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p-SUBGROUPS OF CORE-FREE QUASINORMAL SUBGROUPS 

FLETCHER GROSS l 

1. Introduction. The main object of this paper is to obtain bounds 
on the nilpotence class and derived length of a core-free quasinormal 
subgroup. Here the subgroup H of G is quasinormal in G if HK — KH 
for each subgroup K of G; H is core-free if H contains no nonidentity 
normal subgroup of G. Since Ito and Szép [3] proved that a core-free 
quasinormal subgroup of a finite group is nilpotent, the problem of 
determining the class and derived length of the core-free quasinormal 
subgroup H of the finite group G is equivalent to the problem of deter
mining the class and derived length of the p-subgroups of H. The 
principal result of the present paper is that if H is a core-free quasi-
normal subgroup of the (possibly infinite) group G and P is a sub
group of H generated by elements of order dividing pn where p is a 
prime, then xi}" = 1 for all x in P, P is nilpotent of class ^S 
Max {1, pn~l - 1}, and d(P), the derived length of P, is g [(n + l)/2] 
if p = 2, and d(P) ^ n if p > 2. 

Bradway, Gross, and Scott [ 1] proved that if p is a prime and n is 
a positive integer < p, then there is a finite p-group which contains 
a core-free quasinormal subgroup of class n and exponent p2. Thus 
the upper bound on the class given above is best-possible when 
n = 2. In Theorem 5.2 of this paper it is shown that if p is a prime 
and n is a positive integer, then there is a finite p-group which con
tains a core-free quasinormal subgroup of class n and exponent < np3. 
This theorem not only shows that for any fixed prime p the class of a 
core-free quasinormal p-subgroup can be arbitrarily large (previously, 
I do not believe it even was known if a core-free quasinormal 2-sub-
group could be nonabelian), but also implies that for n > 2 there is a 
finite p-group which contains a core-free quasinormal subgroup of 
exponent pn and class pn~2 . Hence if our upper bound on the class is 
too big, it is too big by less than a factor of p. 

2. Notation and assumed results. If S is a subset of the group G, 
then (S ) is the subgroup of G generated by the elements of S. If H is a 
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subgroup of G, then NH(S) and CH(S) are the normalizer and cen
tralize^ respectively, of S in H. \H\ and \G : H\ denote the order of 
H and the index of H in G, respectively. HG, the core of H in G, 
equals [\HX where Hx = x~lHx and the intersection is taken over all 
x G G. H is core-free in G if, and only if, HG = 1. If G is a p-group, 
then ß r(G) is the subgroup of G generated by all elements of order at 
most pr and Ur(G) is the subgroup generated by all prth powers of 
elements of G Z(G) is the center of G. 

Commutators are defined inductively by [x, y] = x~ly~lxy and 
[xi, - - *, xn+i] = [[*!, * * *, xn], Xn+i]. If A and B are subgroups 
of G, then [A, B] = ([x, t/] | x G A , y G B>. The subgroups G<n> 
and Ln(G) of G are defined inductively by G = G<°> = Li(G), 
G ( n + i ) = [G(n)? Qt«)^ a n d L n + 1 (G)= [Ln(G\ G]. If G is solvable, 
d(G), the derived length of G, is the smallest integer d such that 
G(d) = 1. If G is nilpotent, cl(G), the class of G, is the smallest integer 
c such that Lc+i(G) = 1. 

The following results are known and so we state them without 
proof. 

2 1 . LEMMA. If H is a quasinormal subgroup of G and a is a 
homomorphism ofG, then H* is a quasinormal subgroup ofG*. 

2.2. LEMMA. Let H be a subgroup of G and N a normal 
subgroup of G contained in H. Then H is quasinormal in G if and 
only if HIN is quasinormal in GIN. 

2.3. LEMMA. If H is a quasinormal subgroup of G and Kis a sub
group ofG, then H OK is a quasinormal subgroup ofK. 

2.4. LEMMA. Let p be a prime, t = p + 2 + (— l)p , and pe = t — 1. 
(Thus e = 1 if p is odd and e = 2 if p = 2.) Then for r ^ 0, P)r — 1 
= pr+e (mod pr+e+{). If pr is the highest power of p dividing the 
positive integer a, then the highest power of p dividing (if1 — 1) is 
p r + e . 

