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PRIMARY COHOMOLOGY OPERATIONS IN BSJ 

ROBERT R. CLOUGH 

I. Introduction. The study of fiber spaces and fiber bundles has led 
to several different definitions of equivalence. Two of the most 
important are "fiber homotopy equivalence" for Hurewicz spherical 
fiber spaces [8, p. 100] and "bundle equivalence" for spherical fiber 
bundles [ 8, p. 92]. If X is a reasonable space, then the set of classes 
of stable oriented spherical Hurewicz fiber spaces over X is a group, 
called KSF(X); also the set of classes of stable oriented spherical fiber 
bundles is a group, called KSO(X). 

The contravariant functors KSF and KSO are representable. This 
means that there are spaces BSF and BSO such that there exist natural 
isomorphisms [ ; BSF] = KSF and [ ; BSO] = KSO when the functors 
are restricted to a reasonable class of spaces. 

For the rest of this introduction, we shall use slightly nonstandard 
notation. This will serve two purposes. First, it will help to distin
guish between the / homomorphism and the contravariant functor 
which / induces. Second, it will allow our notation to be consistent. 

There is a natural transformation J.KSO-+ KSF, namely the map 
that associates to each class of bundles over X the class of fiber spaces 
which includes it. This transformation is the stable /-homomorphism. 
We use the symbol KSJ(X) to denote the group J[KSO(X)]. Thus 
KSJ is a contravariant functor (usually denoted by / ) . Adams has 
shown that KSJ is not a representable functor [1]. 

Recently there has been some interest in spaces which are "approxi
mately" classifying spaces for the functor KSJ. No space does the job 
perfectly, the argument goes, but some spaces do a better job than 
others. A good approximation should behave as much as possible as 
BSJ would behave if it existed. For example, because of the com
mutative diagram 

/ _ 
KSO »KSF 

A / 
KSJ 

there should exist a corresponding homotopy commutative diagram 
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BSO >• BSF 

\ / 
BSJ 

by [3]. The arrow BSJ——*~BSF is dotted for reasons explained 
below. Also, [Sn; BSJ] should look as much as possible like KSJ(Sn). 
If the diagram exists, then [Sn; BSJ] cannot look exactly like 
KSJ(Sn) for reasons explained in [5]. 

If we convert the map (\p3 — 1) : BSO—» BSO (where I/J3 is the 
Adams operation [2] ) into a fiber map and define SJ to be the 2-
primary component of the fiber, then SJ is an H-space that has a 
classifying space which we agree to call BSJ. We ignore all odd 
torsion for reasons explained in [5]. The homotopy groups [Sn, BSJ] 
are exactly as required by the table in [5]. The search for a map 
BSJ-* BSF continues, although Stasheff has checked that BSF 
actually splits into BSJ X X in low dimensions. This explains why we 
have used a dotted arrow in our diagram above. 

The author's calculation of H*(BSJ; Z2) as an algebra [5] and more 
recent calculations by Milgram and May [6] of H*(BSF; Z2) show 
that the first obvious class of obstructions to a map BS/—» BSF 
vanishes. In the present work, we prove that the second obvious class 
of obstructions vanishes: Namely we show that Stiefel-Whitney classes 
can be chosen in H*(BS/; Z2) so as to satisfy the Wu formula. It is 
known that the Stiefel-Whitney classes in H*(BSO; Z2) and 
H*(BSF; Z2) satisfy the Wu formulae. Hence, they must also in 
H*(BS/; Z2) if the map exists. Indeed, we shall prove the following 
theorem: 

THEOREM 1. There exist isomorphisms 

H*(BS/; Z2) = tf*(BSO X BBSO; Z2); 

H*(S/; Za) = H*(SO X BSO; Z 2) . 

Both are simultaneously isomorphisms of Hopf algebras and iso
morphisms of modules over the Steenrod algebra. 

Of course, the Hopf algebra and Steenrod algebra module structure 
of both objects on the right-hand side of the equalities are known. 
H*(BBSO; Z2) is the least well known [5]. 

