p-SUBGROUPS OF CORE-FREE QUASINORMAL SUBGROUPS

FLETCHER GROSS ${ }^{1}$

1. Introduction. The main object of this paper is to obtain bounds on the nilpotence class and derived length of a core-free quasinormal subgroup. Here the subgroup H of G is quasinormal in G if $H K=K H$ for each subgroup K of G; H is core-free if H contains no nonidentity normal subgroup of G. Since Itô and Szép [3] proved that a core-free quasinormal subgroup of a finite group is nilpotent, the problem of determining the class and derived length of the core-free quasinormal subgroup H of the finite group G is equivalent to the problem of determining the class and derived length of the p-subgroups of H. The principal result of the present paper is that if H is a core-free quasinormal subgroup of the (possibly infinite) group G and P is a subgroup of H generated by elements of order dividing p^{n} where p is a prime, then $x p^{\prime \prime}=1$ for all x in P, P is nilpotent of class \leqq Max $\left\{1, p^{n-1}-1\right\}$, and $d(P)$, the derived length of P, is $\leqq[(n+1) / 2]$ if $p=2$, and $d(P) \leqq n$ if $p>2$.

Bradway, Gross, and Scott [1] proved that if p is a prime and n is a positive integer $<p$, then there is a finite p-group which contains a core-free quasinormal subgroup of class n and exponent p^{2}. Thus the upper bound on the class given above is best-possible when $n \leqq 2$. In Theorem 5.2 of this paper it is shown that if p is a prime and n is a positive integer, then there is a finite p-group which contains a core-free quasinormal subgroup of class n and exponent $<n p^{3}$. This theorem not only shows that for any fixed prime p the class of a core-free quasinormal p-subgroup can be arbitrarily large (previously, I do not believe it even was known if a core-free quasinormal 2 -subgroup could be nonabelian), but also implies that for $n>2$ there is a finite p-group which contains a core-free quasinormal subgroup of exponent p^{n} and class p^{n-2}. Hence if our upper bound on the class is too big, it is too big by less than a factor of p.
2. Notation and assumed results. If S is a subset of the group G, then $\langle\mathrm{S}\rangle$ is the subgroup of G generated by the elements of S. If H is a

[^0]subgroup of G, then $N_{H}(S)$ and $C_{H}(S)$ are the normalizer and centralizer, respectively, of S in $H .|H|$ and $|G: H|$ denote the order of H and the index of H in G, respectively. H_{G}, the core of H in G, equals $\bigcap H^{x}$ where $H^{x}=x^{-1} H x$ and the intersection is taken over all $x \in G$. H is core-free in G if, and only if, $H_{G}=1$. If G is a p-group, then $\Omega_{r}(G)$ is the subgroup of G generated by all elements of order at most p^{r} and $\mho^{r}(G)$ is the subgroup generated by all p^{r} th powers of elements of $G . Z(G)$ is the center of G.

Commutators are defined inductively by $[x, y]=x^{-1} y^{-1} x y$ and $\left[x_{1}, \cdots, x_{n+1}\right]=\left[\left[x_{1}, \cdots, x_{n}\right], x_{n+1}\right]$. If A and B are subgroups of G, then $[A, B]=\langle[x, y] \mid x \in A, y \in B\rangle$. The subgroups $G^{(n)}$ and $L_{n}(G)$ of G are defined inductively by $G=G^{(0)}=L_{1}(G)$, $G^{(n+1)}=\left[G^{(n)}, G^{(n)}\right]$, and $L_{n+1}(G)=\left[L_{n}(G), G\right]$. If G is solvable, $d(G)$, the derived length of G, is the smallest integer d such that $G^{(d)}=1$. If G is nilpotent, $\operatorname{cl}(G)$, the class of G, is the smallest integer c such that $L_{c+1}(G)=1$.

The following results are known and so we state them without proof.
2.1. Lemma. If H is a quasinormal subgroup of G and σ is a homomorphism of G, then H^{σ} is a quasinormal subgroup of G^{b}.
2.2. Lemma. Let H be a subgroup of G and N a normal subgroup of G contained in H. Then H is quasinormal in G if, and only if, H / N is quasinormal in G / N.
2.3. Lemma. If H is a quasinormal subgroup of G and K is a subgroup of G, then $H \cap K$ is a quasinormal subgroup of K.
2.4. Lemma. Let p be a prime, $t=p+2+(-1)^{p}$, and $p^{e}=t-1$. (Thus $e=1$ if p is odd and $e=2$ if $p=2$.) Then for $r \geqq 0, t^{p^{r}}-1$ $\equiv p^{r+e}\left(\bmod p^{r+e+1}\right)$. If p^{r} is the highest power of p dividing the positive integer a, then the highest power of p dividing $\left(t^{a}-1\right)$ is p^{r+e}.
2.5. Lemma. Let G be a cyclic group of order p^{n} where p is a prime and $p^{n}>2$. Let $t=p+2+(-1)^{n}$ and $p^{e}=t-1$. Then the automorphism of G defined by $x \rightarrow x^{t}$ for all x in G has order p^{n-e}.
2.6. Lemma ([1]). If H is a quasinormal subgroup of $G, x \in G$, and $|\langle x\rangle: H \cap\langle x\rangle|$ is infinite, then $x \in N_{G}(H)$.
2.7. Theorem ([3]). Assume H is a core-free quasinormal subgroup of the finite group \dot{G}. Then H is nilpotent and a Sylow p-subgroup of H is a core-free quasinormal subgroup of a Sylow p-subgroup of G.