2.5. LEMMA. Let G be a cyclic group of order pn where p is a 
prime and pn > 2. Let t = p + 2 + ( — l)p and pe = Jt — 1. Then 
the automorphism of G defined by x-+ x* for all x in G has order pn~~e. 

2.6. LEMMA ( [ 1] ). If H is a quasinormal subgroup of G, x G G, 
and | (x ) : H fi (x )| is infinite, then x G NG(H). 

2.7. THEOREM ( [3]). Assume H is a core-free quasinormal subgroup 
of the finite group G. Then H is nilpotent and a Sylow p-subgroup of 
H is a core-free quasinormal subgroup of a Sylow p-subgroup ofG. 
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3. Upper bounds on the class and derived length. 

3.1. LEMMA. Assume G = (x)H is a finite p-group where H is a 
core-free quasinormal subgroup ofG. Then 

(a) fli(G) is elementary abelian. 
(b) ür(G) = fì,(W(<*>), Ur(«r(G)) = h and Mlr(G)/nr(G) is core-

free in GI(lr(G)for any positive integer r. 
(c) cl(fÎ2(G)) Ê p - 1 . 
(d) If x has order pn and n ^ 2, then logp (Pi(G)\) g pn~2(p - 1). 

PROOF. If xp = 1, then / / must be normal in G. Since HG = 1, this 
implies that G = (x ) and so the lemma is trivial. We now assume 
that the order of x is at least p2. Since HG = 1, CH(*) = 1. It follows 
from this that CQ(X) = (x). Since Z(G) 7̂  1, we must have iii((x)) 
Q Z(G). 

If y is an element of order p in G, then, since G = H (x ) and since 
|ff <y> : H| ̂  p, it follows that H<y> C fllii(<x». Thus fì^G) is con
tained in Ittli((x)) = H X fi^x». Using the fact that Ü^Ü^G)) 
= fti(G), we obtain ax(G) = ßi(<x>) X ili(H). Since ft1(G) is normal 
in G and £l\(H) is core-free in G, Oi(G) is the subdirect product of the 
groups {Oi(G)/(fli(H))s | g G G}. This implies that fìi(G) is elemen
tary abelian. 

Now let Mtoi(G) be the core of Hii^G^d^G) in Glü^G). Then 
M = fti(G)(H Pi M) = ß!(<x» X (H fi M). Since M is normal in G, 
H Ci M is normal in M, and H f l M i s core-free in G, the same argu
ment as above yields that M is elementary abelian. Thus M is con
tained inft^G) and so Hnl(G)/fì1(G) is core-free in GKl^G). 

We now have proved (b) for r = 1. Assume now that r > 1 and use 
induction on r. Let cr be the natural homomorphism of G 
onto GMOi(G). Then (fl^G))* = flr-i(C?), (0(H)) ' = à - i ( f fO, 
and(a(<^)))T = fìr-i(<^)). By induction, U r-1(fl r_i(&)) = l A - i ( » ) 
= CK-i(Hyyfir-i((X')), and i M ^ G O A - i ^ ) is core-free in 
&/ri_1(G'). This immediately implies U r(A-(G)) = 1, fìr(G) 
= ^ ^ ( ( x ^ f G ) = n,(ff)nr(<x», and fA(G)A(G) is core-free in 
GA(G). Thus (b) is proved. 

To prove (c), let N be the core of ^(H) in ^ ( G ) . Now O^G) is 
the subdirect product of the groups {iÎ2(G)INë | g G G}. It follows 
from this that cl(fl2(G)) = cl(Ü2(G)IN). Suppose this class is ^ p. 
Then we must have |flk(G)/N| ÌU p p + 1 . But N is the kernel of the 
representation of ^ ( G ) as a permutation group on the cosets of 
(kW). Since ^ ( G ) : f ^ W I = p2 , we find that fl^GJ/N is isomorphic 
to a Sylow p-subgroup of the symmetric group on p2 letters. This 
implies that Ü2(G)IN is generated by its elements of order p. This is 
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impossible, however, since by (a) applied to iÌ2(G)IN we have that 
iì\(iÌ2(G)IN) is elementary abelian. This contradiction proves that 
cl(ik(G)) S p - i . 