II. Details. We first agree on certain conventions. All homology 
and cohomology groups will have Z2 coefficients. Hence H*(X) and 
H*(X) will mean i / J X ; Z2) and H*(X; Z2). Let Y = {ya{lh t/a(2), • • •} 
be a set of indeterminates over Z2, where a is an increasing function 
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with values in the set of positive integers. Then P[Y] = 
p[y«ab y«(2b ' ' '] i s the graded Z2 polynomial algebra on the ya(i), 
where degree (ya(i)) = o(i). As an example, tf*(BO) = F [ ^ 1 ? w2, ' • •] 
is the polynomial algebra on the Stiefel-Whitney classes. Also, E[Y] 
= E[t/a(i), J/«(2), * ' *] is the graded Z2 exterior algebra on the ya{i)t As 
an example, H*(BBO) = E[e2, e3, e4y • • • ] . Finally of (2) is the Z2 

Steenrod algebra. 
Let us briefly review the definition of BSJ. Let BOQ2 denote the 

classifying space for the representable functor KO ® Q2, where Q2 is 
the ring of rational numbers which, when reduced to lowest terms, 
have odd denominators. Let BSOQ2 denote the classifying space for 
KSO ® Q2. Then we have homotopy commutative diagrams 

^ 3 - 1 i/f3 - 1 

BO • BO BSO • BSO 
T I i J T T I x J T 

BOQ2 • BOQ2 BSOQ2 • BSOQ2 

where the vertical maps are 2-primary homotopy equivalences and 
infinite loop maps. The maps X are the 8-fold loops of maps BOQ2[Q] 
->BOÇ 2 [9] and BSOQ2[ 10] -* BSOQ2[ 10]. Here X[n] denotes 
the (n — l)-connected covering of X. We define BJ and BSJ by 
insisting that the following sequences be fibrations: 

BX BK 
ß / - » BBOQ2 • BBSOQ2; BSJ-* BBSOQ2 *BBSOQ2 

The upper map is a lifting of the map BBOQ2 —» BBOQ2 into BBSOQ2. 
Let / = ÜBJ, SJ = ilBSJ, and SOQ2 = (ÌBSOQ2. Then we have fibra
tions 

SOQ2 -> S / ^ BSOQ2; BSOQ2 -> BSJ-+ BBSOQ2; 

SOQ2-+ / - • BOÇ)2; BSOQ2-> BJ^>BBOQ2. 

In [5] it is shown that all differentials (starting with d2) in the Z2 

Serre homology and cohomology spectral sequences are 0. Thus the 
isomorphisms of Theorem 1 are algebra isomorphisms. 

It will be convenient to do our work first in H*(/), then in H*(BJ), 
and finally in H*(SJ) and H*(BSJ). This is because there is a map 
RP—> BO which sends the Stiefel-Whitney classes to the symmetric 
functions of H*(RP X • • • X RP), where RP denotes real infinite 
dimensional projective space. 

THEOREM 2. There exists an isomorphism 
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H*(/; Za) = tf*(SO X BO;Z2) 

which is simultaneously an isomorphism of Hopf algebras and of 
modules over the Steenrod algebra. 

PROOF OF THEOREM 2. 

Step 1. The Hopf algebra structure of H*(J). As an algebra, 
H#(J) is isomorphic to E[xu x2, • • •] ® P[yu \)2, ' ' '] • Since the 
space of primitive elements of ff*(/) is the dual of the space of in
decomposable elements of HJJ), we know that the primitive subspace 
of H2n+l(J) is isomorphic to Z2 © Z2. Then there exists a primitive 
element p2n+i £ H2n+l(J) such that p2n+i is not in the image of 
H*(BO)-+ H*(J). We claim that p2n+i is indecomposable. Obviously 
pi is indecomposable. Suppose p2fc+i is indecomposable for k < n. 
Since P[p2fc+i | k < n] ® P[t^i, w2, ' * '] has o n ly o n e primitive of 
degree 2n + 1, namely the one in the image of H*(B)—» H*(BJ), and 
since p2n+i is not in this image, we know that 

p2n+l $ P[p2fc+i | k < n] ® P[u>i, u>2, • • •] . 

Hence, p2n+i is indecomposable. Thus indeed, H*(/) = 
P[pn | n is odd] ® P[^!,u?2 , • • •] = H*(SO X BO), where the 
equalities are all Hopf algebra isomorphisms. 

Step 2. The behavior ofSq1 in H*(J). Since the w{ of H(J) satisfy the 
Wu relations, we know that Sc/1 annihilates each primitive element 
p 2 n of even degree in P[wu w2y • • •] C H*(/) and sends each 
primitive element p 2 n - i of odd degree to p 2 n . Now Sqlp2n-i is 
primitive and maps nontrivially into H*(SO). Thus Sqlp2n_i is either 
pi2n or p :

2 n + Wi2n when n is a power of two. In the latter case, 
Sql(p2n-i + pin-i) = Pi2n- We now officially redefine p2n-\ to be 
that primitive of degree 2n — 1 such that Sqlp2n_i = pi2n whenever 
n is a power of two. We redefine p2n-i in general to be Sqjp2k-\ 
where fc is a power of two, j + 2fc — 1 = In — 1 and 0 ^ j < 2k. We 
recall that 

