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PERTURBATION AND APPROXIMATION THEORY FOR 
HIGHER-ORDER ABSTRACT CAUCHY PROBLEMS 

L. BOBISUD AND R. HERSH 

1. Introduction and summary. Given a (possibly unbounded) 
linear operator A on a Banach space B, and a polynomial P(A, s) = 
]£o=m;J= CyXV, there is defined the abstract Cauchy problem 

P(dldty A)u = 0 for t > 0, 
(0.1) 

(dldty \t=0 u = fj for 0 êj ^ m - 1. 

It has been shown in [D] that if A generates a group T(t) and if 

roo m—1 
(0.2) £ T(s)fkgk(t,s)ds 

J-°° k=o 

converges, where gk(t, s) is the solution of (0.1) in the special concrete 
case A = — dldx, fj = 8jk8(x), then M is given by (0.2). If gk is a 
generalized function, (0.2) is interpreted by integration by parts. 

A number of concrete Cauchy problems may conveniently be 
studied in terms of (0.1). This was done in [M] for one-dimensional 
parabolic equations of arbitrary order whose coefficients are measur­
able functions of x; other applications are mentioned below. 

In the present work we exploit formula (0.2) to study two types of 
perturbation problems for (0.1). In the last section, we replace the 
fixed generator A by an approximate generator A^. It is natural to 
suppose that if A^ generates a group T€(t) and T€(t)-^> T(t), then the 
corresponding solution u( converges to u. This is often true, but for 
some P we will see that it requires an extra restriction on the d a t a / 

Most of our work is concerned with perturbations of the polynomial 
P; i.e., we keep A fixed and let the coefficients c# depend o n e . In 
particular, we allow the leading coefficients to vanish as e —» 0, so 
that singular as well as regular perturbations are included in our 
theorems. 

For technical reasons, we find it convenient to treat several cases, 
depending on the "type" of P€ and of P; see Friedman [C] or Gel 'fand-
Shilov [B] for definitions and properties. The details vary, depending 
on whether the approximating or limiting polynomial is hyperbolic, 
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parabolic, or neither, but in each case our results have the following 
general form: 

"If the fundamental solutions of Cauchy's problem for 
P€(dldt, — dldx)ge = 0 converge to the fundamental solutions of 
Cauchy's problem for P(dldt, — dldx)g = 0, then the solution of the 
abstract Cauchy's problem for Pe(dldt, A)u€ = 0 converges to the 
corresponding solution of P(d\dty A)u = 0." Thus variable-coefficient 
differential problems, for example, are brought into correspondence 
with constant-coefficient problems, which in principle can then be 
reduced to algebra by means of the Fourier transform. An example is 
(0.3) €Utt + ut = Bu 

where B is a strongly elliptic operator on a domain D C Rn, with well-
behaved space-dependent coefficients. It can be shown, using 
Theorem 23.9.5 of Hille-Phillips [Q], that if (0.3) is well posed, then 
B has a square root A which generates a group. Thus the singular 
perturbation problem for (0.3), with any appropriate homogeneous 
linear boundary conditions, is reduced to the special case eutt + 
ut = uxx on Ri, which is treated in [E] , [F] . (See Theorem 5 below.) 
We are indebted to Jerome Goldstein for pointing out that existence 
of a square root follows without extra hypotheses other than well-
posedness of (0.3). Bobisud [F] may be cited as a reasonably general 
treatment of singular perturbations for the concrete Cauchy problem 
governed by a system of constant-coefficient partial differential 
equations. 

It is explained in [D] how the representation (0.2) can be extended 
to systems of equations, to equations with time-dependent coefficients, 
and to equations involving several commuting operators Ai. Thus our 
singular perturbation results can be extended to those cases in a 
straightforward manner. 

A forthcoming article will treat stability and convergence questions 
for finite-difference approximations to higher-order abstract Cauchy 
problems. 

The literature on perturbations of higher-order abstract Cauchy 
problems is not as yet extensive. In 1966, Kato [P] wrote, "At present 
the abstract theory is not advanced enough to comprise singular 
perturbation theory for differential equations." 