3. Upper bounds on the class and derived length.

3.1. Lemma. Assume $G=\langle x\rangle H$ is a finite p-group where H is a core-free quasinormal subgroup of G. Then
(a) $\Omega_{1}(G)$ is elementary abelian.
(b) $\Omega_{r}(G)=\Omega_{r}(H) \Omega_{r}(\langle x\rangle), \mho^{r}\left(\Omega_{r}(G)\right)=1$, and $H \Omega_{r}(G) / \Omega_{r}(G)$ is corefree in $G / \Omega_{r}(G)$ for any positive integer r.
(c) $\operatorname{cl}\left(\Omega_{2}(G)\right) \leqq p-1$.
(d) If x has order p^{n} and $n \geqq 2$, then $\log _{p}\left(\left|\Omega_{1}(G)\right|\right) \leqq p^{n-2}(p-1)$.

Proof. If $x^{n}=1$, then H must be normal in G. Since $H_{G}=1$, this implies that $G=\langle x\rangle$ and so the lemma is trivial. We now assume that the order of x is at least p^{2}. Since $H_{G}=1, C_{H}(x)=1$. It follows from this that $C_{G}(x)=\langle x\rangle$. Since $Z(G) \neq 1$, we must have $\Omega_{1}(\langle x\rangle)$ $\subseteq Z(G)$.

If y is an element of order p in G, then, since $G=H\langle x\rangle$ and since $|H\langle y\rangle: H| \leqq p$, it follows that $H\langle y\rangle \subseteq H \Omega_{1}(\langle x\rangle)$. Thus $\Omega_{1}(G)$ is contained in $H \Omega_{1}(\langle x\rangle)=H \times \Omega_{1}(\langle x\rangle)$. Using the fact that $\Omega_{1}\left(\Omega_{1}(G)\right)$ $=\Omega_{1}(G)$, we obtain $\Omega_{1}(G)=\Omega_{1}(\langle x\rangle) \times \Omega_{1}(H)$. Since $\Omega_{1}(G)$ is normal in G and $\Omega_{1}(H)$ is core-free in $G, \Omega_{1}(G)$ is the subdirect product of the groups $\left\{\Omega_{1}(G) /\left(\Omega_{1}(H)\right)^{g} \mid g \in G\right\}$. This implies that $\Omega_{1}(G)$ is elementary abelian.

Now let $M / \Omega_{1}(G)$ be the core of $H \Omega_{1}(G) / \Omega_{1}(G)$ in $G / \Omega_{1}(G)$. Then $M=\Omega_{1}(G)(H \cap M)=\Omega_{1}(\langle x\rangle) \times(H \cap M)$. Since M is normal in G, $H \cap M$ is normal in M, and $H \cap M$ is core-free in G, the same argument as above yields that M is elementary abelian. Thus M is contained in $\Omega_{1}(G)$ and so $H \Omega_{1}(G) / \Omega_{1}(G)$ is core-free in $G / \Omega_{1}(G)$.

We now have proved (b) for $r=1$. Assume now that $r>1$ and use induction on r. Let σ be the natural homomorphism of G onto $\quad G / \Omega_{1}(G)$. Then $\quad\left(\Omega_{r}(G)\right)^{\sigma}=\Omega_{r-1}\left(G^{v}\right), \quad\left(\Omega_{r}(H)\right)^{\sigma}=\Omega_{r-1}\left(H^{\sigma}\right)$, and $\left(\Omega_{r}(\langle x\rangle)\right)^{\sigma}=\Omega_{r-1}\left(\left\langle x^{\sigma}\right\rangle\right)$. By induction, $\mho^{r-1}\left(\Omega_{r-1}\left(G^{\sigma}\right)\right)=1, \Omega_{r-1}\left(G^{b}\right)$ $=\Omega_{r-1}\left(H^{\sigma}\right) \Omega_{r-1}\left(\left\langle x^{\sigma}\right\rangle\right)$, and $H^{\sigma} \Omega_{r-1}\left(G^{\sigma}\right) / \Omega_{r-1}\left(G^{\sigma}\right)$ is core-free in $G^{g} / \Omega_{r-1}\left(G^{g}\right)$. This immediately implies $\mho^{r}\left(\Omega_{r}(G)\right)=1, \quad \Omega_{r}(G)$ $=\Omega_{r}(H) \Omega_{r}(\langle x\rangle) \Omega_{1}(G)=\Omega_{r}(H) \Omega_{r}(\langle x\rangle)$, and $H \Omega_{r}(G) / \Omega_{r}(G)$ is core-free in $G / \Omega_{r}(G)$. Thus (b) is proved.