If x has order pn, n ^ 2, and y G ßi(G), then (c) implies 

[ î / ,x^- 2 , • - s x ' " " 2 ] = 1 

where x;'"~ occurs p — \ times. If Oi(G) is written additively and 
X is the automorphism of fti(G) induced by x, then the commutator 
relation above becomes (X',H~2 - l)p~l = 0. Thus(X - 1)P"~2<P-I> = 0. 
But since |Cni(G)(x)| = p, the Jordan normal form of X has only one 
block. This implies that the minimal polynomial of X is (X — l)m 

where pm = |H1(G) |. Then m ^ pn~2(p — 1) which proves (d). 

3.2. LEMMA. Suppose G = (x)H is a finite p-group where H is a 
core-free quasinormal subgroup of G. Assume G has exponent pn . 
Then 

(a)cl(G)^Max{l,p--1 - 1}. 
(b) d(G) ^ [(n + 1)12] ifp = 2 and d(G) ^nifp> 2. 

PROOF. We use induction on n. (a) follows from Lemma 3.1 if 
n ^ 2. Thus we assume n > 2. Let t = pn~2 , N = fti(G), and 
\N\ = pm. Now GIN satisfies the hypothesis of the lemma with n 
replaced by n— 1. Hence by induction cl(G/N) ^ t — 1. Therefore 
Lt(G)Q N. But certainly [N, G, • • -, G] = 1 where G occurs m 
times. From this follows Lt+m(G) = 1 and so cl(G) = t + m — 1. 
Since m ^ pn~2(p — 1) from the previous lemma, (a) follows at once. 

(b) is proved in [1] when p is odd. Thus assume p = 2. Then (b) 
follows from (a) if n = 2. Hence we also assume n > 2. GIQ^i^G) 
satisfies the hypothesis of the lemma with n replaced by n — 2. By 
induction, therefore, d^GI^G)) ^ [(n - l)/2]. Since O^G) is 
abelian from Lemma 3.1, we obtain d(G) ^ [(n — l)/2] + 1 
= [ ( n + l ) / 2 ] . 

3.3. THEOREM:. Assume H is a core-free quasinormal subgroup of 
G. / / x and y are elements of H such that xm = ym = 1 where m is a 
positive integer, then (xy)m = 1 . 

PROOF. Suppose (xy)m ^ 1. Since HG = 1, there is an element 
z in G such that (xy)m ^ ffz. It follows from Lemma 2.6 that 
| (z )H : H | is finite. If K is the core of H in H (z ), then H (z >/K is a finite 
group satisfying the hypothesis but not the conclusion of the theorem. 
Thus it suffices to prove the theorem in the special case G = (z)H and 
\G\ finite. From Theorem 2.7, H is nilpotent. Therefore it is sufficient 
to prove the theorem when m = pn and p is a prime. 
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Now let F be a Sylow p-subgroup of H and S a Sylow p-subgroup of 
G. By Theorem 2.7, P is a core-free quasinormal subgroup of S. x and 
y belong to P since xf)" = yp" = 1. From G = (z)H we conclude that 
S = P(u;) for some element w. Thus the hypothesis of Lemma 3.1 is 
satisfied and so Un(flUS)) = 1. This implies that (xy)t,n = 1. 

3.4. THEOREM. Assume H is a core-free quasinormal subgroup of 
G. Suppose A is a nonempty subset of H such that xJ)" = 1 for all 
x G A where p is a prime and n a positive integer. Then with 
P = (A) we have 

(a) Pisa p-group of exponent ^ pn. 
(b) P is nilpotent of class ^ Max {1, pn~l — 1}. 
(c) d(P) ^ [(n + l)/2] ifp = 2 and d(P) ênifp> 2. 

