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THE BOUNDARY OF A VERTICALLY 
CONNECTED CUBE IS TAME 

L. D. LOVELAND1 

A subset X of E3 is defined to be vertically connected if the inter­
section of each vertical line with X is a connected set. The following 
question, stated here in terms of the above definition, appears in 
§9.3 of [2]: 

Is the boundary of a vertically connected crumpled cube in E3 a 
tame 2-sphere? 

In this note we present an affirmative answer to the question. 
We define a crumpled cube in E3 to be the union of a 2-sphere in 

E3 with either of its complementary domains. Thus if C is a crumpled 
cube in E3, then the closure of the complementary set (E3 — C) is 
also a crumpled cube which we shall denote by C*. Notice that C 
and C* are not homeomorphic. The boundary of a crumpled cube C, 
denoted by Bd C, is a 2-sphere; and the set C — Bd C is called the 
interior of C and is denoted by Int C. We shall make use of J. W. Can­
non's *-taming set theory for crumpled cubes in E3 [4]. A subset X 
of E3 is defined to be a *-taming set for crumpled cubes in E3 if X 
is closed and satisfies the following condition: if C is a crumpled cube 
in E3 such that X C C and Bd C is locally tame modulo X, then Bd C 
is tame from Int C*. Thus if C* is a compact crumpled cube, X is a 
*-taming set in C ( = (C*)*), and Bd C is locally tame modulo X, then 
C* is a 3-cell. 

The properties of *-taming sets which we shall need are given in 
[4] and [5], In particular we shall use the following results: 

(1) The closed countable union of *-taming sets is a *-taming set [4]. 
(2) The closed union of nondegenerate vertical intervals in E3 is a 

•-taming set [5, Theorem 4]. 
(3) Each tame nondegenerate subcontinuum of a 2-sphere in E3 is 

a *-tamingset [4]. 
(4) Theorem 1 of [5] which is stated in the second paragraph of the 

following proof. 

THEOREM. If a crumpled cube C in E3 is vertically connected, then 
the boundary of C is a tame 2-sphere. 
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PROOF. The fact that C is a 3-cell comes directly from Theorem 4 of 
[5] since the set C* is the union of nondegenerate vertical rays. We 
shall show that the boundary S of C is tame from Int C* by exhibiting 
C as the countable union of *-taming sets (see statement (1) above). 

Let F be a vertical plane and choose a coordinate system for E3 such 
that F is the x-z plane. For each real number r we denote the plane 
parallel to F which contains (0, r, 0) by P(r), and we let X(r) = P(r) H C. 
For each positive number t we let Xf(r) be the union of all com­
ponents of X(r) having diameter no smaller than t, and we let 
X* = {Xf(r) | r is a real number}. Cannon proved [5, Theorem 1] 
that, for each i, Xlli is a *-taming set. We shall obtain a *-taming set 
X in S such that C = ( U ^ i Xlli) U X. Once this is accomplished it 
will follow that C is a *-taming set [4], and consequently that S is 
tame from Int C*. 

For each point x of E3 let L(x) denote the vertical line containing 
x, let X = {x G S I L(x) fl Int C = 0 and L(x) D C ^ 0 }, and 
let 77 denote the vertical projection of E3 onto a horizontal plane Q 
where Q lies below C. Let A = {x G Q \ L(x) D Int C ^ 0 }, let 
B = {x G Q | L(x) PI C = 0 }, and let R = TT(X). It is clear that A 
and B are disjoint open sets, that Q = A U B U R, and that R is the 
closed set Q — (A U B). Our object is to show that R is a simple 
closed curve because X would then lie on the vertical cylinder through 
R and would consequently be tame. We shall prove that R is a simple 
closed curve and use this fact later to show that X is a *-taming set. 

