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GENERATING SETS FOR A FIELD AS A RING EXTENSION 
OF A SUBFIELD 

ROBERT GILMER 1 

1. Introduction. Suppose that F is a subfield of the field L. L 
can be considered as a field extension of F, as a ring extension of F, 
or as a vector space over F, and hence the term generating set for L 
over F may mean either (1) a subset S of L such that L = F(S), or 
(2) a subset S of L such that L = F[S] , or (3) a subset S of L such 
that S spans L as a vector space over F. Of course, a generating set 
in the sense of (3) is a generating set in the sense of (2), and if (2) 
holds for S, then (1) holds for S. Moreover, (1) and (2) are equivalent 
if LIF is algebraic. 

In this paper we are primarily concerned with ring generating sets 
for L/F —that is, subsets of L satisfying (2). We denote by p(L, F) 
the smallest cardinal number a such that there is a ring generating 
set for L over F of cardinality a. A theorem of Becker and Mac Lane 
[ 1] implies that if [ L : F] (the cardinality of a vector space basis for 
L over F) is finite, and if LIF is inseparable, then p(L, F) = r, where 
[ L : L^Ls)] = [L: D>(F)] = pr and Ls is the set of elements of L 
which are separable over F. We prove (Theorem 4) that p(L, F) = 
[L:F] if LIF is algebraic but not finite, and p(L, F) = \L\ if LIF 
is not algebraic. In particular, p(K, F) ^ p(L, F) if K is a subfield of 
L containing F. 

If L = F[S] and if K is a subfield of L containing F, we prove 
(Corollary 3) that K= F[T] where \T\ ^ |S|, and except in the case 
when LIF is finite algebraic and KIF is not purely inseparable, it 
is true that if K = F[S 0 ] , then there is a subset T of S0 such that 
K = F[T] and \T\ ^ |S|. In §4 we conclude with some observations 
concerning p(L, F) and [L: F]. 

2. Preliminaries on cardinality. We begin by listing some results 
on cardinal numbers which we shall need in the sequel. 

RESULT 1. If N is a regular multiplicative system in the infinite 
commutative ring R, then \RN\ = \R\; in particular, \R\ = |T|, where 
T is the total quotient ring ofR. 
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RESULT 2. If R is a nonzero commutative ring, and if {Xx}XGAis 
a set of indeterminates over R, then \R[ {Xx}] | = |R| |A|No. 

RESULT 3. If V is a vector space over a field F, if B is a basis for 
V, and if F or B is infinite, then \V\ = \F\ \B\. 

RESULT 4. If F is a subfield of the field L and if LIF is algebraic, 
then \L\ g |F|K0. If F is infinite, then \L\ = \F\ [5, p. 143]. 

RESULT 5. If T is a nonempty subset of a multiplicative semigroup 
S and if T* is the subsemigroup of S generated by T, then |T*| ^ 
| r |N0 ; if Tis infinite, then |T*| = \T\. 

Results 1~5 are routine exercises in computations with cardinal 
numbers; verifications depend, in most cases, upon the fact that if 
A is an infinite set and if ^ is the family of finite subsets of A, then 
P\ = \A\. 

3. Ring generating sets. Suppose that F is a subfield of the field 
K. We seek to determine the nature of a ring generating set for KIF. 
Our first considerations are aimed at the case when KIF is not 
algebraic. 

THEOREM 1. Suppose that D is a unique factorization domain with 
quotient field K and that {Xx}xeAis a nonempty set of indeterminates 
over D. Let <P = {pa}aGAbe a complete set of nonassociate prime 
elements of the domain J = D [ {Xx}]. Then 

(i) M = l/|. 
(2) J/ T is any subset of K({XX}) such that J[T] = K({XX}), then 

\T\ = \<P\. 
(3) If L is an algebraic extension field of K({XX}) and if T is a 

subset ofL such that Jr[T] = h,then\T\— \L\. 

PROOF. (1): If D and A are finite —say D= GF(pn) —then it is 
well known that for any positive integer fc, there are f(k) = 
^d\k l^(kld)pnd irreducible polynomials of degree k in D[XX] 
[5, p. 61, Ex. 1]. Since any prime element of D[XX] is prime in / , 
it follows that |fP| = No = U| if D a n d A a r e finite. And if D or A 
is infinite, then {Xx — d \ k G A, d G D} is a set of nonassociate prime 
elements of / of cardinality |A| \D\ = |A| |D|K0 = |/|. Hence \P\ = |/ | 
in either case. 