To prove (c), let N be the core of $\Omega_{2}(H)$ in $\Omega_{2}(G)$. Now $\Omega_{2}(G)$ is the subdirect product of the groups $\left\{\Omega_{2}(G) / N^{g} \mid g \in G\right\}$. It follows from this that $\operatorname{cl}\left(\Omega_{2}(G)\right)=\operatorname{cl}\left(\Omega_{2}(G) / N\right)$. Suppose this class is $\geqq p$. Then we must have $\left|\Omega_{2}(G) / N\right| \geqq p^{p+1}$. But N is the kernel of the representation of $\Omega_{2}(G)$ as a permutation group on the cosets of $\Omega_{2}(H)$. Since $\left|\Omega_{2}(G): \Omega_{2}(H)\right|=p^{2}$, we find that $\Omega_{2}(G) / N$ is isomorphic to a Sylow p-subgroup of the symmetric group on p^{2} letters. This implies that $\Omega_{2}(G) / N$ is generated by its elements of order p. This is
impossible, however, since by (a) applied to $\Omega_{2}(G) / N$ we have that $\Omega_{1}\left(\Omega_{2}(G) / N\right)$ is elementary abelian. This contradiction proves that $\mathrm{cl}\left(\Omega_{2}(G)\right) \leqq p-1$.

If x has order $p^{n}, n \geqq 2$, and $y \in \Omega_{1}(G)$, then (c) implies

$$
\left[y, x^{p^{n-2}}, \cdots, x^{p^{n-2}}\right]=1
$$

where $x^{p^{n-2}}$ occurs $p-1$ times. If $\Omega_{1}(G)$ is written additively and X is the automorphism of $\Omega_{1}(G)$ induced by x, then the commutator relation above becomes $\left(X^{p^{n-2}}-1\right)^{p-1}=0$. Thus $(X-1)^{p^{n-2}(p-1)}=0$. But since $\left|C_{\Omega_{1}(G)}(x)\right|=p$, the Jordan normal form of X has only one block. This implies that the minimal polynomial of X is $(X-1)^{m}$ where $p^{m}=\left|\Omega_{1}(G)\right|$. Then $m \leqq p^{n-2}(p-1)$ which proves (d).
3.2. Lemma. Suppose $G=\langle x\rangle H$ is a finite p-group where H is a core-free quasinormal subgroup of G. Assume G has exponent p^{n}. Then
(a) $\operatorname{cl}(G) \leqq \operatorname{Max}\left\{1, p^{n-1}-1\right\}$.
(b) $d(G) \leqq[(n+1) / 2]$ if $p=2$ and $d(G) \leqq n$ if $p>2$.

Proof. We use induction on n. (a) follows from Lemma 3.1 if $n \leqq 2$. Thus we assume $n>2$. Let $t=p^{n-2}, N=\Omega_{1}(G)$, and $|N|=p^{m}$. Now G / N satisfies the hypothesis of the lemma with n replaced by $n-1$. Hence by induction $\operatorname{cl}(G / N) \leqq t-1$. Therefore $L_{t}(G) \subseteq N$. But certainly $[N, G, \cdots, G]=1$ where G occurs m times. From this follows $L_{t+m}(G)=1$ and so $\mathrm{cl}(G) \leqq t+m-1$. Since $m \leqq p^{n-2}(p-1)$ from the previous lemma, (a) follows at once.
(b) is proved in [1] when p is odd. Thus assume $p=2$. Then (b) follows from (a) if $n \leqq 2$. Hence we also assume $n>2$. $G / \Omega_{2}(G)$ satisfies the hypothesis of the lemma with n replaced by $n-2$. By induction, therefore, $d\left(G / \Omega_{2}(G)\right) \leqq[(n-1) / 2]$. Since $\Omega_{2}(G)$ is abelian from Lemma 3.1, we obtain $d(G) \leqq[(n-1) / 2]+1$ $=[(n+1) / 2]$.
3.3. Theorem. Assume H is a core-free quasinormal subgroup of G. If x and y are elements of H such that $x^{m}=y^{m}=1$ where m is a positive integer, then $(x y)^{m}=1$.