Since that time, several authors have studied abstract singular 
perturbation problems in Hilbert space. The most general results 
were obtained by Friedman [J] and by Bobisud and Calvert [K], 
who treated the case where A is selfadjoint and where P€(dldt, A) 
has the special form P€(dldt) + A. (Friedman permits P€ to have 
^-dependent coefficients.) These works depended on the spectral 
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representation of A, as did the earlier work of Smoller [H] , Latil 
[I],andKisynski [G]. 

For nonselfadjoint operators, we are acquainted with only two 
earlier results. Schoene [O] used resolvent theory to treat eutt + ut = 
A2u, where A generates a group; he obtained explicit representations 
of u and showed that for sufficiently regular data, convergence is 
O(e). A weaker convergence result for this equation was obtained 
earlier by Griego and Hersh [N] as an application of the notion of 
a "random evolution." 

2. Degeneration of hyperbolic equations to hyperbolic equations. 
Let R(X, S) be a polynomial of degree no in X and degree % = % 
in 5, let Q(k, s) be a polynomial of degree n in X and degree m ^ N = 
max (n, n0) in s, and set P(X, s; e) = eQ(X, s) + R(X, s), L€ = 
P(dldt, id/dx; e), where e i? 0. For e > 0 we denote the roots of 
F(X, A; e) by Xi(s; e), • • % Xtf(s; *) and set 

A(s; €•) = max Re Xj(s; e); 

we denote the roots of P(X, 5; 0) = R(X, s) by Xi(s), • * *, Xno(s) and set 

A(s; 0) = max ReX^s). 

We call L€ uniformly hyperbolic for 0 â e â e o if the roots \i(s;e) 
satisfy 

lim ki(s; e) = A*(«) (i = 1, • • -, n0) 
€-•0 + 

and if there exist constants a, h, c such that 
i. A(s; €) = a|s| + b (for all complex s\ 
ii. A(a; c) ^ c (for real 5 = a) 

hold for € G [0, e 0 ] . The constants a, b, c will be called the hyper-
bolicity constants for {L€ : 0 ^ € ^ €0}. 

Two consequences of the uniform hyperbolicity of the family 
{ L t : 0 a e g €0} are [B, Chapter 3, §3] : 

A. The initial-value problem for Le[u] — 0 has a unique distri­
butional solution, given as the regular distribution generated by a 
continuous function, if the initial data are N(N — 1) times continuous­
ly differentiate. 

B. The solution gij€(x, t) (in general, a distribution) of 

M & J = 0 ( ^ > 0 , - o o < x < o o ) , 

/ a Va I - H M /fc=0, • • • ,N- l fo re>0 \ 
U Z 8 - L ~ M ( X ) U=0, . . . ,no- l for € = 0 / 
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has, for each t=0, support contained in the interval \x\ = at. 
With q ^ N(N - 1) + 2, we let g,)€ be the solution of 

M & J = 0 (*> 0 , -oo < x< oo), 
( 2 ) (AY* I = Ä r q - i / * = 0 , l , - - - , N - l f o r € > 0 \ 

\dt/gi>€\t=o jk U = 0 , l , - - - , n o - l f o r € = 0 / ' 

where x+ = max (x, 0). As noted in A above, g,^ is a regular distribu­
tion; we use ĝ e interchangeably for the distribution and for the con­
tinuous function generating the distribution. Clearly, in the distribu­
tional sense we have that 

(M*)q &*(*>*) = &*(*>*)> 

so gje is a g-fold primitive of g^. Note, however, that the support of 
g is not equal to the support of g. 

Denote by u€(t) the solution constructed in [D], and described in 
the introduction, of the problem 

P(dldt9- iA,e)u€ = 0 ( t > 0 ) , 

(3) (d\k I - f , e=n-Mi / f c=0 , - - - ,N- i i f e>0 \ 
\jt)^L~UkGD(A) u=o, .- . ,no-i if , = o ; 

foro= € ^ €0; we have the representation 

Too I 

J - ° ° j=o 

where I = N - 1 if e > 0,1 = no - 1 if e = 0. 