(2): Let T = {tb}b£B', the set T must be infinite by Theorem 21 
of [6]. For each b in B, we write tb = fblgb, where fb, gb G /, gb ^ 0. 
There are only finitely many pa's which divide gb; hence the car­
dinality of the set of pa's which divide some gb is at most No|T| = \T\. 
Since J[T] = K({XX}), each pa in <P must divide some gb, for 
l / p « £ / m implies that l / p a G / [ ^ , • • -, thn] C J[llgbl • • • gbn] 
for some finite subset {ft̂ }?- of T, and this implies that pa divides 
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gbi for some i between 1 and n. It follows that fP| = |/ | = \T\ = 

iK({x,»i= i/i- m 
(3): Again let T = {fc}bes. Since fe is algebraic over K({XX}), 

there is a nonzero polynomial /&(Y) in /[Y] such that fb{h) — 0. 
We let db be the leading coefficient of /&(Y); then £& is integral over 
J[IIdh] and L = / [ T ] is integral over / [ {Hdb}bGB] • Therefore, 
/ [{1 /4}] = K({XX}) [3, p. 101], and by (2), \T\ = \B\ ^ |{1 /4} | = 
|K({XX})| = \L\. (The last equality follows from Result 4; since A 
is nonempty, K({XX}) is infinite.) 

REMARK 1. We note that the assumption "D is a UFD" is not 
needed in proving (1) of Theorem 1, for if a and b are nonzero 
elements of an integral domain D with identity such that (a) fi (b) = 
(ab), then (aXx + b) is a prime ideal of D[XX] by [2, Ex. 15a, p. 84] ; 
in particular, Xx — d is a prime element of D[XX] for any d in D. 

REMARK 2. In (2), the set T— {l/p«} aeA i s a n efficient ring gen­
erating set for K({XX}) over / in the sense that K({XX}) = J[T], 
while K({XX}) ^ J[T{\ for any proper subset T\ of T. In asserting 
that J[T] = K({XX}), we are using the assumption that / is a UFD. 
In fact, if D\ is an integral domain with identity with quotient 
field Ki and if {d/g^eßis a set of nonzero elements of D\, then 
K\ = Di [ {IIdß }ß G B ] if and only if each nonzero prime ideal of D\ 
contains some dß. (See the proof of Lemma 3 of [4].) In particular, 
if {dß} is a complete set of nonassociate prime elements of D1? 

then Di [ {lldß }] = Ki if and only if each nonzero prime ideal of Dx 

contains some dß, and hence if and only if D\ is a UFD [6, p. 4] . 
Since D[{XX}] is a UFD if and only if D is a UFD, it follows that 
the assertion D[{XX}] [{l/pa}] = K({XX}) is equivalent to the state­
ment that D is a UFD. 

COROLLARY 1. If F is a subfield of the field L and if LIF is not 
algebraic, then any ring generating set S for L over F is of cardinality 
\L\. 

PROOF. S contains a transcendence basis B for JJF, and B ^ 0 
by hypothesis. Since F[B] [S - B] = L, part (3) of Theorem 1 
shows that |S - B\ = |L|. Hence \L\ ^ |S| ̂  |S - B| = \L\. 

It seems that Corollary 1 should be known, and indeed, the result 
may already appear in the literature. But the result most closely 
related to Corollary 1 that we have been able to find in the literature 
is Corollary 2 ' , page 28, of Amitsur's paper Algebras over infinite 
fields, Proc. Amer. Math. Soc. 7 (1956). Amitsur's Corollary 2 ' implies 
that under the hypothesis of Corollary 1, the dimension of L, as a 
vector space over F, is greater than or equal to |F|. 
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We turn to the case when LIF is algebraic. Our first results deal 
with the case of finite purely inseparable extensions. 

