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GENERATING SETS FOR A FIELD AS A RING EXTENSION
OF A SUBFIELD

ROBERT GILMER!

1. Introduction. Suppose that F is a subfield of the field L. L
can be considered as a field extension of F, as a ring extension of F,
or as a vector space over F, and hence the term generating set for L
over F may mean either (1) a subset S of L such that L = F(S), or
(2) a subset S of L such that L = F[S], or (3) a subset S of L such
that S spans L as a vector space over F. Of course, a generating set
in the sense of (3) is a generating set in the sense of (2), and if (2)
holds for S, then (1) holds for S. Moreover, (1) and (2) are equivalent
if L/F is algebraic.

In this paper we are primarily concerned with ring generating sets
for L/F —that is, subsets of L satisfying (2). We denote by p(L, F)
the smallest cardinal number a such that there is a ring generating
set for L over F of cardinality a. A theorem of Becker and Mac Lane
[1] implies that if [L: F] (the cardinality of a vector space basis for
L over F) is finite, and if L/F is inseparable, then p(L, F) = r, where
[L:L~(L)] = [L:LP(F)] = p" and L is the set of elements of L
which are separable over F. We prove (Theorem 4) that p(L, F) =
[L:F] if LIF is algebraic but not finite, and p(L, F) = |L| if L/IF
is not algebraic. In particular, p(K, F) = p(L, F) if K is a subfield of
L containing F.

If L= F[S] and if K is a subfield of L containing F, we prove
(Corollary 3) that K= F[T] where |T|= [S|, and except in the case
when L/F is finite algebraic and K/F is not purely inseparable, it
is true that if K= F[S¢], then there is a subset T of Sy such that
K= F[T] and |T|= |S|. In §4 we conclude with some observations
concerning p(L, F)and [L: F].

2. Preliminaries on cardinality. We begin by listing some results
on cardinal numbers which we shall need in the sequel.

ResuLr 1. If N is a regular multiplicative system in the infinite
commutative ring R, then |Ry|= |R[; in particular, |R| = |T|, where
T is the total quotient ring of R.
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Resurt 2. If R is a nonzero commutative ring, and if {X,}, g is
a set of indeterminates over R, then |R[ {X,}]| = |R| JA|Ro.

ResuLt 3. If V is a vector space over a field F, if B is a basis for
V, and if F or Bis infinite, then |V| = |F| |B|.

Resurt 4. If F is a subfield of the field L and if LIF is algebraic,
then |L| = |F|Ro. IfF isinfinite, then |L| = |F| [5, p. 143].

Resurt 5. If T is a nonempty subset of a multiplicative semigroup
S and if T* is the subsemigroup of S generated by T, then |T* =
|T|Ro; if T is infinite, then |T*| = |T)|.

Results 1-5 are routine exercises in computations with cardinal
numbers; verifications depend, in most cases, upon the fact that if
A is an infinite set and if & is the family of finite subsets of A, then
9= Al

3. Ring generating sets. Suppose that F is a subfield of the field
K. We seek to determine the nature of a ring generating set for K/F.
Our first considerations are aimed at the case when K/F is not
algebraic.

TueEOREM 1. Suppose that D is a unique factorization domain with
quotient field K and that {X, },c, is a nonempty set of indeterminates
over D. Let P = {p.}oc abe a complete set of nonassociate prime
elements of the domain ] = D[{X,}]. Then

1) || = I

(2) If T is any subset of K({X,}) such that J[T] = K({X,}), then
IT| =||.

(3) If L is an algebraic extension field of K({X,}) and if T is a
subset of L such that J[T] = L, then |T| = |L|.

Proor. (1): If D and A are finite —say D = GF(p") —then it is
well known that for any positive integer k, there are f(k)=
> aik m(kid)pmd irreducible polynomials of degree k in D[X,]
[5, p. 61, Ex. 1]. Since any prime element of D[X,] is prime in ],
it follows that [P| = Ro = [J| if D and A are finite. And if D or A
is infinite, then {X, — d |A € A, d € D} is a set of nonassociate prime
elements of J of cardinality |A| |D| = [A| [D|Xo = |J| Hence [P|= []|
in either case.