H*(SO) = P[pl9 p2 , p3 , • • •]/Ideal [p,2 + p2 i | i = 1, 2, • • •] 

= P[pi | i is odd] 

and that Sqlpj = ({)pi+j where the p» are all primitive. Our alterations 
of the pi in H*(/) have not altered the indecomposability of the pi, 
nor have they altered the fact that the pi of H*(J) map to the p, of 
H*(SO). Since the Sg* preserve primitivity, the new p t are still prirri-
tive. Notice that our choice of p* depend on our choice of p\. If' e 
had taken p\ + Wi as the primitive not in Hl(BO)^> Hl(J), we would 
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have had to take p2n-i + P2n-i as our primitive of H2n~1(J) for n 
a power of two. We have proved the following lemma: 

LEMMA 1. For each choice of p\ G Hl(J) there is exactly one 
choice of primitive indecomposable elements pi EL #*(/) such that 
H*(J) and H*(SO X BO) are isomorphic simultaneously as Hopf 
algebras and as differential algebras with differential Sql. • 

Step 3. H*(J) as an <#(2) module. The fact that X : BOQ2-^> BOQ2 

lifts into BSOQ2 is a consequence of the fact that 1/f3 is the identity map 
on line bundles. Another consequence is that there is a homotopy 
commutative diagram 

/ > BOQ2 

>\ 

RP 

where y is the canonical line bundle. We now pick px G H* (J) once 
and for all to be the primitive in Hl(J) such that/*pi = 0. Then we 
make the choice of pi which Lemma 1 permits. 

We remark that/*p2n-i = 0 for each n. For suppose n is a power 
of two and/*p2n-i = a2" - 1 where a G Hl(RP) is the generator. Then 

0 = ( f p 1 ) 2 n = f ( p i 2 n ) = r S 9 1 p 2 n - l 

= SqlfP2n-i = S g 1 ^ " 1 = a2" f 0 . 

This contradiction proves that/*/92n-i = 0. 

LEMMA 2. Let G be a homotopy commutative H-space and let A 
and B be sub-Hopf algebras of G such that H*(G) and A ® B are 
isomorphic as Hopf algebras. Let X and Y be connected pointed 
spaces and f: X—» G, g : Y —» G be point preserving maps such that 
j*[A] = Z2 = H°(X) and g* [A] = Z2 = H°(Y). Define h : X 
XY-+Gby h(x, y) = fx)g(y). Then h*[A] = Z2 = fl°(X X Y). 

PROOF. Let {al5 a2, • • •} be a basis of A and B where a^ = 1 and 
subscripts do not denote degree. Let fi : G X G - ^ G be multiplica
tion. Then ft*a* = (f* ® g*) o jx*flfc = / * ® g* ^>(i ?J>i ® «/ 
= ^L*(i>,j)fa% ® g*o* = 0 unless i= j = 1 and a* = a, = 1. • 

By Lemma 2, if we take the map RP X • • • X RP-* J, where there 
are n copies of RP, we see that all of the p* are sent to 0. The W\ for 
i ^ n map to the symmetric functions on die a(i) in the usual fashion, 
where H*(RP X • • • X RP) = P[a(l) , • • -, a(n)]. Here each a(k) 
has degree 1. 
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LEMMA 3. Let G be a homotopy commutative H-space such that 
H*(G) = A®B as Hopf algebras. Let f: X-+ G and g : Y-> G be 
continuous base point-preserving functions where X and Y are spaces 
with base points. Suppose f*[B] = Z2 = H°(X) and g*[A] = Z2 

= H°(Y). Let h : XX Y-^ G be defined by h(x, y) = fix) -g(y). Then 
h*[A] C HP(X) and h*[B] C H*(Y), where H*(X) and H*(Y) are 
naturally included in H*(X X Y). 

PROOF. Let {aÌ7 a2, ' ' '} and {fo1? b2, • • •} be bases for A and B; 
here subscripts do not denote degree, but aY = 1 = &i. Then 
h*ak =(f®g*)op*a = f® g^(ifj)ai ® a, = £e(i,j)f* a, ® g*aj 
= ^e(i, l)fai ® 1 £ H*(X). The rest of the proof is similar. • 

By Lemma 3, if we now combine SO—» / with RP X • • • X RP-* J 
to obtain SO X RP X • • X RP—»/, we have a monomorphism 
H*(J)-+ H*(SO X RPX • • • XRP) in degrees â n. Furthermore, 
the Wi are sent into H*(KP X • • • X RP) and the p{ are sent into 
H*(SO). This proves Theorem 2. 