Proof. Suppose $(x y)^{m} \neq 1$. Since $H_{G}=1$, there is an element z in G such that $(x y)^{m} \notin H^{z}$. It follows from Lemma 2.6 that $|\langle z\rangle H: H|$ is finite. If K is the core of H in $H\langle z\rangle$, then $H\langle z\rangle / K$ is a finite group satisfying the hypothesis but not the conclusion of the theorem. Thus it suffices to prove the theorem in the special case $G=\langle z\rangle H$ and $|G|$ finite. From Theorem 2.7, H is nilpotent. Therefore it is sufficient to prove the theorem when $m=p^{n}$ and p is a prime.

Now let P be a Sylow p-subgroup of H and S a Sylow p-subgroup of G. By Theorem 2.7, P is a core-free quasinormal subgroup of S. x and y belong to P since $x^{p^{\prime \prime}}=y^{p^{\prime \prime}}=1$. From $G=\langle z\rangle H$ we conclude that $S=P\langle w\rangle$ for some element w. Thus the hypothesis of Lemma 3.1 is satisfied and so $\mho^{n}\left(\Omega_{n}(S)\right)=1$. This implies that $(x y)^{r^{n}}=1$.
3.4. Theorem. Assume H is a core-free quasinormal subgroup of G. Suppose A is a nonempty subset of H such that $x^{p^{n}}=1$ for all $x \in A$ where p is a prime and n a positive integer. Then with $P=\langle A\rangle$ we have
(a) P is a p-group of exponent $\leqq p^{n}$.
(b) P is nilpotent of class $\leqq \operatorname{Max}\left\{1, p^{n-1}-1\right\}$.
(c) $d(P) \leqq[(n+1) / 2]$ if $p=2$ and $d(P) \leqq n$ if $p>2$.

Proof. (a) follows directly from the preceding theorem. If $x \in G$, let N_{x} be the core of H in $H\langle x\rangle$. Then P is the subdirect product of the groups $\left\{P /\left(N_{x} \cap P\right) \mid x \in G\right\}$. Thus in proving (b) and (c) it suffices to assume that $G=H\langle x\rangle$. If $|G: H|$ is infinite, then $H=H_{G}=1$ from Lemma 2.6. Thus we may assume that $|G: H|$ is finite. This immediately implies that $|G|=\left|G: H_{G}\right|$ is finite.

Then H is nilpotent and a Sylow p-subgroup of H is a core-free quasinormal subgroup of a Sylow p-subgroup of G. Thus in proving (b) and (c) there is no loss of generality in assuming that G is a finite p-group and $G=H\langle x\rangle$.

Now let K be the core of $\Omega_{n}(H)$ in $\Omega_{n}(G)$. Then by Lemma 3.1(b) $\Omega_{n}(G) / K$ satisfies the hypothesis of Lemma 3.2. Since $\Omega_{n}(G)$ is the subdirect product of the groups $\left\{\Omega_{n}(G) / K^{g} \mid g \in G\right\}, \quad \operatorname{cl}\left(\Omega_{n}(G)\right)$ $=\operatorname{cl}\left(\Omega_{n}(G) / K\right)$ and $d\left(\Omega_{n}(G)\right)=d\left(\Omega_{n}(G) / K\right)$. From Lemma 3.2 and the fact that $P \subseteq \Omega_{n}(G)$, the theorem now follows.

It is shown in [1] that there is a finite p-group G which contains a core-free quasinormal subgroup H such that H has exponent p^{2} and $\mathrm{cl}(H)=p-1$. Thus the upper bound in Theorem $3.4(\mathrm{~b})$ is attainable when $n=2$. Also the inequality $d(P) \leqq[(n+1) / 2]$ is false for $n=2$ and $p>2$. For $n>2 \mathrm{I}$ do not know whether the upper bound in Theorem 3.4(b) is best-possible or not. It will be shown in $\$ 5$, however, that if $n>2$, then there is a finite p-group which contains a core-free quasinormal subgroup of exponent p^{n} and class p^{n-2}.
4. A sufficient condition for quasinormality. The biggest problem in constructing an example of a core-free quasinormal subgroup is proving that the subgroup in question is quasinormal. In this section we prove a theorem which will imply that we indeed do have quasinormal subgroups in the examples constructed in $\$ 5$. We begin with a lemma.
4.1. Lemma. Let G be a finite p-group generated by two elements x and y. Assume that $\langle x\rangle \cap\langle y\rangle=1$ and $x^{-1} y x=y^{t}$ where $t=p+2$ $+(-1)^{p}$. Then the following are true:
(a) If A is a subgroup of $\langle x\rangle$, and B is a subgroup of $\langle y\rangle$, then $\Omega_{r}(A B)=\Omega_{r}(A) \Omega_{r}(B)$ and $\mho^{r}(A B)=\mho^{r}(A) \mho^{r}(B)$ for all nonnegative integers r.
(b) $\langle x\rangle$ is quasinormal in G.