PROOF, (a) follows directly from the preceding theorem. If x 6 G, 
let Nx be the core of H in H (x ). Then P is the subdirect product of the 
groups {PI(NX H P) \x G. G}. Thus in proving (b) and (c) it suffices 
to assume that G= H(x). If \G:H\ is infinite, then H = HG = 1 
from Lemma 2.6. Thus we may assume that \G : H\ is finite. This 
immediately implies that \G\ = \G : HG\ is finite. 

Then H is nilpotent and a Sylow p-subgroup of H is a core-free 
quasinormal subgroup of a Sylow p-subgroup of G. Thus in proving 
(b) and (c) there is no loss of generality in assuming that G is a finite 
p-group and G = H (x >. 

Now let K be the core of fl^(H) in i \ (G) . Then by Lemma 3.1(b) 
fln(G)IK satisfies the hypothesis of Lemma 3.2. Since fin(G) is the 
subdirect product of the groups {f\(G)/Kê | g G G}, cl(fìri(G)) 
= cl(ftn(G)/K) and d(fl^(G)) = d(0^(G)/lC). From Lemma 3.2 and the 
fact that P C fln(G), the theorem now follows. 

It is shown in [ 1] that there is a finite p-group G which contains a 
core-free quasinormal subgroup H such that H has exponent p2 and 
cl(H) = p — 1. Thus the upper bound in Theorem 3.4 (b) is attainable 
when n = 2. Also the inequality d(P) = [(n 4- l)/2] is false for 
n = 2 and p > 2. For n > 2 I do not know whether the upper bound 
in Theorem 3.4(b) is best-possible or not. It will be shown in §5, 
however, that if n > 2, then there is a finite p-group which contains a 
core-free quasinormal subgroup of exponent pn and class pn~2 . 

4. A sufficient condition for quasinormality. The biggest problem 
in constructing an example of a core-free quasinormal subgroup is 
proving that the subgroup in question is quasinormal. In this section 
we prove a theorem which will imply that we indeed do have quasi-
normal subgroups in the examples constructed in §5. We begin with a 
lemma. 
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4.1. LEMMA. Let G be a finite p-group generated by two elements 
x and y. Assume that (x) H (y) = 1 and x~lyx = yl where t=p + 2 
+ (— l)p . Then the following are true: 

(a) If A is a subgroup of (x), and B is a subgroup of (y), then 
nr(AB) = fi,(A)n,(B) and Ur(AB) = Ur(A)Ur(B) for all nonnegative 
integers r. 

(b) (x ) is quasinormal in G. 

PROOF. Since (y ) is normal in G and B is characteristic in (y ), AB is a 
subgroup of G. Now if i andj are any positive integers, then a straight
forward calculation yields (x*j/,')p = xip\fn where n = (& — 1)1 (t* — 1). 
From Lemma 2.4, n is divisible by p but not by p2. By induction on r, 
it follows that (oftf)1'' = x^rtfm where m is divisible by pr but not by 
pr+{. Since (x) H (y) = 1, x{xf = 1 if, and only if, x* = t/> = 1. From 
this we obtain that the order of (xlif) is the maximum of the orders of 
x* and yj. This implies that a,(AB) = nr(A)ur(B) for all r. That 
Ur(AB) = Ur(A)Ur(B) follows from the fact that (xy)'?r 

£ U r ( (xl» Ur( (tf ». Thus (a) is proved. 
To prove (b) let N be the core of (x) in G. Then GIN satisfies the 

hypothesis of the lemma. Hence, if N ^ 1, (x)IN is quasinormal in 
GIN by induction on G. By Lemma 2.2 this would imply that (x) is 
quasinormal in G. Thus we may assume that N = 1. 

Now suppose y has order pn. Since (x) is core-free in G, n = 2. 
Thus n^i e where pe = t — 1. Lemma 2.5 implies that x has order 
pn~e. Suppose K is a subgroup of G such that K(x) ^ (x)K. Since 
(x, t/p ) satisfies the hypothesis of the lemma, we may assume by induc
tion that (x ) is quasinormal in (x, yp ). Hence K ÇJ (x, yp >. But by (a), 
(x, yv) = nn_l(G). This implies that KD Un-[(G) ^ 1. Since 
Un~l(G) = Un-{((y)) = ßi(<y», we obtain ^ ( ^ » Ç K. 