If L = F( 0) is a simple extension of F, and if K is any subfield of 
L containing F, then K = F(oo, «i, * * *, an), where the a{s are the 
coefficients of a minimal polynomial for 0 over K [ 10, pp. 156-157]. 
If 0 is purely inseparable over F of degree pe, then 0 is purely in­
separable over K and the minimal polynomial for 0 over K\sXpt ~~ 0P ' 
for some £ between 0 and £. Hence we have 

RESULT 6. Suppose that L= F( 0) is purely inseparable, of degree 
pe > 1 ot;er F. TTien {F(0P')}if=o is £/ie s#£ of subfields of L con­
taining F, and [K: F( 0P')] = p ' /or O â i ê e . 

COROLLARY 2. Suppose that L= F(0) is purely inseparable over 
F of degree pe > 1. IfaGL- F( 0P), then L = F(a). 

PROOF. Result 6 shows that F( $p) is the unique maximal proper 
subfield of L containing F. 

THEOREM 2. Suppose that L = F( 01? • • -, 0t) is purely inseparable 
over F, o/ degree pe > 1. Zf K = F[S] is a subfield of L containing 
F, f/ien f/iere exisf elements a\, * • -, a^ in S? it>i£/i u= t, such that 
K = F(ai, • • -, au). 

PROOF. We use induction on t. If £ = 1, then Result 6 implies that 
£= {F(s) | s G S} is a finite linearly ordered set. Hence K = 
UsGSF(s) = F(s0) for some s0 in S. We assume that Theorem 2 holds 
for t = r, and for £ = r + 1, we prove the result by induction on 
[L: F]. If, for some i between 1 and r + 1, 0; G F( 01? • • -, 0i_i), 
then L= F(ßi, • • -, 0Ì5 • • -, 0r+i), and the case £ = r implies the 
desired conclusion. In particular, if [L: F] ^ pr, then the result is 
true. Hence we assume that 0* ̂  F( 0i? • • -, 0*_i) for each i so that 
[L: F] = pm= pr+l, and we assume that the result is valid for any 
field Lx = F(fJLi, • • -, fJLr+i) purely inseparable over F of degree pm~l. 
If K Ç F( 0i, • • -, 0r, 0-r+i), then the desired conclusion holds because 
[F(0 l 5 • • -, 0r, 0r

p
+1) : F] = p—i. I f K = F[S] Q F( 01? • • -, 9t9 0r

p
+1), 

then we choose 0 in S - (F( 01? • • -, 0r, 0r
p

+1)). By Corollary 2, 
L= F(0U • • -, 0r, 0). Hence K = F ( 0 ) [ S - {0}] is a subfield of 
L = F( 0)( 0l5 • • -, 0r) containing F( 0), and LIF( 0) is purely insepara­
ble of finite degree. It follow from the case t = r that there is a subset 
{a,}? of S - { 0}, with u^r, such that K = F(0) (a1? • • -, a»). This 
completes the proof of Theorem 2. 

REMARK 3. Theorem 2 does not carry over to the case when 
[L: F] is finite, but LIF is not purely inseparable. For example, if 
LIF is finite dimensional and separable, and if there exist distinct 
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maximal proper subfields K\, K2 of L containing F, then L, Ki, and 
K2 are simple extensions of F— say L = F(0), Kx = F(6i), K2 = 
F(62)- then L = F(0) = F( «i, 02), but LD F(0i) and L D F(02). 
(For a specific example, take L = Ç>(V2 + V3) = Q(V2, V3).) 
The procedures we have just described are as general as possible 
in the case when LIF is finite dimensional and separable. That is, 
the following result holds. 

If LIF is n-dimensional (where n > 1) and separable, then each 
ring generating set S for LIF contains an element s such that 
L = F(s) if and only if there is a unique maximal proper subfield 
of L containing F. In order that this property (that is, the property 
that K = F[T\ implies that K = F(t) for some t in T) carry over 
to each subfield KofL containing F, it is necessary and sufficient that 
the set of subfields ofL containing F is linearly ordered. 

REMARK 4. If LJK is finite normal separable with Galois group G, 
if G has a unique nontrivial minimal subgroup H, and if the set of 
subgroups of G is not linearly ordered, then the set of proper sub-
fields of L containing F will contain a unique maximal element, but 
will not be linearly ordered. The quaternion groups Q2»+1, for n = 2, 
are groups (in fact, the only groups) with the property described 
[7, pp. 191-192]. 