(2): Let T = {t,}pep; the set T must be infinite by Theorem 21
of [6]. For each b in B, we write t, = f,/g,, where f;,, 2, € ], g» 75 0.
There are only finitely many p,’s which divide g; hence the car-
dinality of the set of p,'s which divide some g, is at most Ro|T| = |T|.
Since J[T] = K({X,}), each p, in % must divide some g, for
lp, € JIT] implies that 1/p, € J[ty, -, tr] © J[ligs, " &b
for some finite subset {t,,}7 of T, and this implies that p, divides
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gy, for some i between 1and n. It follows that [P|= |J|= |T|=
IK{X D= Ul = .

(3): Again let T = {t,}res. Since #, is algebraic over K({X,}),
there is a nonzero polynomial f,(Y) in J[Y] such that fy(ty) = 0.
We let d;, be the leading coefficient of f,(Y); then ¢, is integral over
J[l/dy) and L= J[T] is integral over J[{l/dy}»es]. Therefore,
JUUds}) = K({X,}) [3, p. 101], and by (2), |T| = [B|Z |{Lidy}| =
IK({X,})| = |L|. (The last equality follows from Result 4; since A
is nonempty, K({X, }) is infinite.)

Remark 1. We note that the assumption “D is a UFD” is not
needed in proving (1) of Theorem 1, for if a and b are nonzero
elements of an integral domain D with identity such that (a) N (b) =
(ab), then (aX, + b) is a prime ideal of D[X,] by [2, Ex. 15a, p. 84];
in particular, X, — d is a prime element of D[X,] for any d in D.

ReEmMaRrk 2. In (2), the set T = {l/p.},e 4 is an efficient ring gen-
erating set for K({X,}) over J in the sense that K({X,})= J[T],
while K({X,}) # J[T1] for any proper subset T; of T. In asserting
that J[T] = K({X,\}), we are using the assumption that J is a UFD.
In fact, if D; is an integral domain with identity with quotient
field K; and if {dg}sepis a set of nonzero elements of D,, then
Ki = D;[{l/dg}z¢ 5] if and only if each nonzero prime ideal of D,
contains some dg. (See the proof of Lemma 3 of [4].) In particular,
if {dg} is a complete set of nonassociate prime elements of Dj,
then D;[{l/ds}] = K, if and only if each nonzero prime ideal of D,
contains some dg, and hence if and only if D, is a UFD [6, p. 4].
Since D[{X,}] is a UFD if and only if D is a UFD, it follows that
the assertion D[ {X, }] [{1/p.}] = K({X,}) is equivalent to the state-
ment that D is a UFD.

CoroLLary 1. If F is a subfield of the field L and if LIF is not
algebraic, then any ring generating set S for L over F is of cardinality
L.

PrOOF. S contains a transcendence basis B for LJF, and B#
by hypothesis. Since F[B] [S— B] = L, part (3) of Theorem 1
shows that |S — B| = |L|. Hence |[L|= |S|= |S— B|= |L|.

It seems that Corollary 1 should be known, and indeed, the result
may already appear in the literature. But the result most closely
related to Corollary 1 that we have been able to find in the literature
is Corollary 2', page 28, of Amitsur’s paper Algebras over infinite
fields, Proc. Amer. Math. Soc. 7 (1956). Amitsur’s Corollary 2" implies
that under the hypothesis of Corollary 1, the dimension of L, as a
vector space over F, is greater than or equal to |F|.
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We turn to the case when L/F is algebraic. Our first results deal
with the case of finite purely inseparable extensions.

