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REGULARITY THEOREMS AND GERSGORIN THEOREMS 
FOR MATRICES OVER RINGS WITH VALUATION 

J. L. BRENNER 

ABSTRACT. The collection of root-location theorems for matrices of 
complex numbers is now quite extensive. Since their proofs involve 
chiefly manipulation of absolute value inequalities, many of these 
theorems can be extended to noncommutative domains, in particular to 
quaternion matrices. Secondly, the ring of polynomials has a valuation 
with properties that differ slightly from those of the ordinary absolute 
value function. Using this valuation, a different type of regularity 
theorem is obtainable. With a suitable definition of proper value of a 
matrix of polynomials, these regularity theorems also lead to root-
location theorems. Finally, bounds for determinants can be obtained. 
These bounds are given in terms of the valuation: for polynomials, they 
are bounds on the degree. 

1. Introduction. Let A = [û#]ï be a matrix of complex numbers. 
The curtate row and column-sums Rip, C^p are defined by 

K> = 2 Kh c&= 2 M"-
Thus Ri = Ri i is the sum of the absolute values of the nondiagonal 
elements of the ith row; Q = Cifi is the sum of the absolute values of 
the nondiagonal elements of the ith column. A is called regular if no 
nonzero vector x exists such that Ax = 0. If A is regular, so is AT, 
its transpose; and A is invertible. The constants used below are real 
and subject to 0 g a,ß, y ä= 1; 1 S p, p ', p" ; a + ß + y = 1; 

p-i + q~l = p'-1 + q'~l = p"~l -h q"-1 = 1; 

Ri, » = nii is the maximum of the absolute values of the nondiagonal 
elements of the ith row of A; Q » = d. 

The following hypotheses are known to guarantee the nonsingularity 
of A. 
(1-1) V , { M > f l , } [8]. 

(1.2) Vi{|a„| > Q}. 

(1-3) V , { | f l H | > R f Q ' - } [15]. 
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(1.4) Vakl > W'BÏ^Cl-fi-a»} [16]. 

(1.5) Vi{\aH\>k<ml"ci
ì-"} [16]. 

*i{\aH\>ki
lleBSAPR?ßP>Rly,ry 

(1.6) 
( 0 < e = pp >'7(pp y - pp ' - pp" - p >")) [5]. 

There are corresponding theorems (see below) that relate to an 
arbitrary partitioning of A. Let the indices {1, • • -, n} be partitioned 
into mutually exclusive sets, and let I(i) denote the set to which the 
index i belongs. (For a slight generalization involving overlapping 
sets, see [4], [11].) Let 

V(«) \ i , j / -

denote the determinant of the matrix based on rows /(i), and columns 
[/(f), but with the ith column replaced by the j th ] . If B = [fo#]ï> 
satisfies hypotheses corresponding to (1.1)-(1.6), then both A and B are 
nonsingular. This gives six more theorems, which we number (1.7) 
-(1.12). 

From each of the twelve nonsingularity theorems, and from any 
other theorem of the same type, a root-location theorem is obtainable. 
To see this, let X be a proper value ( = root) of A, set C = A — À.Z, 
and note that C is singular. Thus corresponding to (1.3) for example, 
the assertion 

(1.15) Mlau-M^RWri 

is valid. Assertions (1.13)-(1.24) are explained similarly. Note that 
(1.19)-(1.24) involve minors of the matrix C, not of the matrix A. 

2. Generalization to other domains. The proofs of the above 
theorems depend on standard inequalities (triangle, Holder) satisfied 
by the absolute value function of a complex number. Such a function 
exists; over quaternions. Moreover, determinant, proper value, and 
regularity can all be defined for matrices of quaternions [2], [7]. 
(The vector x (x j^ 0) is a proper vector and X a proper value of A 
if the relation Ax = x\ holds. If X is a proper value, so is pkp~l) 

Thus assertions (1.1)-(1.24) hold for matrices of quaternions. We 
number these assertions, applied to quaternions, (2.1)-(2.24). The 
proofs remain the same: for expository purposes, the proof of (2.1) is 
given. 