Proof. Since $\langle y\rangle$ is normal in G and B is characteristic in $\langle y\rangle, A B$ is a subgroup of G. Now if i and j are any positive integers, then a straightforward calculation yields $\left(x^{i} y^{j}\right)^{n}=x^{i p} y^{j n}$ where $n=\left(t^{i n}-1\right) /\left(t^{i}-1\right)$. From Lemma 2.4, n is divisible by p but not by p^{2}. By induction on r, it follows that $\left(x^{i} y^{j}\right)^{p^{r}}=x^{i p^{r}} y^{j m}$ where m is divisible by p^{r} but not by p^{r+1}. Since $\langle x\rangle \cap\langle y\rangle=1, x^{i} y^{j}=1$ if, and only if, $x^{i}=y^{j}=1$. From this we obtain that the order of $\left(x^{i} y^{j}\right)$ is the maximum of the orders of x^{i} and y^{j}. This implies that $\Omega_{r}(A B)=\Omega_{r}(A) \Omega_{r}(B)$ for all r. That $\mho^{r}(A B)=\mho^{r}(A) \mho^{r}(B)$ follows from the fact that $\left(x^{i} y^{j}\right)^{p^{r}}$ $\in \mho^{r}\left(\left\langle x^{i}\right\rangle\right) \mho^{r}\left(\left\langle y^{j}\right\rangle\right)$. Thus (a) is proved.

To prove (b) let N be the core of $\langle x\rangle$ in G. Then G / N satisfies the hypothesis of the lemma. Hence, if $N \neq 1,\langle x\rangle / N$ is quasinormal in G / N by induction on G. By Lemma 2.2 this would imply that $\langle x\rangle$ is quasinormal in G. Thus we may assume that $N=1$.

Now suppose y has order p^{n}. Since $\langle x\rangle$ is core-free in $G, n \geqq 2$. Thus $n \geqq e$ where $p^{e}=t-1$. Lemma 2.5 implies that x has order p^{n-e}. Suppose K is a subgroup of G such that $K\langle x\rangle \neq\langle x\rangle K$. Since $\left\langle x, y^{p}\right\rangle$ satisfies the hypothesis of the lemma, we may assume by induction that $\langle x\rangle$ is quasinormal in $\left\langle x, y^{p}\right\rangle$. Hence $K \Phi\left\langle x, y^{p}\right\rangle$. But by (a), $\left\langle x, y^{n}\right\rangle=\Omega_{n-1}(G)$. This implies that $K \cap \mho^{n-1}(G) \neq 1$. Since $\mho^{n-1}(G)=\mho^{n-1}(\langle y\rangle)=\Omega_{1}(\langle y\rangle)$, we obtain $\Omega_{1}(\langle y\rangle) \subseteq K$.

Now $G / \Omega_{1}(\langle y\rangle)$ satisfies the hypothesis of the lemma. By induction, therefore, $\langle x\rangle \boldsymbol{\Omega}_{1}(\langle y\rangle)$ is quasinormal in G. Hence $\langle x\rangle \boldsymbol{\Omega}_{1}(\langle y\rangle) K=\langle x\rangle K$ is a subgroup of G. This contradicts $K\langle x\rangle \neq\langle x\rangle K$ and so the lemma is proved.
4.2. Theorem. Assume that G is a finite p-group containing subgroups H and V and elements x and y such that
(a) $G=\langle y\rangle H$,
(b) V is a normal elementary abelian subgroup of G,
(c) $V=(V \cap\langle y\rangle) \times(V \cap H)$,
(d) $H=(V \cap H)\langle x\rangle$,
(e) $x^{-1} y x=y^{t}$ where $t=p+2+(-1)^{n}$,
(f) $\quad \operatorname{cl}\left(\Omega_{2}(\langle y\rangle) V\right) \leqq p-1$.

Then H is quasinormal in G.

Proof. To prove this theorem, which generalizes Theorem 3.2 of [1], we assume that G is a minimal counterexample. Then G has a subgroup K such that $H K \neq K H$.

Let $U=V \cap H$. If $U=1$, then H is quasinormal in G because of Lemma 4.1. Hence $U \neq 1$. Lemma 4.1 also implies that $H V / V$ is quasinormal in G / V. Therefore $H V$ is quasinormal in G which implies that $V \nsubseteq H$. This immediately implies that $V \cap\langle y\rangle=\Omega_{1}(\langle y\rangle) \neq 1$. Since H is not normal in G, y must have order p^{r} where $r \geqq 2$.