In order to show that R is a simple closed curve it suffices to show 
that R = Bd A and that the bounded, open subset A of Ç is also 
connected, simply connected, and 0-ulc [6]. (This result is also given 
in [7, p. 167].) For p £ K we note that each point of 7T~1(p) is 
arcwise accessible from Int C. Since n is continuous this means that 
R is arcwise accessible from A at p and implies that R C Bd A. In a 
similar manner we use the fact that Int C is arcwise connected to show 
that A is arcwise connected. Thus R = Bd A and A is connected. To 
show that A is simply connected we let / be a simple closed curve in 
A, and we let D denote the disk in Q bounded by / . Let H be a ver­
tical annulus whose boundary components are / and another simple 
closed curve above C, and let U = H fi Int C. Clearly U is an open 
subset of H, and we claim that U contains a simple closed curve K that 
is essential (bounds no disk) in H. One way to obtain K is to 
note that if fxg is a short horizontal arc in U, then U — L(x) is 
connected and hence arcwise connected. (The set U — L(x) 
= (TT I Int C)~l(J — x) is connected because / — x is connected 
and 77 | Int C is an open map with connected point inverses.) Thus 
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the simple closed curve K can be selected to lie in the union of fxg 
with an arc from/to g which lies in U — L(x). 

We desire to show that D C A, so we suppose that there exists a 
point z in Int D such that z is not in A. Either z belongs to B or to R, 
and if z G. B there must exist a point of R in Int D, since R separates 
A from B in Ç. Thus we may assume that z lies in R. Our contradic­
tion will be that K can be shrunk to a point in E3 — L(z). This is an 
impossibility since K is a generator for the infinite cyclic fundamental 
group 7Ti(E3 — L(z)). Since L(z) H C lies in S we may use [1] to 
obtain a 2-sphere S ' such that L(z) Pi S ' = L(z) Pi C, S ' is locally 
polyhedral modulo L(z) fi C, and K C I n t S ' . The crumpled cube 
C ' = S ' U Int S ' has a boundary S ' which is locally tame modulo the 
*-taming set L(z) [5, Theorem 4], and L(z) lies in E3 — Int C '. Thus, 
from the definition of *-taming sets, we see that C ' is a 3-cell. Now we 
know that K can be shrunk to a point in Int C", and consequently K 
contracts in E3 — L(z). It follows that A is simply connected. 

We now show that A is 0-ulc. If this is not the case there must exist 
a positive number £ and a sequence {ph qi}iZi of pairs of points of A 
such that, for each positive integer i, 

(1) 0 < d(ph qt) < Hi and 
(2) pi and qi do not lie in an arc in A of diameter less than £. We 

shall show that the existence of such a number £ and such a sequence 
of pairs of points of A leads to a contradiction. 

For each positive integer i, let p / and qi' denote points of 
L(pi) H Int C and L(qi) H Int C, respectively. Choosing sub­
sequences if necessary, we find that we lose no generality in assuming 
that the sequences {p^}, {qi}, {pi'}, and {qi'} all converge, say to 
points p, q, p', and q\ respectively, with p = q G fl and {p'? g ' } 

c L(p) n c = L(9) n c. 
It is well known that Int C is 0-ulc and that each point of Bd C is 

arcwise accessible from Int C [8, p. 66]. Thus, for i sufficiently large, 
there exist arcs P and Q in C, each of diameter less than £/2, joining 
pi ' and qi ' to p ' and 9 ', respectively. The set P U Q U (L(p) Pi C) 
clearly contains an arc a from pi ' to ^ ' which, of necessity, lies in an 
f/2-neighborhood of L(p) D C. Since Int C is 0-ulc, the arc a can be 
approximated by an arc ß from p{ ' to q^ which lies in Int C and also 
in an f/2-neighborhood of L(p) D C. The set ir(ß) lies in A, has 
diameter less than f, and contains an arc from p{ to q{. This is in 
contradiction to the properties of the sequence {piy qi}, and our claim 
that A is 0-ulc is established. 

Now X is known to be tame for it lies in a vertical cylinder generated 
by the simple closed curve R. Since X is vertically connected and pro-
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jects under TT to the connected set R, it is clear that X is connected. 
This insures that X is a taming set [3], and consequently X is also a 
*-taming set [4]. We note that C = X U (Ui^iX1^), and the result 
follows. 
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