If L = F(0) is a simple extension of F, and if K is any subfield of
L containing F, then K= F(ay, a1, * * *, a,), where the as are the
coefficients of a minimal polynomial for 6 over K [10, pp. 156-157].
If 0 is purely inseparable over F of degree p¢, then 6 is purely in-
separable over K and the minimal polynomial for 8 over Kis X?* — 67"
for some t between 0 and e. Hence we have

ResuLt 6. Suppose that L = F(0) is purely inseparable, of degree
p¢>1 over F. Then {F(0r)}_o is the set of subfields of L con-
taining F,and [K: F(0r')] = pifor0= i e.

CoroLLARY 2. Suppose that L = F(8) is purely inseparable over
F of degreep¢> 1. Ifa € L — F(67), then L = F(a).

Proor. Result 6 shows that F(67) is the unique maximal proper
subfield of L containing F.

THEOREM 2. Suppose that L = F(6,, * - -, ;) is purely inseparable
over F, of degree pc> 1. If K= F[S] is a subfield of L containing
F, then there exist elements ay, - ', o, in S, with u = t, such that

K= Flay, ' ", o).

Proor. We use induction on ¢. If ¢ = 1, then Result 6 implies that
S = {F(s)|s€ S} is a finite linearly ordered set. Hence K=
U,esF(s) = F(so) for some sp in S. We assume that Theorem 2 holds
for t=r, and for t= r+ 1, we prove the result by induction on
[L:F]. If, for some i between 1 and r+ 1, 6, € F(6,, * -, 6;_,),
then L= F(6,, ---, 8, -, 6,+1), and the case t = r implies the
desired conclusion. In particular, if [L: F] = p’, then the result is
true. Hence we assume that 6, q; F(8,, - -+, 6;_,) for each i so that
[L:F] = pm= p'*!, and we assume that the result is valid for any
field L, = F(u, - - *, py11) purely inseparable over F of degree p™ 1.
IfKC F(6y, -, 6, 67 )), then the desired conclusion holds because
[F(6,,---,0,6):F]=pL IfK=F[S|q F(6,, -, 6, 6.,)),
then we choose 6 in S— (F(6,, ---, 6, 6/.,)). By Corollary 2,
L=F(6,, ---, 6, 6). Hence K= F(0)[S— {0}] is a subfield of
L= F(6)(6,, -, 6, containing F(0), and L/F(6) is purely insepara-
ble of finite degree. It follow from the case ¢ = r that there is a subset
{a}i of S — {0}, with u=r, such thatK = F(6) (a1, " " *, a,). This
completes the proof of Theorem 2.

Remark 3. Theorem 2 does not carry over to the case when
[L: F] is finite, but L/F is not purely inseparable. For example, if
LIF is finite dimensional and separable, and if there exist distinct
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maximal proper subfields K;, Ky of L containing F, then L, K;, and
K, are simple extensions of F—say L = F(6), K, = F(0,), Ky =
F(6;)— then L = F(0) = F(6,, 6,), but LD F(6,) and LD F(86,).
(For a specific example, take L= Q(V2+ V3)= Q(V2, V3))
The procedures we have just described are as general as possible
in the case when L/F is finite dimensional and separable. That is,
the following result holds.

If LIF is n-dimensional (where n> 1) and separable, then each
ring generatmg set S for LIF contains an element s such that
L= F(s) if and only if there is a unique maximal proper subfield
of L containing F. In order that this property (that is, the property
that K= F[T] implies that K= F(t) for some t in T) carry over
to each subfield K of L containing F, it is necessary and sufficient that
the set of subfields of L containing F is linearly ordered.

Remark 4. If L/K is finite normal separable with Galois group G,
if G has a unique nontrivial minimal subgroup H, and if the set of
subgroups of G is not linearly ordered, then the set of proper sub-
fields of L containing F will contain a unique maximal element, but
will not be linearly ordered. The quaternion groups Qg»+1, for n= 2,
are groups (in fact, the only groups) with the property described
[7, pp. 191-192].