Now suppose H contains a nontrivial normal subgroup N of G. Then G / N satisfies the hypothesis of the theorem. Due to the minimality of G, we must have that H / N is quasinormal in G / N. But this is impossible since H is not quasinormal in G. Thus $H_{G}=1$. From $G=\langle y\rangle H$, we obtain $H_{G}=\bigcap_{i} H^{y^{\prime}}$. This implies $C_{H}(y)=1$. We conclude from this and from Lemma 2.5 that x has order p^{r-e} where $p^{e}=t-1$. If $p \neq 2$, then $r \geqq 2>1=e$. If $p=2$ and $r=2$, then $H=U$ and $\langle y\rangle=\Omega_{2}(\langle y\rangle)$ which, because of (f), implies that G is abelian, an impossibility. Thus in all cases, $r>e$.

I now assert that $\Omega_{1}(\langle x\rangle) \subseteq U$. For suppose $z=x^{p^{r-c-1}}$. Then $\langle z\rangle=\Omega_{1}(\langle x\rangle)$ and $[y, z]=y^{s-1}$ where $s-1=t^{p^{r-c-1}} \equiv p^{r-1}\left(\bmod p^{r}\right)$ by Lemma 2.4. Thus $\left\langle y^{s-1}\right\rangle=\Omega_{1}(\langle y\rangle)=\langle y\rangle \cap V$. On the other hand, $\langle y\rangle$ is properly contained in $\langle y\rangle V=\langle y\rangle U$. Thus U has a nonidentity element u which normalizes $\langle y\rangle$. Then $1 \neq[y, u] \subseteq\langle y\rangle \cap V$. Clearly $\langle y, u\rangle$ has class 2 and so $\left[y, u^{k}\right]=[y, u]^{k}$ for all k. Since $\langle y\rangle \cap V$ is cyclic of order $p,\left[y, u^{k}\right]=[y, z]$ for some k. Then $z u^{-k} \in C_{H}(y)=1$. Hence $z=u^{k} \in U$.
$\left\langle y^{p}\right\rangle V / V$ is a normal subgroup of G / V. Then it follows that $\left\langle y^{p}\right\rangle V\langle x\rangle$ is a subgroup of G. It is easily seen that $\left\langle y^{p}\right\rangle V\langle x\rangle=\left\langle y^{p}\right\rangle H$. $\left\langle y^{p}\right\rangle H$ satisfies the hypothesis of the theorem with y replaced by y^{p}. Therefore H is quasinormal in $\left\langle y^{p}\right\rangle H$. This implies that $K \Phi\left\langle y^{p}\right\rangle H$. From Lemma 4.1, $\left\langle y^{p}\right\rangle H / V=\Omega_{r-2}(G / V)$. Thus $K V / V \cap \mho^{r-2}(G / V)$ $\neq 1$. Lemma 4.1 also yields that $\mho^{r-2}(G / V)=\left\langle y^{p^{r-2}}\right\rangle V / V$ $=\Omega_{2}(\langle y\rangle) V / V$ which has order p. Hence $\Omega_{2}(\langle y\rangle) \subseteq K V$.
This implies that K has an element of the form $y^{p^{\prime-2}} v$ where $v \in V$. Since $\operatorname{cl}\left(\Omega_{2}(\langle y\rangle) V\right) \leqq p-1, \Omega_{2}(\langle y\rangle) V$ is a regular p-group in the sense of P . Hall [2]. Clearly the derived group of $\Omega_{2}(\langle y\rangle) V$ is contained in V. It now follows that $\left(y^{p^{r-2}} v\right)^{p}=y^{p^{r-1}}$. Thus we have shown that $\Omega_{1}(\langle y\rangle) \subseteq K$. Then $H V K=H U \Omega_{1}(\langle y\rangle) K=H K . H V K$ is a subgroup of G because $H V$ is quasinormal in G. Hence $H K$ is a subgroup of G which contradicts $H K \neq K H$.
5. Examples. The method used to construct our examples is similar to that employed in [1] and, earlier, by Thompson in [4] and depends upon the following lemma.
5.1. Lemma. Assume p is a prime and $t=p+2+(-1)^{p}$.
(a) Let V be a vector space of finite dimension m over $\mathrm{GF}(p)$ with basis v_{1}, \cdots, v_{m}, let U be the subspace spanned by v_{2}, \cdots, v_{m}, and let Y be the linear transformation of V determined by $v_{1} Y=v_{1}$ and $v_{k} Y=v_{k}+v_{k-1}$ for $2 \leqq k \leqq m$. Then there is a unique p-element X in $\mathrm{GL}(\mathrm{V})$ such that $X^{-1} Y X=Y^{t}, v_{1} X=v_{1}$, and $U X=U$.
(b) If n is a positive integer, then it is possible in (a) to choose m such that the minimal polynomial of X is $(X-1)^{n}$.

Proof. Set $V_{0}=0$ and for $1 \leqq k \leqq m$ let V_{k} be the subspace of V spanned by v_{1}, \cdots, v_{k}. The minimal polynomial of Y is $(Y-1)^{m}$ and so Y is a p-element of $G=G L(V)$. Then $\langle Y\rangle=\left\langle Y^{t}\right\rangle$. Since $\left|C_{V}(Y)\right|=p$, we must have $\left|C_{V}\left(Y^{t}\right)\right|=p$. Thus the Jordan normal form of Y^{t} has only one block. Hence Y and Y^{t} have the same Jordan normal form. Since GF (p) contains the eigenvalues of Y, Y and Y^{t} must be conjugate in G.