THEOREM 1. Let { L 6 : 0 ^ € ^ c 0 } &e uniformly hyperbolic with 
constants a, b, c, and suppose that for some 8 > 0 the solutions of (2) 
for some q ^ N(N — 1) H- 2 satisfy 

(4) &>(*> *)"> &,o(t *) (1*1 = fl* + 8, j = 0,1, • • -, n0 - 1), 

(5) &>(*, *)-> 0 (|x| ^ a* + Ô, j = n0, • • -, N - 1), 

(6) Ig^t, x)| ^ M,.(x) (/ = 0, • • -, N - 1; 0 ^ e g 60) 

/or some £? where Mj(x) is integrable over \x\ ê at + 8. Then /or 

IM*)-"o(*)||->o 
as € —» 0 + . If the hypotheses hold uniformly for t G [fo, £jj , £hen the 
conclusion is valid uniformly for t G [£0> *i] • 
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PROOF. Now g,)€ is a 9th primitive of g,,e, but it does not have com­
pact support. Following [A, p. 164], let hs(t9x) be a C00 function 
which is identically 1 in a neighborhood of |x| = at and identically 
Ofor |z| S at + 8. Then 

and the representation of u€ becomes 

«<(')= i i ( - i K ï ) f ^^&,<(M)rA(s)A<*-*«A 

We thus have 

HO - «o(*)n ^ || y, /". [&.(*> *) - â.o(*.*)i îA(*)«vfe|| 
Il S / " „ êi,<(t,s)TA(s)ujck\\ 
" j =no °° " 

• TA(s)A«-*tyfe 

s { sup |rA(.)|} 

• { 2 S (?) l|A«-SI|Ctr
 + a l&>(M) - g,fi(t,s)\d8 

J N - 1 

+ 

+ 
i=no fc=0 ^K/ J-at-ô J 

here Ck is a bound on \dkh(t, s)ldsk\. The right-hand side tends to 
0 as € —> 0 by the Lebesgue dominated convergence theorem, estab­
lishing the result. 

REMARK. The family of operators d2ldt2 — d2ldx2 + € is uni­
formly hyperbolic for 0 § € ^ €0. Here k±(s; e) = ±i(s2 + e)112, 
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k±(s) = ±is, a= 1, b = 0, c = 0. This family is associated with a 
regular perturbation problem. An example of a uniformly hyperbolic 
family of operators involving a singular perturbation is 

e(d2ldt2 - d2ldx2) + dldt; 

here A±(*;€) = ( l / 2 e ) [ - l ± (1 - 4 A 2 ) 1 ' 2 ] , A = 0, a = 1, b = c = 0. 
Classical results (obtainable, for example, by Fourier transform in x; 
see also [E] , [F] ) for these two families of operators can thus be 
carried over at once to the more general setup of the present theorem. 

3. Degeneration of hyperbolic equations to parabolic equations. 
Let R(k, S) be a polynomial of degree no in k and degree mo in s with 
roots kj(s), j = 1, * • *, n0; set 

A(s, 0) = max Re kj(s). 

We assume that the differential operator R(dldt, id/dx) is para­
bolic; i.e., there exist constants C\ > 0, c2, h > 0 such that for all real 
s = a, A(cr, 0) ^ — Ci|a|h + C2. For the moment we assume also 
that the genus [B, p. 114] of the operator R(dldt; id/dx) is positive. 

Let Q(X,s;e) be a polynomial (coefficients depending on e) of 
degree N > n0 in X for e0 = e > 0 and degree m^ N in s for 
e0 = € > 0 and such that 

lim Q(k, s; e) = 0 
€-»0 + 

for every pair of complex numbers (A, S). (If q(k, s) is a polynomial of 
degree N > no in k and degree m = N in s, then two important special 
cases are Q(k, s; e) = eq(k, s) and, if q has no constant term, Q(k, s; e) 
= q(ek,€s).) Define 

P(k,s;e)= Q(k,s;e)+ R(k,s). 

We require that Le= P(dldt,idldx;e) be, for e0 = e > 0, a hyper­
bolic operator; that is, denoting the roots of P(k,s;e) by Xj(s,e), 
j = 1, • • -, IV, and setting 

A(s,€)= max Re\j(s, e), 

there exist functions a(e), b(e), c(c) such that 

A(s, c) ^ <z(e)|s| + fo(e) (an< complex s, 0 < e ^ e0), 

A((J, e) g c(e) (all s = a real, 0 < e ^ e0). 