TueEOREM 3. Suppose that F is a subfield of the field L= F[S]
and that K= F[T] is an intermediate field. If LIF is not finite
algebraic or if KIF is purely inseparable, then there is a subset
Tl ofTsuch that K = F[Tl] and IT[I = IS'

Proor. We consider three cases.

Case 1. LIF is not algebraic. Then Corollary 1 shows that |S| =
|IL| = |T|and we can take T; = T.

Case 2. LJF is finite algebraic and K/F is purely inseparable. We
let L; be the set of elements of L which are separable over F, and
without loss of generality we assume that S = {6;};_, is finite. Then
L= L6, -, 6,), LIL, is purely inseparable of finite degree p¢,
and we assume that p¢>1 (L= L, implies that K= F and the
theorem is trivial). Applying Theorem 2 to the subfield L,(K)=
L(F[T))= L;[T] of L, we conclude that there are elements

a, o in T, with u=r, such that L(K) = Lyay, **°, o).
The fields L, and K are linearly disjoint over F, as are the fields L,
and F(ay, "*°, ow) over F. Hence L(K)=L,®rK= L, ®p

F(ay, * * *, a,) so that
[L(K): F] = [L;: F] [K: F] = [L;: F] [F(ay, * - ", o) : F]
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[5, Chapter 1, §10; Chapter 4, §5]. Consequently, [K:F] =
[Flay, * -+, &) : F], and since F(ay, * * *, o) CK, K= Flay, * * *, o).
This completes the proof in Case 2.

Case 3. LJF is algebraic, but not of finite degree. Then § is
necessarily infinite, and without loss of generality, we can assume
that 1 € S. We let $* be the multiplicative semigroup generated by
S. We have |S*| = |S| by Result 5, and S* spans L= F[S] as a
vector space over F. Hence S* contains a basis S’ for K over F and
we have |S'|=|S*|=|S| If [K:F] is finite, then K= F[T}]
for some finite subset T of T and |T;| < |S|. If [K: F] is infinite,
then by the proof just given, T* U {1} contains a vector space basis
T' for K/[F. We have [S|Z |S'|= |T'|= |T' — {1}|. Each element
t' of T' — {1} is representable in the form t,' - - - t;*, where the #,’s
are in T and the n;’s are positive (the representation of ¢’ in this form
may not be unique). For each ¢’ in T' — {1}, we take a representa-
tion of the preceding form, and we consider the subset T; of T
consisting of these t.;s which occur in the chosen representation of
some ¢’ in T' — {1}. Since T' — {1} is infinite, |T,|=|T'— {1} It
is clear, however, that K= F[Ty], and |T,|=|T' — {1}| = |S|

4. The symbol p(L, F) and [L: F]. As stated in the introduction,
we define p(L, F) to be the smallest cardinal number a such that
there exists a ring generating set for L over F of cardinality a. Corol-
lary 1 shows that p(L, F) = |L| if L/F is transcendental, and the proof
of Theorem 3 in Case 3 shows that if L/F is algebraic but not finite
dimensional, then for any ring generating set S for L over F, we have
IS|= [L: F]. Hence p(L, F)= [L: F], but the reverse inequality
always holds (a vector space basis for L/F is a ring generating set
for L/F). Therefore, p(L, F) = [L: F] if L/F is algebraic but not
finite.

In Theorem 6 of [1], Becker and Mac Lane prove that if L/F
is purely inseparable of finite degree p¢ > 1, then p(L, F) = r, where
[L:L~(F)] = p". Becker and Mac Lane also observe that if L/F
is finite dimensional and inseparable, but not purely inseparable,
then p(L, F) = p(L, Ly), where L, is the separable part of L/F. And
it is, of course, well known that p(L, F) = 1 if L/F is finite dimensional
and separable. We have proved

TueoreM 4. If F is a proper subfield of the field L, then

(i) p(L, F) = |L|if LIF is transcendental.

