we see that lim, o4 [ @ + Q] ~! exists and is finite and that

(58) 0+
= — {[Re Q(#)]2+ 1} lim Im [ 6(A) + Q(N)] %,
n—0+

where we have put

Re Q(t) = lim Re Q(t + in).
-0+
lim,o.Im [ 6A) + Q\)] ~! # 0 because lim, o;Im®;;(A) > 0.
From (36) it follows that
lim [4)12()\) — ¢21(A) 7]

n—-0+

= —2i(t + i)(t — i) '[Re Q(t) — ]2 lim Im [ 6A) + Q(A)] .

-0+

(59)

From (34), (58), (59) one obtains
Ap(t) = Agy(8)”

= (12)(t + i)(t — i)~ '[Re Q(t) — i] [Re Q(¢t) + i] ~1.

By (18) and (60) we see that det A(¢t) = 1/4 — 1/4=0 for t € A;".

On A. we can calculate A,y(¢) by means of (35). If t € A and
822(t) > 0, then by (35) and (50) we see that (60) is again true, and
therefore det A(t) = 0. If ¢t € A. and §35(t) = 0, then by (35) and
(53) we see that

(61) Ap(t) = Agy(t)” = (L2)(t + i)(t — i)~

(60)

Hence, det A(t) = 1/4 — 1/4 in this case also.

We have thus shown that det A(¢t) = 0 for all ¢ € A except on the
set A," of p-measure zero.

On B we know that lim,_.o.Im 6(¢t+ in) =0 ae. and that
lim,_o+Re (¢t + im) exists and is finite a.e. Let Bj consist of all
t € B for which 0 < p)(t) < o, and let B« consist of all t € B for
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which p")(t) = o, Let B;’' consist of all ¢& B, for which
lim,_o+Im (¢t + in) = 0, lim,_o+Re O(t + im) exists and is finite, and
lim,_o+Re®,(t + in) exists and is finite. (lim, o Im®,;(t + in),
of course, exists and is finite and positive on B,.) Let B,” = B,\B,".
As in the case of A,”, B,” has p-measure zero. Therefore, we calculate
det A(t)fort € B,' and ¢t € B..

On B,' we calculate A,,(¢) by means of (34). Writing ®,, in the
form®;; =60 — [ 62+ 1][ 0 + Q] 7}, we see that

lim [ 6(A) + Q(A)] !

-0+
exists and is finite on B;’, and

62) lim Im®,,(¢t + i) = — {[Re6(t)]2 + 1} lim [ 6A) + Q)] L.
-0+

-0+

From (37) it follows that
lim [®;5(A) — P21 (A)7]

n—0+
(63) = —2i(t+ i)(t — i)"![Re 6(t) + ]2 lim [6QA) + Q)] .

7—->0+

From (34), (62), (63) one obtains

App(t) = Agy ()~

©) = (1/2)(t + i)(t — i)~ [Re6(¢) + i] [ReO(t) — i] ~L
Equations (18) and (64) imply that det A(¢) = Ofort € B, ".

If t € B, then the fact that det A(¢) = 0 follows from (50) and (53)
just as it does for t € A..

Thus, we have shown that if t € B, then det A(t) = 0 except on the
set B,"” of p-measure zero. This completes the proof of the theorem.

CoroLrarY 1. A has spectral multiplicity 2 if and only if the p-
measure of Qa+[q] N Qv [1] N & is positive.

The corollary follows immediately from Theorems 5 and 7.

CoroLLARY 2. A has spectral multiplicity 2 if and only if the
Lebesgue measure of Q.[q] M Q.[ u] is positive.

Proor. Following Kac [9, Theorem 5], one may show that the
p-measure of Quy[q] N Qu+[p] N £ is positive if and only if the
Lebesgue measure of Q,[q] M Q,[u] is positive. The corollary then
follows from Corollary 1.

CoroLLARY 3. If q or w is singular, then A has spectral multiplicity 1.
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Proor. If g, say, is singular, then q")(¢) = 0 a.e. Therefore, the
Lebesgue measure of Q,[q] is zero, and the Lebesgue measure of
Qalq] N Qa[u] is zero. Hence, by Corollary 2, A has spectral multi-
plicity 1.
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