THEOREM 3. Suppose that F is a subfield of the field L = F [ S] 
and that K = F [ T] is an intermediate field. If LIF is not finite 
algebraic or if KIF is purely inseparable, then there is a subset 
TlofTsuchthatK = F [ T J and\Ti\^ |S|. 

PROOF. We consider three cases. 
Case 1. LIF is not algebraic. Then Corollary 1 shows that |S| = 

\L\ ^ \T\ and we can take Ti = T. 
Case 2. LJF is finite algebraic and KIF is purely inseparable. We 

let Ls be the set of elements of L which are separable over F, and 
without loss of generality we assume that S = {ßi}l^1is finite. Then 
L = Ls( $i, - • -, 0r), LILS is purely inseparable of finite degree pe, 
and we assume that pe > 1 (L = Ls implies that K= F and the 
theorem is trivial). Applying Theorem 2 to the subfield LS(K) = 
LS(F[T] ) = LS[T\ of L, we conclude that there are elements 
<*i, ' ' ', Ou in T, with u = r, such that LS(K) = Ls(oti, • • -, o^). 
The fields Ls and K are linearly disjoint over F, as are the fields Ls 

and F(ai, • • -, <Xu) over F. Hence LS(K) = LS<S)FK= Ls <8>F 

F(<*i, • • *, otu) so that 

[LS(K):F] = [LS:F] [K:F] = [Ls: F] [F(au • • -, a>) : F] 



116 ROBERT GILMER 

[5, Chapter 1, §10; Chapter 4, §5]. Consequently, [ K : F ] = 
[F(a l5 • • -, otu) : F ] , and since F(au • • -, a») Ç K, K = F(<xi, • • -, a j . 
This completes the proof in Case 2. 

Case 3. L/F is algebraic, but not of finite degree. Then S is 
necessarily infinite, and without loss of generality, we can assume 
that 1 GE S. We let S* be the multiplicative semigroup generated by 
S. We have |S*| = |S| by Result 5, and S* spans L = F[S] as a 
vector space over F. Hence S* contains a basis S ' for K over F and 
we have | S ' | ^ | S * | = |S|. If [K:F] is finite, then K= F [Ti ] 
for some finite subset Tx of T and | T i | < |S|. If [K: F] is infinite, 
then by the proof just given, T* U {1} contains a vector space basis 
T ' for K/F. We have |S| ^ | S ' | è | T ' | = |T ' - {1}|. Each element 
£' of T" — {1} is representable in the form i£ • • • t£™, where the ta^s 
are in T and the n/s are positive (the representation of t ' in this form 
may not be unique). For each t ' in T" — {1}, we take a representa­
tion of the preceding form, and we consider the subset T\ of T 
consisting of these ta'ts which occur in the chosen representation of 
some t' in T' - {1}. Since T' - {1} is infinite, |Ti| ^ \T'~ {1}|. It 
is clear, however, that K = F[T{\, and \TX\ ^ \T' - {1}| ̂  |S|. 

4. The symbol p(L,F) and [L : F] . As stated in the introduction, 
we define p(L, F) to be the smallest cardinal number a such that 
there exists a ring generating set for L over F of cardinality a. Corol­
lary 1 shows that p(L, F) = |L| if UF is transcendental, and the proof 
of Theorem 3 in Case 3 shows that if L/F is algebraic but not finite 
dimensional, then for any ring generating set S for L over F, we have 
| S | ^ [L:F]. Hence p(L,F)^ [L:F], but the reverse inequality 
always holds (a vector space basis for LIF is a ring generating set 
for LIF). Therefore, p(L,F)= [L : F] if L/F is algebraic but not 
finite. 

In Theorem 6 of [1], Becker and Mac Lane prove that if LIF 
is purely inseparable of finite degree pe > 1, then p(L, F) = r, where 
[L:LP(F)] = pr. Becker and Mac Lane also observe that if LIF 
is finite dimensional and inseparable, but not purely inseparable, 
then p(L, F) = p(L, Ls), where Ls is the separable part of LIF. And 
it is, of course, well known that p(L, F) = 1 it LIF is finite dimensional 
and separable. We have proved 

THEOREM 4. If F is a proper subfield of the field L, then 
(i) p(L,F)= \L\ if LIF is transcendental. 
(ii) p(L, F) = [L : F] if LI F is algebraic but not finite dimensional. 
(iii) p(L, F) = 1 if LIF is separable and finite dimensional. 
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(iv) p(L, F) = r, where [L : LP(LS)] = pr, if LIF is inseparable of 
finite dimension, and Ls is the separable part of LIF. 