A straightforward calculation yields that the transformation T determined by $v_{i} T=\sum_{j=1}^{m} a_{i j} v_{j}$ commutes with Y if, and only if, $a_{i j}=0$ for $1 \leqq i<j \leqq m$ and $a_{i j}=a_{i+1, j+1}$ for $1 \leqq j \leqq i \leqq m-1$. This implies that only the identity of $C_{G}(Y)$ leaves U invariant. Thus (a) is proved if $Y=Y^{t}$.

Now assume $Y^{t} \neq Y$. If $p^{e}=t-1$ and p^{r} is the order of Y, then $r>e$. If $X \in G$ and $X^{-1} Y X=Y^{t}$, then $X \in N_{G}(\langle Y\rangle)$ and, from Lemma 2.5, $X^{r^{r-c}} \in C_{G}(Y)$. It follows from this that Y and Y^{t} are conjugate in some Sylow p-subgroup of $N_{G}(\langle Y\rangle)$.

Since $V_{k} / V_{k-1}=C_{V / V_{k-1}}(\langle Y\rangle)$ for $1 \leqq k \leqq m$, an induction argument yields that V_{k} for $1 \leqq k \leqq m$ is invariant under $N_{G}(\langle Y\rangle)$. Let H be the subgroup of G consisting of those linear transformations which leave V_{k} invariant for all $k, 1 \leqq k \leqq m$. Clearly $N_{G}(\langle Y\rangle) \subseteq H$. H has a normal Sylow p-subgroup P which consists of those elements of H which induce the identity transformation on V_{k} / V_{k-1} for $1 \leqq k \leqq m$. Thus Y and Y^{t} must be conjugate in P.

Next let $Q=N_{P}(U)$ and $C=C_{P}(Y)$. From our earlier determination of $C_{G}(Y)$, we readily conclude that $C \cap Q=1$ and $|C|=p^{m-1}$. But it is easily verified that $|P: Q|=p^{m-1}$. Thus Q is a complement of C in P. Therefore there is one and only one X in Q such that $X^{-1} Y X=Y^{t}$. This proves (a).

If in (b), $n=1$, then $m=1$ is a suitable choice. Thus we will assume that $n>1$. We first show that m can be chosen so that $(X-1)^{n-1} \neq 0$. For this let $m \geqq p^{e+1}(n-1)$. Then $(Y-1)^{p^{\prime}} \neq 0$. Thus $Y^{t} \neq Y$. Using the same notation as in the proof of (a), we have that X must have order p^{r-e}. This follows from Lemma 2.5 and the fact that $C \cap Q=1$. Thus $(X-1)^{p^{r-r-1}} \neq 0$. Since $(Y-1)^{p^{r}}$
$=0$ and $(Y-1)^{m}$ is the minimal polynomial of $Y, p^{r-e-1} \geqq m p^{-e-1}$ $\geqq n-1$. Therefore $(X-1)^{n-1} \neq 0$.

Now let m be the smallest integer such that $(X-1)^{n-1} \neq 0$. Since $(X-1)^{n-1} \neq 0$ implies that X is not the identity, we must have $m>1$. Now V_{m-1} is invariant under both X and Y. Due to the minimality of $m, V_{m-1}(X-1)^{n-1}=0$. But X induces the identity transformation on V / V_{m-1}. Thus $V(X-1) \subseteq V_{m-1}$. It now follows that $(X-1)^{n}$ is the minimal polynomial of X.
5.2. Theorem. Let p be a prime and n a positive integer. Then there is a finite p-group G such that G contains a core-free quasinormal subgroup of class n and exponent $<n p^{3}$.
Proof. If $n=1$, then the theorem follows from Lemma 4.1. Thus we assume $n>1$. Let $t=p+2+(-1)^{p}$ and $p^{e}=t-1$. By the previous lemma, there is a vector space W of dimension m over $\operatorname{GF}(p)$ with basis v_{1}, \cdots, v_{m} such that GL(W) contains two p - elements X and Y which satisfy:
(i) $v_{1} Y=v_{1}$ and $v_{k} Y=v_{k}+v_{k-1}$ for $2 \leqq k \leqq m$,
(ii) $v_{1} X=v_{1}$ and $W_{1} X=W_{1}$ where W_{1} is the subspace spanned by v_{2}, \cdots, v_{m},
(iii) $X^{-1} Y X=Y^{t}$, and
(iv) the minimal polynomial of X is $(X-1)^{n}$.