(2.1) Let A = [dij] be a matrix of quaternions; define Ri = ^J*Ì\OÌJ\-
Then [ M{ {\aü | > Rt}] => A is invertible. 
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PROOF. The hypothesis guarantees that an ^ 0. Quaternions form 
a division ring. Thus a multiple of the first column can be subtracted 
from each of the other columns to form a matrix B = [by] with the 
following property: b\j-, = 0 if j > 1. The matrix transformation 
A —» B can be represented as a matrix equation 

AE2 • • £ „ = B, 

where Ej are (elementary) invertible matrices. Since B has the form 

ran 0 "j 

L* B, r 
either A is invertible as claimed, or else Bi is not invertible. But Bi 
has lower dimension than B; a simple induction shows that if B (and 
hence B\) is not invertible, there must exist a nonzero vector y (ob
tained by appending an initial zero to the nonzero vector connected 
with Bi) such that By = 0. Setting Ei • • • Eny = x, it follows that if 
A is not invertible, a nonzero vector x exists such that Ax = 0. With 
this established, the rest of the proof is standard: 

Let x = (x1? • • -, xn); define k so that Vi{|xjt| = \xi\}. Since 
Ax = 0, the relation akk^k = "~ ^j*kakj%j holds. Now divide by x̂  
(which cannot be 0), take absolute values of both sides, and apply the 
triangle inequality to obtain the contradiction \akk\ S Rk. \\ 

The root-location theorem 2.13 (corresponding to 1.13) states that 
every proper value of A is in the union of n hyperspheres. 

The above methods can be further generalized. In the first place, 
any field or division ring that has a valuation can be substituted for 
the quaternion ring. It should be noted that for noncommutative 
division rings it is not necessary to distinguish between left- and right-
proper values [2]. 

In the second place, the results extend easily to certain commutative 
rings with valuation: principal ideal rings (in particular euclidean 
rings) and local rings. (Here, a local ring is defined as a ring with the 
property that for every pair of elements, at least one is a divisor of 
the other.) In all cases it is required in addition that the ring have a 
valuation (so that the hypotheses (1.1) to (1.12) make sense.) 

The key lemma is the following: 

2.25. LEMMA. Let A be a matrix with elements from a principal 
ideal ring. If A is not regular, there exists a nonzero vector x such 
that Ax = 0, and conversely. 

A regular matrix is one with determinant not a zero divisor. The 
proof of Lemma 2.25 will be indicated in case the ring is euclidean. 
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For a general principal ideal ring, the arguments are similar; see [ 10], 
[19]. 

The following preliminary assertion is needed. 
2.26. ASSERTION. TWO invertible matrices N, M always exist so that 

NAM has the form 

Lo ßJ 

PROOF. For example if the first two elements of the first row of A 
are nonzero, the euclidean hypothesis shows that at least the absolute 
value of the larger can be reduced, as suggested by the equation 

a b * 
* 

0 
1 

1 
9 
* 

* = 1 
b, a + bq * 

* 

or, if necessary, by the equation 

•! 91 = [ab][0 i ] = [a>b + aÏÏ' 

This argument is the main step. In fact suppose no product AM of A 
by an invertible matrix M could have fewer than k ( >1) nonzero 
elements in the first row. By a permutation AMP, bring two nonzero 
first row elements to the first two positions; apply the argument just 
outlined. 

If all the elements of the first row of A are 0, the above considera
tions must be applied to PA, where P is some permutation matrix 
(this interchanges rows). 

PROOF OF LEMMA 2.25. Let N, M be invertible matrices such that 
NAM has the form 

[a 0 

LO ßJ 
If a is not regular, the assertion is clear. Note that det A = a det B, so 
that either B is not regular, or else A is regular, or else a is not regular. 

Since B has lower dimension than A, the lemma follows by an in
ductive argument based on the dimension of the matrix A. 

A similar device can be used to prove, for local rings, a lemma 
similar to Lemma 2.25. 

The implements are now at hand to extend theorems (2.1) to (2.12) 
to principal ideal rings and local rings with valuation. The conclusion 
of the theorems must be modified, however: invertibility does not 
follow from the hypotheses, but only regularity. In the more general 
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context, a matrix is called regular if its determinant is neither zero nor 
a zero divisor. 

To obtain root-location theorems for principal ideal and local rings, 
the root concept must be defined. 