Then the results A, B of the preceding section continue to hold with 
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the constant a of B replaced by the function a(e). In general, afe)-* o° 
as e --> 0. 

For any given K è 0 let hj^x) be a C °° function which is identically 
1 on some neighborhood of [ — K, K] and 0 outside the interval 
[ - K - 1, K + 1] and such that 

0 g hK(x) ^ 1, sup I (£)' hK(x) I ^ M„ 

for each r = 0 ,1 , 2, • • *, where Mf is independent of K. Since 

*>-i <-^o)(i)'(--'(ir«") 
(cf. [A, p. 164] ), we have 

where g^ is the (distributional) solution of 

UlèiA = 0 , ( ^ ) f c â > | = 8jk8(x) 

and gy)€ is the solution, in the distributional sense, of 

Mgu.J = o, 
(7) 

té)*-!«-*(?)•*-ter*** 
For qf ̂  N(N — 1) + 2 the data for glJt€ are at least N(N — 1) times 
continuously differentiable with compact support; as noted in the 
hyperbolic —» hyperbolic case, this implies that for each fixed e > 0 
the giji€ are continuous functions having compact support. For 
€ = 0 the gijyi are also continuous [B, p. 117]. 

For each e ^ 0 and any K > 0 we write 

&>(*> *) = M*)&>(*> *) + ( i - M*))&>(*> *) 
where, for € > 0, each term on the right has compact support, and, 
for € = 0, the first term on the right has compact support. For each 
e ê O w e write [A, p. 164] ^ 
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and for e > 0, 

where each term on the right has compact support. 

Let u€(t) be the solution constructed in [D] of the problem 

P(dldt, - iA, e)u€ = 0 (t> 0), 

\ d t / € Lo \k = 0, • • • , f i 0 - l i f € = 0 / 

f o r 0 ^ € ^ € o . 

THEOREM 2. Let 1^ be as described, let ||TA(s)|| = Meßs for con­
stants M, ß ^ 0, and suppose that for some q^ N(N — 1) + 2 we 
have 

(i) lgi,j,«(*> s)l = Qij(s)for eo = e > 0, u;/iere Qij(s)eP* is integrable, 
(ii) linw0+gu,«(M) = ° / o r 7 = no, • • -, N - 1, 
(iii) limc_o+gu,*(t *) = gU,o(*> 5) for j = 0,1, • • % n0 - 1. 
77ien ||tie(f) — u0(£)||—»0 as €—»0+. If ffoe hypotheses hold uni­

formly for t G. [to, ti], then the conclusion holds uniformly in 
t£ [t0,ti]. 

PROOF. Using the representation of [D] , we write 

« o - l 

".(*) - Mt) = f S M*) [&>(*> *) - 4 o ( t s)] TA(s)Ujds 
J-°° j=o 

coo N-Ì 

+ 2 hK(s)gjÄ^s)TA(s)ujds 
J - ° ° i=no 

+ r ^ ( l - M*))^( t*)3A(*)t*A 
j=0 

S (1 - hK(s))^o(t, s)TA(s)uj(k 

We estimate the norm of each of these integrals in turn. 
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n 0 - l 

\\h\\^ 2 f l&o(^)l||rA(sM|ds 
j=0 J\S\>K 

= \ MHI f iâ-,o(M)k"^ 

which can be made arbitrarily small by choosing K large since g^o 
decays, as 5-» ± °°, like exp ( — ksy), k > 0, y > 1. 

INI= I f s 2 2 (-1)" [,, &.. "r(1
a:

 M rxWAHyfa II 

^ ¥ 2 2 WMr||A'tt,|| f Ç * » ^ , 
J_A i_n . _ n J * >K j=0 f=0 r=0 

which can again be made arbitrarily small by taking K large. Having 
fixed K so that, for a given € > 0, ||l3 | | + ||/4|| S e 12, we proceed to 
estimate 72 and li. 