THEOREM 5. If F is a subfield of the field K and if K is a subfield 
of the field L, then p(L, K) ^ p(L, F) and p(K, F) ^ p(L, F); except 
for the case when LIF is finite dimensional and inseparable, 
p(L,F) = max {p(L, K),p(K, F)}. 

PROOF. In view of Theorem 4, there are four assertions of Theorem 
5 which might merit some justification; we list these as 

(A) If LIF is transcendental and KIF is algebraic but not finite 
dimensional, then p(K, F) ^§ p(L, F). 

(B) If KIF and LIF are finite dimensional and inseparable, then 
p(K,F)^p(L,F). 

(C) If LIF is transcendental, then p(L, F) = max {p(L, K), p(K, F)}. 
(D) If LIF is algebraic but not finite dimensional, then p(L, F) = 

max \p(L,K),p(K,F)}. 
In (A), we have p(L, F) = \L\ ^ \K\ è [K : F] = p(K, F). 
To prove (B), we note that p(K, F) = p(K, K.) and p(L, F) = p(L, Ls). 

Moreover, p(L, Ls) = p(L, K^), for Ls is the separable part of LIKS. 
Hence, we prove that p(L, Kg) ^ p(K, Ks). This follows immediately 
from Theorem 3, for KIKS is purely inseparable. 

(C): If UK is transcendental, then \L\ = p(L, F) = p(L, K). If 
LIK is algebraic, then KIF is transcendental and p(L,F)= \L\ = 
|K| = p(K, F). 

(D): We have p(L, F) = [L:F] = [ L : K | [ K : F ] = 
max {[ L : K], [ K : F] } (since the product is an infinite cardinal) 
= max {p(L,K),p(K,F)}. 

COROLLARY 3. If F is a subfield of K and if K is a subfield of the 
field L, then for each subset S of L such that L— F[S] , there is a 
subset Tof Ksuch that K = F[T] and \T\ ^ |S|. 

Corollary 3 is merely a restatement of the inequality p(K,F)^ 
p(L, F) in Theorem 5; we have stated the corollary explicitly because 
it avoids the one exceptional case of Theorem 3. 

REMARK 5. We could also establish (B) in Theorem 5 by Becker 
and Mac Lane's formula. We first observe that LP(F) = LP(LS) and 
KP(F) = Kp(Ks), for LP(LS) is both separable and purely inseparable 
over Lp(F); similarly for Kp(Ks) over KP(F). We have [L : KP(F)] = 
[L:K\[K: KP(F)] = [L : LP(F)] [U>(F) : KP(F)]. The isomorphism 
x —> xp of L sends L onto Lp and K onto KP, and hence [ L : K] = 
[ LP : *?] ä [ L P ( F ) : K"(F)]. It follows that [ K : #>(F)] = 
[K : KP(K.)] g [L : L P ( F ) ] = [L : LP( I* ) ] , and p(K, F) g p(I^ F). 
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It should be observed, however, that Theorem 6 of [1] does not yield 
Case 2 of our Theorem 3. 

REMARK 6. In general, we are able to assert little more than the 
relation p(L, F) = max {p(L, K), p(K, F)} when LIF is finite dimen­
sional and inseparable. One positive result in this direction is that 
p(L, F) = p(L, K) + p(K, F) if LIF is purely inseparable of exponent 
one over F. Hence if LIF is purely inseparable of exponent 1, then 
the equality p(L, F) = max {p(L, K), p(K,F)} holds for the inter­
mediate field K if and only if K = L or K = F. 

We have considered the function f(L, F) defined to be the 
smallest cardinal a such that L = F(S) for some subset S of L with 
cardinality a. Aside from a few obvious relations, such as / (L, F) = 
p(L, F) when LIF is algebraic, we have concluded that this is not 
likely to be a very fruitful field of endeavor. For example, the question 
of whether f(K, F) ̂  n when LIF is purely transcendental of degree 
n is a classical problem for n = 2; see [9, p. 404], [11]. 
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