Now Glili((y)) satisfies the hypothesis of the lemma. By induction, 
therefore, {x)£li((y)) is quasinormal in G. Hence (x)(l1((y))K = (x)K 
is a subgroup of G. This contradicts K(x) ^ (x)K and so the lemma 
is proved. 

4.2. THEOREM. Assume that G is a finite p-group containing sub
groups H and V and elements x and y such that 

(a) G = (y)H, 
(b) V is a normal elementary abelian subgroup ofG, 

(c) v = ( v n <t/»x (vriH), 
(d) H=(VHH)(x\ 
(e) x~xyx = yl where t = p + 2 H- ( — l)p , 
(f) c l ^ ^ ^ S p - l . 

TTî n H is quasinormal in G. 
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PROOF. TO prove this theorem, which generalizes Theorem 3.2 of 
[ 1], we assume that G is a minimal counterexample. Then G has a 
subgroup K such that HK f KH. 

Let U = V D H. If [7 = 1, then H is quasinormal in G because of 
Lemma 4,1. Hence U ^ 1. Lemma 4.1 also implies that HVIV is 
quasinormal in G/V. Therefore HV is quasinormal in G which implies 
that V(J H. This immediately implies that V f l <y> = Oi(<y» ^ 1. 
Since H is not normal in G, y must have order pr where r ^ 2. 

Now suppose /f contains a nontrivial normal subgroup N of G. 
Then GIN satisfies the hypothesis of the theorem. Due to the minimal
ity of G, we must have that HIN is quasinormal in GIN. But this is 
impossible since H is not quasinormal in G. Thus HG = 1. From 
G = (y)H, we obtain HG = \\iHy. This implies Cn(y) = 1. We con
clude from this and from Lemma 2.5 that x has order pr~e where 
pe = t - 1. If p ^ 2, then r è 2 > 1 = e. If p = 2 and r = 2, then 
H = U and (t/ ) = fÌ2( (t/ )) which, because of (f), implies that G is 
abelian, an impossibility. Thus in all cases, r > e. 

I now assert that ^ i ( ( x ) ) C U. For suppose z= x ^ - - 1 . Then 
(z) = 01(<x))and [t/,£] = J/*-1 where« — 1 = P'r~''~l = p r _ 1 (modpr) 
by Lemma 2.4. Thus (y*-1) = ßi( <y » = <y > fi V. On the other hand, 
(t/) is properly contained in (y)V = (y)U. Thus U has a nonidentity 
element w which normalizes (t/). Then 1 ^ [*/>w] Ç (y) fl V. Clearly 
(t/, w) has class 2 and so [t/? u

k] = [t/, w]fc for all k. Since (y) D V is 
cyclic of order p, [t/, wfc] = [t/, z] for some k. Then zw~fc G CH(J/) = 1. 
Hence z = uk Ç£ U. 

(yp)VlV is a normal subgroup of G/V. Then it follows that 
(yp)V{x) is a subgroup of G. It is easily seen that (yp)V(x) = (yp)H. 
(yp)H satisfies the hypothesis of the theorem with y replaced by yp. 
Therefore H is quasinormal in (yp )H. This implies that K ÇJ (yp )H. 
From Lemma 4.1, (yp)HIV = «,_2(G/V). Thus KVIV H IT"2(G/V) 
f 1. Lemma 4.1 also yields that Ur~2(GIV) = (yp,~2 )VIV 
= Sk( (y » V/V which has order p. Hence fi^ <t/ » C KV. 