Let Y have order p^{r}. Since $X \neq 1, r>e$. Then, as is shown in the proof of Lemma 5.1, X has order p^{r-e}. Let A be the group generated by two elements a and b subject only to the relations $b^{p^{r+2}}=a^{r^{r+2-c}}$ $=1$ and $a^{-1} b a=b^{t}$. Then $a \rightarrow X, b \rightarrow Y$ determines a homomorphism of A into $\mathrm{GL}(W)$. Let B be the semidirect product $A W$ relative to the above homomorphism.
Since $b^{r^{r+1}}$ and v_{1} both belong to $Z(B),\left\langle b^{r^{r+1}} v_{1}-1\right\rangle$ is a normal subgroup of order p in B. $\left[b, a^{p^{r-c+1}}\right]=b^{s-1}$ where $s=t^{p^{r-c+1}}$. Lemma 2.4 now implies that $\left[b, a^{p^{r-c+1}}\right]=b^{p^{r+1}}$. If $N=\left\langle b^{p^{r+1}} v_{1}^{-1}\right\rangle$, then $\left[b, v_{2}^{-1}\right]=v_{1} \equiv\left[b, a^{p^{r-c+1}}\right](\bmod N)$. Thus, if $M=\left\langle a^{p^{r-c+1}} v_{2}\right\rangle$, $[b, M] \equiv 1(\bmod N)$. Since $X^{p^{r-c+1}}=1$, it now follows that $M N$ is a normal elementary abelian subgroup of order p^{2} in B.
Finally let $G=B / M N, \quad V=W M N / M N, \quad U=W_{1} M N / M N$, $x=M N a, y=M N b$, and $H=U\langle x\rangle$. Since $Y^{p^{r}}=1,\left[y^{p^{r}}, V\right]=1$. Thus $\left[\Omega_{2}(\langle y\rangle), V\right]=1$. Hence the hypothesis of Theorem 4.2 is satisfied. Therefore H is quasinormal in G. From the fact that the minimal polynomial of X is $(X-1)^{n}$, it follows that $\operatorname{cl}(H)=n . H / U$ is cyclic of order p^{r-e+1}, U is elementary abelian, and H contains $\langle x\rangle$ which is cyclic of order p^{r-e+2}. Thus H has exponent p^{r-e+2}. Since $(X-1)^{r^{r-c-1}} \neq 0=(X-1)^{n}, \quad p^{r-e+2}<n p^{3}$. It only remains to show that $H_{G}=1$.

If $H_{G} \neq 1$, then there is an element z of order p in $H \cap Z(G)$. Since $C_{W_{1}}(Y)=1, z$ cannot belong to U. Since H / U is cyclic, it follows that $\langle z\rangle U=\left\langle x^{p^{r-c}}\right\rangle U$. This implies that $\left[y, x^{p^{r-c}}\right] \in V$. But $\left[y, x^{p^{r-c}}\right]=y^{q-1}$ where $q-1=t^{p^{r-c}}-1 \equiv p^{r}\left(\bmod p^{r+1}\right)$. Thus $y^{q-1} \notin\left\langle y^{p^{r+1}}\right\rangle=\langle y\rangle \cap V$. This contradiction shows that $H_{G}=1$.
5.3. Corollary. If p is a prime and n is an integer >2, then there is a finite p-group G which contains a core-free quasinormal subgroup of class p^{n-2} and exponent p^{n}.

Proof. The theorem with n replaced by p^{n-2} implies that there is a p-group G which contains a core-free quasinormal subgroup H of class p^{n-2} and exponent $<p^{n+1}$. Thus H has exponent $\leqq p^{n}$. If H has exponent $\leqq p^{n-1}$, then $\mathrm{cl}(H) \leqq p^{n-2}-1$ by Theorem 3.4. Therefore the exponent of H is precisely p^{n}.

References

1. R. H. Bradway, F. Gross and W. R. Scott, The nilpotence class of corefree quasinormal subgroups, Rocky Mt. J. Math. 1 (1971), 375-382.
2. P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc. (2) 36 (1933), 29-95.
3. N. Itô and J. Szép, Über die quasinormalteiler von endlichen gruppen, Acta Sci. Math. (Szeged) 23 (1962), 168-170. MR 25 \#2119.
4. J. Thompson, An example of core-free quasinormal subgroups of p-groups, Math. Z. 96 (1967), 226-227. MR 34 \#7658.

University of Utah, Salt Lake City, Utah 84112

[^0]: Received by the editors January 14, 1970 and, in revised form, March 24, 1970.
 AMS 1970 subject classifications. Primary 20D15; Secondary 20F30, 20D40.
 Key words and phrases. Quasinormal subgroup, p-group, nilpotence class, derived length.
 ${ }^{1}$ Research supported in part by NSF Grant GP-12028.
 Copyright © Rocky Mountain Mathematics Consortium