2.27. DEFINITION. Let A be a matrix over the ring R. A right-proper 
value (root) of A is an element k of R such that, for some nonzero 
vector x with elements in R, the relation Ax = xk holds. 

It is known that if R is a division ring, it is not necessary to distin
guish between left- and right-proper values, [2]. 

Also every matrix over the quaternions does have a proper value. 
Definition 2.27 does not however assure the existence of a proper value. 

2.28. THEOREM. Let A be a matrix with elements from the com
mutative ring R. Ifk is a proper value of A, then A — kl is not regular. 
If Ris a principal ideal ring or a local ring, the converse is valid. 

PROOF. The fact (Ax = xk) that k is a proper value can be written 
in the form Ax = (kl)x. || Note that commutativity seems to be an 
essential hypothesis. 

The converse, in the cases mentioned, follows from Lemma 2.25. 

3. Matrices of polynomials. Let R = F[x] be the ring of poly
nomials in a single indeterminate over a field—or more generally over 
any commutative principal ideal ring S without zero divisors. It is not 
required that the ring S have a valuation. The ring R can be valued 
in the following sense. 

3.1. DEFINITION. The value [f| of the polynomial f[x) is 2degJ\ The 
value of the zero polynomial is 0. 

3.2. THEOREM. / / / , g are two polynomials, then 

(3.3) {|fl = 0 } « « » { f = 0 } , 

(3-4) |/g| = 1/1 • |g|, 

(3-5) | f + g | = i m a x ( | / l , | g | ) . 

Note that (3.3) and (3.4) mirror the corresponding property for 
multiplication of complex numbers, but (3.5) does not. 

Since R is itself a principal ideal ring [ 10], Lemma 2.25 is valid. 
However the theorems of §1 are only valid if the row-sums Rip are 
replaced by something else. 

3.6. DEFINITION. For a matrix A = [a^] of polynomials over a 
field (or commutative principal ideal domain), the generalized ith 
row-sum is given by Rj = maxj^ {(a^Ï| }, where the value |a#| is given by 
Definition 3.1. Also, Q = m a x ^ O ^ I } . 
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Let A = [dij] i be a matrix of polynomials. Any one of the following 
hypotheses is sufficient to guarantee the regularity of A (0 ^ a= 1). 

(3.7) Vi{\au\>Ri}, 

(3.8) Vi>k{\au\:\akk\>RiRk}, 

(3.9) V,{M > Kf Q 1 « } , 

(3.10) Vi>h{M • \ahh\ > RfRh«Cii-«Chi-«}. 

Since the arguments differ somewhat from the proofs of the corres
ponding theorems for complex numbers, some detail is given. 

Proof that (3.7) => A is regular. 
Assume A not regular, apply Lemma 2.25, and obtain Ax = 0, where 

x = [x1? x2, * * *, xn] is a nonzero (column-) vector of polynomials. 
Choose k so that Vj{|xfc| ^ |x,-|} (see 3.1). From Ax = 0, the relation 

(3.11) akkxk = - ]? akjxj 

follows. The proof is finished by noting the consequent relations 

(3.12) \akkxk\ ^ max \akjXj\ ^ max \akjxk\ = |xfc| max|afcj| = \xk\Rk, 
3 3 3 

which contradict \akk \ > K̂  . || 
Proof that (3.8)=* A is regular. Similar to the preceding proof, with 

xk, x£ chosen so that 

(3.13) WM^M^M}-
Note that x£ j£ 0, since otherwise x̂  would be the only nonzero com
ponent of x. This would force akk = 0 because Ax = 0. But if akk 

were 0, (3.8) could not hold. 
The condition Ax = 0 does result in 

(3.14) akkxk = - 2 akjXp 
3*k 

(3.15) au x£ = - ^ aijxr 

If (3.8) is now applied, along with the argument (3.12), the inter
mediate results \akk\ • | a* |= |xÄ| • fì*, \au | • |x£ | = \xk\ • R* are 
obtained. Since \xkXi\ ^ 0, this shows (by multiplication and can
cellation) that \akkasm | = RkRi, which contradicts the hypothesis. 
Thus A is regular. || 