PROOF OF THEOREM 1. Theorem 1 for S/ follows immediately from 
Theorem 2. 

By selecting primitive indécomposables in the base of the homology 
Serre spectral sequence of BSO—» BS/—» BBSO we show that 
H*(BS/) = H*(BSO X BBSO) as Hopf algebras. Because H*(BBSO) 
has odd dimensional primitive indécomposables and no even dimen
sional primitives, there is exactly one choice of wn G H*(BS/) such 
that 

i*wn = wn G H*(BSO), Au;n = ^{Wi@ Wj\i + j = n}, 

and <rwk G H*(SO) C H*(SJ) for fc = 2, 4, or odd. We wish to show 
that Sqhüj G P[wn | n § 2] for all i and / . This turns out to be false 
in B/, a fact due to the absence of w4 suspending into H*(SO) C H*(J). 

Let n be the least fc such that for some i, SqlWk ^ÊLP[WJ \j^ 2], 
Let m be the least i such that Sqlwn ÇÊ.P[Wj \j ^ 2]. Now 

Sqmwn = ^{a(t)wm-twn+t | 0 ^ t ^ m} 4- x 

= a(m)wm+n + p + x. 

We have 

Ax = Aa(m)u;m+n 4- Ap + Sqm Aiun 

= a(m) Au;m+n 4 Ap 4- Sqmu;n ® 1 - h i ® Sqmwn 

4- Sqm^{Wi (S> wj 11 + /?= n and 2 ^ i^n - 2}. 
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Inductively, the nontrivial terms (terms not of the form y ® 1 and 
1 ® y) cancel out in the last expression. Thus x is primitive. 

Then if m 4- n is even, we know Sqmwn £ P[u?j | Wj â; 2] because 
the only even dimensional primitive x of the BBSO part of BSJ is 0. 
Hence, m + n is odd. Then <rSqmwn £ H*(SO) C ff*(S/) Decause 
the primitives x not in P[tOj | tx^= 2] are indecomposable, hence 
suspend nontrivially. Thus awn f£ H*(SO). We note that n is 
therefore even and § 5 . 

Now let q be the greatest 2' such that 2* ^i n and suppose that 
q < n. Let r = n — q. In BSO there is a Wu relation Sqrwq 4- p 
= wn. Since 9 < n, we know inductively that 

A(S</ru;<? 4- p) = S</r Awq + Ap = ( S q ^ + p) ® 1 

+ S i 1 ^ ® u$ | * + / = n and 2 ^ t ^ n - 2} 

+ 1 ® (Sqrwq + p) 

in BS/. Then, in BS/, we have wn = Sqrwq + p modulo the primi
tives of the BBSO part of BS/. Since there are no even dimensional 
primitives of BBSO, and since ap must be 0, we have wn = Sqrwq 

+ p. But S<7ru;q + p £ P[tOj \j^ 2] inductively. Thus we cannot 
have q < n. Then n = q is a power of 2 and, since n ^ 5, we have 

Let w = ql2. In BSO there is a Wu relation Squ2wu = wq+2 + p. 
We routinely (as above) calculate that Squ2wu 4- p = u;q+2 in BS/, 
using again the primitive structure of BS/. On the other hand, BSO 
has a Wu relation Sq2wq = u?2u?Q + t£>Q+2- ^ u t 

àSq2wq + AtVzWq = Sg2^u?i ® a?,- + Aa;2 An?«, = Sg2«^ <8> 1 

+ S { ^ ® ^i I * + J = 9 + 2 a n d 2 = * = 9) + 1 ® Sqr2^. 

Thus 0^+2 = SqhOq 4* w^wq = Squ2wu 4- p in BS/. Now 11^+2 
= Squ2wu + p = Sgu(u;u+2 4- t£>2U>u) + p is in Pfu?, | / è 2] in
ductively. Thus SqhOq G P[a>/ \j = 2] . We cannot nave 0*11̂  — Pq-i 
4- p q - i where p^-i and pQ_! are the primitives of the SO and BSO 
parts of S/? because pq-\ is indecomposable and SqhUq^i involves 
wq+i. This would contradict the fact that Sq2wq suspends into H*(SO). 
Then <rwq G H*(SO). But this contradicts our previous deduction that 
(Ttvn £É H*(SO). Thus our very original assumption that Sqmwq 

fÊP[wj\j^2] is false. 
We wish to acknowledge that the basic idea for the proof of 

Theorem 2 appears in the work of Peterson and Toda [7]. 
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