IMI^S 1 2 2 MMre^>||A^|| f |gu,«(*,*)|d», 

and for fixed K the right-hand side tends to zero as e —> 04- by the 
Lebesgue dominated convergence theorem, using hypotheses (i), 
(ii). In the same manner we conclude that ||Zi|| —> 0 from the estimate 

Pill < "2 2 2 MMrg*<^>||A'u,|| 
i=0 (=0 r=0 

• I, , ^ , lgU.«(''*) ~ &J,0(«.*)|d»-
J | s | =K. -r 1 

The statement regarding uniformity in t is also obvious. 
Dropping the requirement that the genus of the parabolic equation 

be positive, we get 

THEOREM 3. Let L€ be as above except for the restriction on the 
genus of Lo, let ||TA(S)|| = M\s\ß for some constants M, ß= 0 and 
suppose that for some q^N(N— 1) + 2 we have 

(i) |gij,«(*, s)\ â Qij(s)for €0 = e > 0, i£>/i£re QIJ(S)|Ä|* w integrable, 
(ii) limc_o+gij,e(t, s) = 0/orjf = n0, • • -, N - 1, 
(iii) lim€_o+gu,<(*> 5) = gU,o(*> s)~forj = 0 ,1 , • • -, n0 - 1. 

The proof is similar to the proof of Theorem 2, except that we now 
use the fact [B, p. 123] that g^o decays like exp ( — fa*), k > 0, y > 0. 
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The authors are indebted to E. Hille for pointing out that there are 
groups satisfying ||rA(«)|| ^ M\s\*> but not ||TA(«)|| ^ K for any K. 

Hypothesis (i) of Theorem 2 is difficult to verify directly; we, there­
fore, present a result guaranteeing that this hypothesis is satisfied. 

THEOREM 4. In each region \T\ = K of the (a + h)-plane let the 
inequality 

A ( a + h,e)^K 

hold for all e G (0, €0] ; here K may depend on K. Then for q suf­
ficiently large hypothesis (i) of Theorem 2 is satisfied. 

PROOF. The above inequality assures that for e G (0, co] the hyper­
bolic problem (7) is Petrovsky-correct with nonnegative genus; we 
may thus take fi = 0 for the genus. Since we assume that A(s, e) = 
a(€)|s| + b(e) it follows that we also have A(s,e) = af(e)\s\Po + b(e) 
for any p0 > 1. The proof of Theorem 15' of [C, p. 200] for fi = 0 
is now easily modified to yield the conclusion |gy , e (^s) |= CK^~K'*^, 

since the (compactly supported) data for gije have a bound of the 
form C K ^ ~ K ' 5 ' for every K > 0; here the constant CK can be taken 
independent of e. Choosing K> ß, the conclusion follows. 

THEOREM 5. Let A generate a strongly continuous semigroup. 
Then the solution ue(t) of the generalized telegraphist's equation 

Wo, Ui E.D(A°°), converges as €—»0+ to the solution U(t) of the 
generalized heat equation 

4-U- A2U = 0 , U \ = ti0. dt \t=0 

The convergence is uniform on any [ti, t2] C [0, » ). 

PROOF. One easily computes that, with s = a + ir, 

A(s,€) = R e - ^ - { - l + (1 - tes2)"*} 

26 V2 L 4€2 [ } 

+{(i -(^-^O+^T]"2 
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provided \r\ < K. Thus by Theorem 4 the first hypothesis of Theorem 
2 is satisfied. The genus of the parabolic equation ut — uxx is 1. 
That hypotheses (ii), (iii) of Theorem 2 are satisfied for sufficiently 
large q is established in [E] , [F] . 

4. Degeneration of Petrovsky-correct equations to Petrovsky-correct 
equations. Let R(X, s) be a polynomial of degree no in X and degree 
mo in s, and let Q(X, s;e) be a polynomial (coefficients depending on 
e) of degree N in X for €0 = € > 0 and degree m in s for e0 = € > 0 
and such that 

lim Ç(X, 5; e) = 0 
€-»0 + 

for all complex X, s. For e0 = e > 0 define 

A(s, e) = max ReX,-(s, e), 

where we set, once and for all, I = max (N, no) if e > 0, I = no if 
e = 0; here the A, are the roots of F(X, 5; €> = Ç(X, 5; c) + fl(X, s) = 0. 
We assume that the operator L* = P(d/dt, id/dx; e) is Petrovsky-
correct for 0 ^ e ^ €o, i.e., that there exists a constant C such that 

A(cr,e)g C (-00 < a < oo). 