Proof that (3.9)«=* A is regular. If A is singular, a column-vector 
[x1? • • -, xn] of polynomials exists so that Ax = 0. Thus if k is chosen 
so that Vfc {\xk | i? \x{ |}, then it must be true that 
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(3.16) laaXil^max |ay| |x,| S Rfmax{\aij\l-a\xj\}. 
j J 

Thus if the hypothesis is satisfied, and if |XJ| ^ 0, then 

(3.17) Ct-*\%i\ < m a x d ^ p - f e l } . 
3 

Applying maxi to both sides of (3.17) gives the relation 

(3.18) max {Ci1-«|^|} < max max {Kl1-"!*/!} = m a x {C/^M}-
i J i j 

The inequality sign can never degenerate to equality. This contra
diction shows that A is regular. || 

Proof that (3.10)=*» A is regular. This proof is similar to the pre
ceding one. It is first necessary to remark that in this case, at least two 
components Xk, xh of x are nonzero, since otherwise Ax = 0 implies 
a>kk = 0 for some fc, contradicting (3.10). Finally Ax — 0 contradicts 
(3.10) anyway; multiply two forms of (3.17) (with i replaced by s on 
the one hand and by t on the other hand), take maxs>< in this putative 
product, and reverse the order of the max operations. || 

REMARK. The assertion just proved includes the others as special 
cases. 

These four theorems seem to be the natural generalizations of 
(1.1) to (1.6) to matrices of polynomials. There are also generalizations 
of (1.7) to (1.12). In fact the quantities by of §1 still make sense (with 
the same formal definition), and it is still the case that det B is equal 
to det A multiplied by a polynomial function of the elements a^ The 
details of this assertion, which is proved in [5], are: 

3.19. THEOREM. Let A = [ay] " be a matrix of indeterminates. Let 
the indices 1, • • -, n be partitioned into disjoint sets <£Ì9 <S2, * * ',<St. 
Let bij be defined by 

where S is the set to which the index i belongs, and J>\i, j denotes the 
column-set <£, but with the ith column replaced by the jth column. 
The determinant ofB= [bij] is equal to 

(3.20) det ß = det A n [det A(SU ) 1 IS J - i , 

where \J$U\ denotes the cardinality ofSu. 

Since the postfactor in (3.20) is never 0 if no diagonal element of the 



516 J. L. BRENNER 

matrix B is 0, the following four theorems are valid. They are com
panions, applied to B, of theorems (3.7) to (3.10) applied to A. 

3.21. THEOREM. Let A = [ay] be a matrix of polynomials. Define 
bij as the determinant 

det ( W ) 

of an almost principal minor as explained in §1. Let Ri(B), Q(B) be 
defined by 

(3.22) Rj(B) = max \bij\, Ci(B) — max \bß\, 

with \f\ = 2deg J, |01 = 0. Any one of the following conditions is suf
ficient that A be regular [a fixed, 0= a— 1] : 

(3.23) Vi{\b«\>Ri(B)}, 

(3.24) Mi>j{\biibjj\>Ri(B)Rj(B)}, 

(3.25) Vi{\b«\> RiiBfCiiBy-*}, 

(3.26) VaMfcl > Ri(ß)«ß7-(ß)aCi(ß)1-«C;-(ß)i-«}. 

4. Bounds for determinants. For a matrix of complex numbers that 
satisfies one of the hypotheses (1.1) to (1.12), bounds can be given for 
the (absolute value of) its determinant. See [1], [3], [18]. The 
proofs of these results carry over to the case of quaternions: without 
change for hypotheses (1.1) to (1.6); with some changes in the case of 
(1.7) to (1.12). The definition of determinant of a matrix of quaternions 
is nonstandard: see [2]. Although this question is not without interest, 
it is not discussed further here. 

For a matrix of polynomials satisfying (3.7) to (3.10) or (3.25) to 
(3.28), a bound for the value of the determinant can also be given. It 
is amusing that, in all cases, this bound is exact. 

4.1. THEOREM. Let A = [ay] be a matrix of polynomials that satis-
fies the hypotheses of any one of the theorems (3.7), (3.10), (3.14), 
(3.18). Then F = det A is a polynomial, and the relation 

(4.2). |F|=m««l 
holds. 