(ii) p(L, F) = [L: F] if LIF is algebraic but not finite dimensional.
(iii) p(L, F) = 1if LIF is separable and finite dimensional.
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(iv) p(L, F) = r, where [L:Lr(Ls)] = p", if LIF is inseparable of
finite dimension, and L, is the separable part of LIF.

TueoreM 5. If F is a subfield of the field K and if K is a subfield
of the field L, then p(L, K) = p(L, F) and p(K, F) = p(L, F); except
for the case when LIF is finite dimensional and inseparable,
p(L, F) = max {p(L, K), p(K, F)}.

Proor. In view of Theorem 4, there are four assertions of Theorem
5 which might merit some justification; we list these as

(A) If LIF is transcendental and K/F is algebraic but not finite
dimensional, then p(K, F) = p(L, F).

(B) If K/IF and L/F are finite dimensional and inseparable, then
p(K, F) = p(L, F).

(C) If LIF is transcendental, then p(L, F) = max {p(L, K), p(K, F)}.

(D) If LIF is algebraic but not finite dimensional, then p(L, F) =
max {p(L, K), p(K, F)}.

In (A), we havep(L, F) = |L|Z |K|Z [K: F] = p(K, F).

To prove (B), we note that p(K, F) = p(K, K;) and p(L, F) = p(L, Ls).
Moreover, p(L, L;) = p(L, K;), for L, is the separable part of L/K,.
Hence, we prove that p(L, K;) = p(K, K;). This follows immediately
from Theorem 3, for K/K; is purely inseparable.

(C): If L/IK is transcendental, then |L|= p(L, F)= p(L, K). If
LIK is algebraic, then K/F is transcendental and p(L, F) = |L| =
K| = p(K, F).

(D): We have p(LF) = ([L:F] = [L:K[K:F] =
max {[L: K], [K:F]} (since the product is an infinite cardinal)
= max {p(L, K), p(K, F)}.

CoroLLary 3. If F is a subfield of K and if K is a subfield of the
field L, then for each subset S of L such that L = F[S], there is a
subset T of K such that K= F[T] and |T| = |S|.

Corollary 3 is merely a restatement of the inequality p(K, F) =
- p(L, F) in Theorem 5; we have stated the corollary explicitly because
it avoids the one exceptional case of Theorem 3.

ReEmMARrk 5. We could also establish (B) in Theorem 5 by Becker
and Mac Lane’s formula. We first observe that LP(F) = L»(L,) and
Kr(F) = KP(K;), for LP(L,) is both separable and purely inseparable
over LP(F); similarly for Kr(K) over KP(F). We have [L: K°(F)] =
[L:K][K:Kr(F)] = [L: LP(F)] [LP(F): KP(F)]. The isomorphism
x— x? of L sends L onto L? and K onto K?, and hence[L: K] =
[LP: K] = [LP(F): Kr(F)]. It follows that [K:KP(F)] =
[K:KP(K)] = [L:Lr(F)] = [L:Lr(L)], and p(K, F)= p(L, F).
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It should be observed, however, that Theorem 6 of [1] does not yield
Case 2 of our Theorem 3.

ReMark 6. In general, we are able to assert little more than the
relation p(L, F) = max {p(L, K), p(K, F)} when L/F is finite dimen-
sional and inseparable. One positive result in this direction is that
p(L, F) = p(L, K) + p(K, F) if LIF is purely inseparable of exponent
one over F. Hence if L/F is purely inseparable of exponent 1, then
the equality p(L, F) = max {p(L, K), p(K, F)} holds for the inter-
mediate field Kifand only if K= Lor K= F.

We have considered the function f(L, F) defined to be the
smallest cardinal a such that L = F(S) for some subset S of L with
cardinality a. Aside from a few obvious relations, such as f(L, F) =
p(L, F) when LJ/F is algebraic, we have concluded that this is not
likely to be a very fruitful field of endeavor. For example, the question
of whether f(K, F) = n when L/F is purely transcendental of degree
n is a classical problem for n = 2; see [9, p. 404], [11].
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