For each € G [0, c0] the genus fi(e) of the operator can be defined 
[B, p. 138] as the least upper bound of the exponents fi such that the 
function A(s,e) remains bounded above in the region | r | ^ 
K(l + H)"(€), where s = cr + n. Since /u(e) ^ 1 - p0(e) [B, 
p. 137], where po(e) is a constant for €0 = € > 0 and finite for 
€ = 0, we see that /x(€) is bounded below for e G [0, e0] ; let /Lt be 
such that fi^ fi(e) for 0 ^ e ^ e0, so that A (a + ir,e) is bounded 
in the region (r| ^ K(l -f |o-|)" for some K and all e G [0,e0] . We 
shall assume, as we may, that fi < 0. 

Note that the correctness exponent h(e) [B, p. 135] is bounded 
above uniformly in € and since it may be increased without harm to 
our argument, we may take h ^ h(e) for € G [0, €0] as the correctness 
exponent for every € G [0, €0] . 

Let g,j€ be the (distributional) solution of 

M&J = o, (dldt)k^\t=0 = w ( 4 fc = o, 1, • • -, z - 1. 
By a slight modification of the proof in [B, p. 148] or that in [C, 
p. 198] it is easily shown that 

&,(*, x) = (1 + dldx)ifLq(t, x; e) 

Por 9 = 9o for a certain q0 > 0 (depending on JLL and n), where fjtq 
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is continuous in x and t and, for each t, integrable in x uniformly in €. 
(In fact,j55q = 0(x~n), n ̂  2, uniformly ine as |x|—» °°.) Since 

sw-(1+èHoFijr-'*'-'} 
it is easily seen that fj>q satisfies the problem 

L([fj,q(t,x;e)] = 0, 

(8) (Ä^^^L-^^i'^-1 

/ k = 0 ,1 , • • -, I - 1 \ 
\j=0,l,- • -,l- 1 I ' 

For sufficiently large q this classical problem will have a classical 
solution. 

The representation of [D] for the solution of the abstract problem 
is (cf. [B] , [C] ) 

«.(*)= 2 J " . fj(t,-s;e)(l+fs)
qTA(s)ujds 

j=0 J - ° ° 

THEOREM 6. Let L€ be a« described and let A generate the equi-
continuous group TA(s) (||TA(«s)|| = M). Suppose that for all large 
q the solutions fjtq of the classical problems (8) satisfy 

(i) lim€-*o+fjiq(t, s; e) = fLq{ty s; 0)forj = 0,1 , • • -, n0 - 1, 
(ii) lime_^o+j5,q(f, s; e) = 0 for j = n0, • • -, max (N, n0) — 1 ifN > n0. 
Then ||wc(£) — i*o(£)||—»0 as €—>0+. If £/ie hypotheses hold uni­

formly in t G [£o>£i] C [0, oo ] , f/ien £he conclusion holds uniformly 
int G [to, ti]. 

PROOF. We have 

\\u€(t) - Uo{t)\\ 

^ 2 [&*(*> -*;«) - J&«(t, s ; 0)\\\TA(s)(l + A)^||cfa 

max(N,no)-l -

+ 2 j œb5,^-s;e)|||rA(s)(i+A)^||ds 
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g \ M\\(I + A)«Uj\\ f \fj,q(t,-s; e)-fj,q(t,s; 0)\ds 

max(2V,n0)—1 

+ 
UV,n0)-l f 0 0 

S M||(/+ A^I I J^ \fj,q(t,S;e)\ds, 

which converges to zero as € -» 0 + by the Lebesgue dominated con­
vergence theorem since the f]>q are integrable uniformly in €. The 
statement regarding uniformity in t is clear since all the estimates 
preceding the statement of the theorem may be made uniform in 
t for t in a compact interval. 