FIRST PROOF. Comparison of the principal terrnfja^ with the other 
n! — 1 terms in the expansion of det A shows that the other terms all 
have degree lower than the principal one. || 

For the hypothesis of (3.14), for example, 
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1^110220331 > |a i2h|û3l | 1" a - |o3lH f l23| 1" a"|a23|û f | f l12| 1 : A f t 

= \al2a23a3i\. 

For the hypothesis of (3.18), write 

|ûl 1Ö22Ö331 = Ml 1Û22 11/21^2203311/21«33«11 | 1 / 2 • || 

REMARK. The argument shows why a matrix satisfying the 
hypotheses of (3.7) to (3.10) is said to have "dominant diagonal/' The 
principal term in the expansion, the product of the diagonal elements, 
"dominates" the other terms in the expansion, since (3.5) is operative. 
Although the term "dominant diagonal" had been used for many years, 
I could not accept this term until after I made this discovery [6]. 

SECOND PROOF (valid for (3.7) and (3.8) only). This proof is based 
on a polynomial identity expressing the determinant of a matrix in 
terms of the determinant of a matrix, the elements of which are certain 
2 X 2 minors of the original matrix. The following identity for the 
3 X 3 matrix A = [a#] i is an example: 

(4.3) an det A = det 
MS)- Mf3) 
IMS)- MS)J 

(4.3) is a special case of the identity 

(4.4) anü2 det A = det B, 

where the (i, j) element fo# of the n — 1 X n — 1 matrix B is given by 
the formula 

bij = d e t 
* « ; : ! ) • 

Formula (4.4) appears in disguised form in several places; its proof is 
not difficult. Form the product Adiag (1, an, an • • • an); in this 
product add — a# times the first column to thej th column, j = 2(l)n. 
The resulting matrix has the form 

p u 0 i 
L* B r 

its determinant is clearly an det B. From this fact, (4.4) follows. 
The following lemma amounts to a statement that, if A has dominant 

diagonal, then B has dominant diagonal. 
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4.5. LEMMA. Let A be a matrix of polynomials that satisfies the 
hypotheses (3.7), (3.8). Then B = [by], with 

by = det A 
Vi j+i)' 

satisfies the corresponding hypothesis. (As noted below, the special 
subscript 1 has at times to be replaced by another.) 

PROOF. Consider (3.7): Vi{|a#| > Ri}. It has to be proved that |fo#| 
> ma.xk\bjk\ for i, j > 1- This amounts to deg (anajj — a^fl/i) 
> deg (anajk - alkan). \\ 

Consider (3.8). The hypothesis is Vi>j{\auajj\ > RÌRJ}. The con
clusion of Lemma 4.5 is certainly valid if the stronger hypothesis 
Vi{|oit| > Ri} is valid. Now this stronger hypothesis can fail for at 
most one value of i. If the value of i for which failure occurs is i = 1, 
the above proof goes through; the hypothesis |aiiOj,-| > |öifcfl/i| is 
needed. (If failure occurs for some other value of i, the lemma is not 
true, but we modify the lemma in such a case.) 

The second proof of Theorem 4.1 is now easily completed by in
duction. Exchange two indices of A if necessary so that Lemma 4.5 
applies. The principal diagonal of B dominates. But B has lower 
dimension than A. Thus, |det B\ = U|foi,-|. But l^«l = lanai/'l-
Relation (4.4) now completes the proof. 

5. Complements to the above results. 
(5.1) In §1, the matrix B is defined from A, after the indices 

{1, • • -, n} have been partitioned into mutually exclusive sets. A slight 
generalization is available; it is not required that the sets be mutually 
exclusive, but only for each index i, there be a collection of indices 
I(i) that contains i [4], [11]. 

(5.2) A generalization of (1.1) is known [9], [12]. The hypothesis is 
altered by redefining Ri as follows: 

Ri = E Kl> 
(5.3) 

Ri= E KI-R//KI+ S k i , j=2(l)n. 

Since the hypothesis includes |a#| > Rj (J < i) the new hypothesis 
(5.3) is weaker than (1.1). However, nothing like (1.3) to (1.6) can be 
found. 