This implies that K has an element of the form ypr~2 v where v G V. 
Since cl(n2( (y )) V) g p - 1, fì^ <;/ » V is a regular p-group in the sense 
of P. Hall [2]. Clearly the derived group of f^( (y )) V is contained in V. 
It now follows that (y-p'~'2v)p = J/'''"1. Thus we have shown that 
O i (<y»C K. T h e n H V K = HUill((y))K = HK. HVKis a subgroup of 
G because HV is quasinormal in G. Hence HK is a subgroup of G 
which contradicts HK ^ KH. 

5. Examples. The method used to construct our examples is 
similar to that employed in [1] and, earlier, by Thompson in [4] and 
depends upon the following lemma. 
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5.1. LEMMA. Assume p is a prime and t = p + 2 + ( — l)p. 
(a) Let V be a vector space of finite dimension m over GF(p) with 

basis vl7 • -, vm, let U be the subspace spanned by v2, * • *, vm, and 
let Y be the linear transformation of V determined by t^Y = v\ and 
vkY = vk + Vk-i for 2 ^ k ^ m. Then there is a unique p-element X 
in GL(V) such that XlYX = Y', vxX = vu and UX = U. 

(b) If n is a positive integer, then it is possible in (a) to choose m 
such that the minimal polynomial ofX is (X — l)n . 

PROOF. Set V0 = 0 and for 1 ^ k ^ m let V^ be the subspace of V 
spanned by Vy, • • -, vk. The minimal polynomial of Y is (Y — l)m and 
so Y is a p-element of G = GL(V). Then (Y) = <Y<>. Since |CV(Y)| = p, 
we must have |Cy(Yf)| = p. Thus the Jordan normal form of Y* has 
only one block. Hence Y and Yt have the same Jordan normal form. 
Since GF(p) contains the eigenvalues of Y, Y and Y* must be con
jugate in G. 

A straightforward calculation yields that the transformation T deter
mined by v{T = ^j^iaijVj commutes with Y if, and only if, a^ = 0 
for 1 ̂  i < j' ^ m and a^ = ai+\y j+l for 1 ̂  j' ^ i ^ m — 1. This 
implies that only the identity of CG(Y) leaves U invariant. Thus (a) 
is proved if Y = Y*. 

Now assume Yl ^ Y. If pe = t — 1 and pr is the order of Y, then 
r > e. If X G G and X- ' YX = V, then X G NG( (Y » and, from Lemma 
2.5, X',r_< G 'CG(Y). It follows from this that Y and Y* are conjugate 
in some Sylow p-subgroup of NG( (Y)). 

Since VklVk-i = Cv/v*-i((Y)) for 1 ̂  k ^ m, an induction argu
ment yields that Vk for 1 ̂  k ^ m is invariant under NG( (Y)). Let H 
be the subgroup of G consisting of those linear transformations which 
leave Vk invariant for all k, 1 ̂  k ^ m. Clearly NG( (Y)) Ç H. H has a 
normal Sylow p-subgroup P which consists of those elements of H 
which induce the identity transformation on VkIVk-\ for l=k=m. 
Thus Y and Yf must be conjugate in P. 

Next let Q = NP(U) and C = Cp(Y). From our earlier determina
tion of CG(Y), we readily conclude that C PI Q = 1 and \C\ = p m _ 1 . 
But it is easily verified that \P : Q\ = p m _ 1 . Thus Q is a complement 
of C in P. Therefore there is one and only one X in Q such that 
X-»YX= V. This proves (a). 

If in (b), n = 1, then m = 1 is a suitable choice. Thus we will 
assume that n > 1. We first show that m can be chosen so that 
(X - I)""1 / 0. For this let m ^ pe+l(n - 1). Then (Y - \yr ^ 0. 
Thus Yt j£ Y. Using the same notation as in the proof of (a), we 
have that X must have order pr~e. This follows from Lemma 2.5 and 
the fact that C D Ç = 1. Thus (X - l ) / ' - ' " 1 jÉ 0. Since (Y - iyr 
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= 0 and (Y — l )m is the minimal polynomial of Y, pr~e~l è mp~e~l 

^ n - 1. Therefore (X - l ) "" 1 ^ 0. 
Now let m be the smallest integer such that (X — l ) n _ 1 ^ 0. 