As an application of this theorem, we extend certain results of 
[G], [H] , [ I ] , [J] , [K] valid for a selfadjoint operator in Hil­
bert space. Consider the problem 

m n 

, « (O)=„ ,TO (îisi;:::;;:-.-.1-,«*0) 
where we assume that an j£ 0, an+m 7̂  0. Denote the roots of the 
polynomial 

m 

j = l 

by P1? • • •, Pm, and denote the roots of 

n 

2 #jfcAfc + is 

by ßi(s), • • -, /Zn(s). The roots of 

can be denoted fJLi(s,e), • • •, ßn(s,e), v^e^e, • •-, vn(s9e)le in 
such a way that /JLÌ(S, e)-* ßi(s) uniformly in 5 as e—» 0 + and 
i j (Ä,€) -*P i as€-»0+ [ K ] , [ L ] . 

THEOREM 7. Le£ £/i£f£ exist a constant d > 0 ^wc/i £foa£ Re ^(cr, c) 
= — d for all real a and all e G [0, e 0 ] , and suppose that Re (/Z^o-)) 
^ C /or some constant C. Let A generate an equicontinuous group. 
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Then 

lim \\ue(t) - uo(t)\\ = 0 uniformly for tG [0,T],anyT> 0. 
€-•0 + 

PROOF. By the foregoing, the real parts of the roots /u,i? vje are 
bounded above, so the operators L€ are uniformly correct. That 
hypotheses (i), (ii) are satisfied for sufficiently large q uniformly in 
t EL [0, T] follows from a result of [F] on writing the classical 
problem for the fj>q as a system in the standard way. 

It is well known that if A is selfadjoint in a Hilbert space, then 
iA generates an equicontinuous, uniformly bounded group; thus, 
Theorem 7 does indeed contain a number of the results of [G], 
[ H ] , [ I ] , [ J ] , [ K ] , 

REMARK. On formulating the equivalent of Theorem 6 of this 
section for systems of the type studied in [F] , the results of that 
work can be brought to the present context. 

5. Perturbation of the generator A. We conclude by turning to a 
different kind of perturbation. We will now let P be fixed, and let 
A be approximated by A€ as e —» 04-. 

Since A may be unbounded, there is some question as to what we 
should mean by saying Ac converges to A. We will short-circuit 
this difficulty by taking as a hypothesis that Ae generates a group 
of bounded operators Te(t), and that T€(t)-± TA(t) strongly for each 
t, uniformly on bounded ^-intervals. 

Kato [P] gives a variety of conditions on A, Ae, and their resolvents 
which are sufficient for convergence of their groups. In particular, 
convergence of resolvents, (X — A c ) - 1 - * (X — A) - 1 , is necessary and 
sufficient, given that \T€(t)\= me^ for m, a> independent of €. 
Stronger conditions have been given by Trotter and by Lax; see 
Strang [R] for a careful comparison of these conditions. 

We prepare the notation for our theorem. 
Let gj again be the solution of 

L[gj] = 0 (* > 0, - oo < x < oo )? 

(d/dt)*& k-o = M W (fc = 0, • • -, n0 - 1). 

Let gj be a q-fo\d primitive of g, and let gy be a signed measure, 
of finite absolute mass and compact singular support, such that, for 
large s, \gj(t, s)\ = K(£)e-(Ü'H Let A€ generate a group T€(t), such 
that \Te(t)\ = MH'I, where Ü><CÜ' . (If the Ae are difference 
operators, this condition is usually called "stability".) Let T€(t) 
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converge strongly to TA(£) for each t, and let/€E B be such that 

A€
q /converges, as e —> 0+ , to Aqf. 

(If L is strictly hyperbolic, or parabolic of positive genus, then we 
can take 9 = 0, and the last condition is vacuous.) 

Let u€, 0 =î €, be the unique solution of 

P(dldt,A€)u€= 0 f o r £ > 0 , 

(dldt)ku€ | „ 0 = 8jkf. 

THEOREM 8. Under the stated hypotheses u€ converges to u0 as 
€ - » 0 + . 