But there is no analog for matrices of polynomials either. The 
analogous definitions for R{ would be 

(5.5) Ri = max lay |, 
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(5.6) Rj = max < max ajtRtl\att\, max \ajt\ I I . 
w < i L t>j J J 

The matrix 

[ x2 x I 
X3 X2J 

does satisfy the conditions |ÖÜ| > Ri (2 > 1; 2 > 3/2), but is certainly 
not regular. 

This counterexample seems to be related to the nonexistence of 
theorems (on matrices of complex numbers) of analogs to (1.3) to (1.6). 

Conditions using (5.3) do guarantee regularity of a matrix of qua
ternions. The proof can be patterned after the proof in [1]. 

(5.7) More general conditions sufficient for regularity of a matrix 
can be obtained by using an idea attributed to Müller [ 13], [ 17]. If 
M is any (regular) matrix and AM is known to be regular, then A 
must be regular also. As a first example, suppose M is a permutation 
matrix. 

5.8. THEOREM. Let A= [a#] be a matrix of polynomials. Let 
i (—» <f)(i) be a permutation of the indices i = 1(1 )n. 

[ V{ < \<kó(i)\> max \aq\ \ |=*(a) Ais regular; 

(b) |detA|= n>*(i>l-
Next let D = diag (du d2, ' ' ', dn), be a regular diagonal matrix of 

polynomials. If AD is regular, then A is regular. 

5.9. THEOREM. Let A= [a#] be a matrix of polynomials. Suppose 
n nonzero polynomials du • • -,dn exist so that the conditions 

\au\'\di\ > max \aydj\, i = 1(1 )n 
J** 

hold. Then (a) A is regular, (b) |det A\ = f]Ja«|. 

If M is taken as a triangular matrix with units on the diagonal, the 
following theorem is obtained. 

5.10. THEOREM. LetA= [a^] be a matrix of polynomials. Suppose 
polynomials m^ exist so that for i = 1(1 )n the relations 

(5.11) \an\ > max ]£ aitmtj + a{j 
3*i • t<j * 

hold. Then (a) A is regular, (b) |det A| = JJ |ÖÜ|. 

If M is not required to have units on the diagonal, (5.11) is replaced 
by 



520 J. L. BRENNER 

(5.12) M - | m « | > max ^ aitmtj . 
J** • t<j • 

The conclusions remain the same. 
The idea behind (5.11), (5.12) is that cancellation might occur 

among the terms of highest degree in the summations. 

6. Proper values of matrices of polynomials. For a matrix A = [ay] 
the straightforward definition of proper vector and proper value is 
the following. 

6.1. DEFINITION. A vector x of polynomials is a proper vector, and 
the polynomial X is a corresponding proper value, of a matrix A = [a^] 
of polynomials if the relation Ax = xk holds, (x ̂  0). 

This definition indeed makes sense over any ring. If p is an in-
vertible element in the ring, and X is a proper value, then so is 
pkp~l : Ay = y(pkp~1) (if y = xp). It is not always the case that a 
proper vector of length 1 exists; length may not even always be de
fined. Lemma 2.25 states that over a principal ideal ring, a singular 
matrix has at least one proper value, namely 0. A local ring has the 
same property. However not every matrix need have a proper value; 
it is well known that if a field is not algebraically closed, matrices 
over that field exist with no proper values in the field. Even more, 
a matrix of polynomials may have nonpolynomial proper values in 
the domain's algebraic closure. Nevertheless the following "root-
location theorems" may be of interest. 

6.2. THEOREM. Let A = [ay] be a matrix of polynomials over a 
commutative principal ideal ring. Every (polynomial) proper value 
X of A satisfies each of the following conditions: 

MWu-kl^Ri}, 

(6 3) ^Alau-kl-K-kl^RiRj}, 

V«,o^iii{\au- X | ^ flfC,1"«}, 

Va,osasi3«>i{|aa - X| «fe - X| ̂  RfR/Q 1 -«^ 1 -«} . 

Here 

\p\ = 2 d e ^ , Ri = max \a{jl Ci = max \aß\; |0| = 0. 
j & j & 

The same theorem is valid over any ring (with a valuation that 
satisfies (3.3), (3.4), (3.5)). 

Note that (6.3), for example, really gives a useful search bound for 
deg X. In fact, either the terms of highest degree in X coincide with 
those of one of the an, or else |X| < Ri for some i. 
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