Since (X — l ) n _ I 7̂  0 implies that X is not the identity, we must 
have m > 1. Now Vm-\ is invariant under both X and Y. Due to the 
minimality of m, Vm_i(X - l ) n _ 1 = 0. But X induces the identity 
transformation on V/Vm_i. Thus V(X — 1) C Vm_i. It now follows 
that (X — l ) n is the minimal polynomial of X. 

5.2. THEOREM. Let p be a prime and n a positive integer. Then 
there is a finite p-group G such that G contains a core-free quasi-
normal subgroup of class n and exponent < np3. 

PROOF. If n = 1, then the theorem follows from Lemma 4.1. Thus 
we assume n > 1. Let t = p + 2 + (— l)p and pe = t — 1. By the 
previous lemma, there is a vector space W of dimension m over GF(p) 
with basis viy • • -, vm such that GL(W) contains two p- elements X 
and Y which satisfy: 

(i) V\Y = Vi and t>*Y = u* + Vk-i for 2 ^ k ^ m, 
(ii) ViX = t>i and WiX = Wi where Wx is the subspace spanned by 

(iii) X- !YX= Y',and 
(iv) the minimal polynomial of X is (X — l)n . 
Let Y have order pr. Since X / 1, r > e. Then, as is shown in the 

proof of Lemma 5.1, X has order pr~e. Let A be the group generated 
by two elements a and b subject only to the relations b?r+2 = a , ,+2 ' 
= 1 and a~[ba:= b*. Then Ö—» X, b-+ Y determines a homomorphism 
of A into GL( W). Let B be the semidirect product AW relative to the 
above homomorphism. 

Since bt>r+l and Vi both belong to Z(B), ( f c ^ ' ü ! - 1 ) is a normal sub
group of order p in B. [fo, at)r~r+l ] = fo5-1 where 5 = tt},'~''+i . Lemma 
2.4 now implies that [b, a>''~' + 1] = fo',r+I. If N = {fop'*1!?!"-1), then 
[fc, u2"1] = Ü I = [b, a / ^ ^ ' ] (mod N). Thus, if M = <fl^"€'+,t?2>, 
[b, M] = 1 (mod N). Since X;,r~"+1 = 1, it now follows that MN is a 
normal elementary abelian subgroup of order p2 in B. 

Finally let G = B/MN, V = WMNIMN, U = W^NIMN, 
x = MNa, t/ = MNfe, and H = U(x). Since Y>;f = 1, [yP\ V] = 1. 
Thus [(^(O/)), V] = 1. Hence the hypothesis of Theorem 4.2 is satisfied. 
Therefore H is quasinormal in G. From the fact that the minimal 
polynomial of X is (X — l)n , it follows that cl(if) = n. HIU is cyclic 
of order pr~e+l, U is elementary abelian, and H contains (x) which is 
cyclic of order pr~e+2. Thus H has exponent pr~e+2. Since 
(X- l )> ' r ~ ' - 1 7 ^ 0 = ( X - l ) n , pr~e+2<np3. It only remains to 
show that H G = 1. 
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If HQ j£ 1, then there is an element z of order p in H fi Z(G). 
Since Cwi(Y) = 1, % cannot belong to U. Since HIU is cyclic, it 
follows that (z)U = (XPT~'')U. This implies that [y, xt)r~l ] E.V. But 
[y, xPT~l ] = yq~l where q — 1 = f',r~''— 1 = p r (mod p r + 1) . Thus 

j / ^ - 1 $ (yPr+l ) = <t/> Pi V. This contradiction shows that HG = 1. 

5.3. COROLLARY. If p is a prime and n is an integer > 2, then there 
is a finite p-group G which contains a core-free quasinormal subgroup 
of class pn~2 and exponent pn. 

PROOF. The theorem with n replaced by pn~2 implies that there is a 
p-group G which contains a core-free quasinormal subgroup H of 
class pn~2 and exponent < pn + l. Thus H has exponent = pn. If H 
has exponent ^ p n _ 1 , then cl(H) = pn~2 — 1 by Theorem 3.4. There
fore the exponent of H is precisely pn. 
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