PROOF. Integration by parts gives: 

I"« " " I = \j".m &(*' *)̂ r«<*) " TA(«))/ds'| 

= I /". &(*' * ) ( A «'W - AqTA(s))fds I 

The first term on the right can be estimated by 

2MK(t) ( f~ei»-»'»ds) \(Aq - Aq)f\, 

which goes to zero. The second term can be estimated for € suf­
ficiently small and \s\ > S, by 

4MK(t) ( r ei"-»'»ds) \2Aqf\, 

vhich is arbitrarily small if S is large enough. For \s\^ S, it is 
estimated by 

( f € \U*> s)\ds) max \(TA(S) - r€(*))Ae*/|, 
\J S / |Ä |ss 

vhich, for any fixed S, goes to zero as € goes to zero. The proof is 
complete. 
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REMARK. We wish to show by an example that A*—» A is not 
necessarily enough to guarantee u€^>u. Consider P = (didt + A)2. 
For L = (dldt - dldx)2, we find g0 = 8(x - *) + *8'(x - *)• W e 

take A = d/dx, A € = (1 + e)dldx. One finds we—» u only if /(oc) = 
u€(0, x) is in C 1 . 

REFERENCES 

A. I. M. Gel'fand and G. E. Silov, Generalized functions. Vol. 2: Spaces of 
fundamental functions, Fizmatgiz, Moscow, 1958; English transi., Academic 
Press, New York, 1968. MR 21 #5142a; 37 #5693. 

B. , Generalized functions. Vol. 3: Some questions in the theory of dif­
ferential equations, Fizmatgiz, Moscow, 1958; English transi., Academic Press, 
New York, 1967. MR 21 #5142b; 36 #506. 

C. A. Friedman, Generalized functions and partial differential equations, 
Prentice-Hall, Englewood Cliffs, N.J., 1963. MR 29 #2672. 

D. R. Hersh, Explicit solution of a class of higher-order abstract Cauchy 
problems, J. Differential Equations 8 (1970), 570-579. MR 42 #5102. 

E. M. Zlâmal, Sur l'équation des télégraphistes avec un petyt paramètre, 
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 27 (1959), 324-332. 
MR 22 #5826b. 

F . L. Bobisud, Degeneration of the solutions of certain well-posed systems 
of partial differential equations depending on a small parameter, J. Math. Anal. 
Appi. 16 (1966), 419-454. MR 34 #1665. 

G. J. Kisynski, Sur les equations hyperboliques avec petit paramètre, Colloq. 
Math. 10 (1963), 331-343. MR 27 #6036. 

H. J. A. Smoller, Singular perturbations and a theorem of Kisynski, J. Math. 
Anal. Appi. 12 (1965), 105-114. MR 31 #6040. 

I. B. Latil, Singular perturbations of Cauchy's problem, J. Math. Anal. Appi. 
23 (1968), 683-698. MR 38 #1378. 

J. A. Friedman, Singular perturbations for the Cauchy problem and for 
boundary value problems, J. Differential Equations 5 (1969), 226-261. MR 
38 #1355. 

K. L. E. Bobisud and J. Calvert, Singularly perturbed differential equations in 
a Hilbert space, J. Math. Anal. Appi. 30 (1970), 113-127. MR 40 #6031. 

L. M. I. Visik and L. A. Ljusternik, Regular degeneration and boundary layer 
for linear differential equations with small parameter, Uspehi Mat. Nauk 12 
(1957), no. 5 (77), 3-122; English transi., Amer. Math. Soc. Transi. (2) 20 (1962), 
239-364. MR 20 #2539; 25 #322. 

M. R. Hersh, Direct solution of general one-dimensional linear parabolic equa­
tion via an abstract Fiancherei formula, Proc. Nat. Acad. Sci. U.S.A. 63 (1969), 
648-654. MR 41 #7476. 

N. R. J. Griego and R. Hersh, Random evolutions, Markov chains, and systems 
of partial differential equations, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 305-308. 

O. A. Schoene, Semi-groups and a class of singular perturbation problems, 
Indiana Univ. Math. J. 20 (1970), 247-264. 

P. T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. 
Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. 



PERTURBATION AND APPROXIMATION THEORY 7 3 

Q. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., 
Amer. Math. Soc. Colloq. Pubi., vol. 31, Amer. Math. Soc , Providence, R. I., 1957. 
MR 19, 664. 

R. G. Strang, Approximating semigroups and the consistency of difference 
schemes, M.I.T. preprint; see also: Proc. Amer. Math. Soc. 20 (1969), 1-7. 
MR 38 #1561. 

UNIVERSITY OF IDAHO, MOSCOW, IDAHO 83843 

UNIVERSITY OF N E W MEXICO, ALBUQUERQUE, N E W MEXICO 87106 




