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THE DECAY-SCATTERING SYSTEM l 

L. P. HORWITZ AND J . -P . MARCHAND 

ABSTRACT. A decay-scattering system is defined in order 
to unify the mathematical treatment of scattering resonances 
and unstable particles. The decay law of an unstable particle, 
the inverse decay problem, and the effect of the presence of 
unstable particles on the scattering process are discussed from 
this point of view. A characterization of phenomenological 
descriptions of decay and resonance is given in terms of the 
analytic structure of the reduced resolvent. Next, the concept 
of symmetry and symmetry breaking is introduced, and simpli
fied, but rigorous, formulations of K -meson and % -particle 
decays are proposed as physical applications. In conclusion we 
make some global remarks about the physical interpretation of 
the decay-scattering systems. 

I. The concept of a decay-scattering system. 

I. 1. What is the relation between a resonance and an unstable 
particle? In what sense are they alternative aspects of one and the 
same physical phenomenon? 

A priori the two concepts are different: A resonance refers to the 
energy distribution of the outgoing particles in a scattering process and 
can be characterized by such parameters as the central energy and the 
width, whereas an unstable particle is described in a time-dependent 
picture by its mass and lifetime. Operationally the difference is as fol
lows: In order to measure a resonance we make a scattering experi
ment; two particles collide, stick together for a while and separate, 
whereas in the other case we create an unstable particle at time t = 0 
and look into its decay. 

And yet the difference is quantitative rather than qualitative. It is 
true that, for example, the existence of a p-meson may be inferred from 
a resonance in the scattering cross-section of ir -mesons and its decay 
cannot be directly measured by a track in a bubble chamber due to the 
shortness of its lifetime. But still the p-meson has a mass, definite 
quantum numbers, and other characteristics of a particle. Conversely, 
although the K-mesons can actually be produced in a beam and their 
decay observed, they can also be considered, in principle, as resonances 
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of a 7T-meson system. Hence resonance and decay are two aspects of 
one and the same physical object. 

It is our purpose to clarify the relation between these two aspects 
with the help of a suitable mathematical model which describes reso
nance and decay in a unified manner. 

I. 2. Consider a selfadjoint operator H0 on a Hilbert space JJ- whose 
spectrum consists of a continuum from 0 to oo and a finite set of dis
crete eigenvalues m* > 0 embedded in it. Let P be the projection of 
Ji on the discrete part of H0 and F = 1 — F the projection on the con
tinuous part. Now consider an interaction V which does not commute 
with P, i.e. such that PVP / 0. The system {H0, H = H0 + V} then 
describes the phenomenon of decay in the following sense: The states 
(p G. PcH are stable under the partial evolution U0(t) = e~iH^ since 
they are discrete eigenstates of Ho, but they decay under V since the 
total evolution U(t) = e~iHt no longer conserves the eigenspace P<=H. 
We call PJ/, therefore, the space of unstable particles. Our viewpoint 
is that the unstable particles would be stable with well-defined masses 
mi under the unperturbed evolution U0(t), and that they decay solely 
through the perturbation V. Such a decomposition of H into H0 and 
V is particularly natural whenever the forces under which the unstable 
particles are produced differ qualitatively from the forces under which 
they decay. This is, for instance, the case for the K-mesons. The theory 
is, however, not restricted in its application to structures of this type. 

So far the system {Ho, H} is thus suitable for the description of the 
decay of unstable particles. In order to make clear its alternative aspect 
as a resonance scattering system we have to postulate that in a certain 
way a scattering matrix exists. In the ordinary description of scattering 
it is assumed that H0 has no bound states and that the scattering matrix 
S is unitary in Jt. Here we make the modified postulate that [PHQP, H} 
is a scattering system and that S is unitary only on the space PJi of 
the decay products. Physically this means that the decay products 
span the whole space asymptotically. 

I. 3. We summarize this discussion in the following: 
DEFINITION. Let H0 be a selfadjoint operator in a separable Hilbert 

space cH with continuous spectrum Ao = [0, <»] and a discrete spec
trum {mi > 0} embedded in A0. Let P, P (with P+P = I) be the pro
jections on the corresponding parts of cH, and let V be a selfadjoint 
operator such that PVP / 0. Let finally {PH0P, H} be a scattering 
system [1] . Then the pair {H0, H} is called a decay-scattering system, 
P the space of unstable particles (resonances) and PJi the space of 
decay products (scattering states). 

According to this definition, the continuous spectrum A of H is 
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automatically identical with the continuous spectrum Ao of HQ. Bound 
states (and singular parts within the continuum) are, however, not ex
cluded a priori. Their existence is considered in Chapter V below. 

I. 4. Our main goal is to establish the precise relation between 
resonance and decay. We formulate this question by stating three 
mathematically and physically distinct problems: 

(1) The decay problem. How does an unstable particle, created at 
time t = 0, decay? 

(2) The inverse decay problem. Under what conditions is it pos
sible to reconstruct the scattering process from the exact knowledge 
of the decay law of the unstable particles? 

(3) The resonance problem. How does the presence of unstable 
particles affect the scattering process? Conversely, under what con
ditions does a resonance in the scattering cross-section correspond to 
an unstable particle? 

I. 5. After a short exposition of the elementary properties of decay-
scattering systems and the definition of the relevant physical quantities 
(Chapter II) we shall investigate the above problems from a global 
viewpoint (Chapter III). Next we introduce an algebraically soluble 
model of a decay-scattering system (Chapter IV) and treat in some 
detail the simplest case (Chapter V). 

In Chapter VI we investigate more thoroughly the analytical struc
ture of the reduced resolvent which leads to an exact characterization 
of approximate (phenomenological) descriptions of decay and reso
nance within our theory (Chapter VII). 

Next we introduce the concept of symmetry and symmetry breaking 
(Chapter VIII) and propose, as physical applications, a simplified but 
rigorous theory of K-meson and 2-particle decay (Chapter IX). 

The concluding part (Chapter X) contains some general remarks 
about the physical significance of the decay-scattering systems. 

II. The relevant physical quantities. 
II. 1. For the decay problem the basic quantity is the reduced 

motion 

(1) ! / ' (* )= K7(t)P 
which governs the time-evolution of the subspace FJi of the unstable 
particles. From this we can derive the so-called decay law of the 
unstable particles (<pi orthonormal basis in FJi) 

(2) p(t) = 2K*<> U{t)<p)f , <p(EPJJ, 
i 

which expresses the probability that an unstable particle <p, created 
at time t = 0, is in the subspace PJi of unstable particles at time t. 
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(2) can also be written 

(2') p(t) = TrP(U>Xt)U'(t)Pv) 

where Pv is the projection on the subspace spanned by (p. 
II. 2. The total time-evolution U(t) = e~illt and the resolvent 

R(z) = (z ~~ H)~l are related to each other by the (inverse) Laplace 
transform 

(3) U(t) = ~^rj R(z) e~izt dz, 

where the integration path is around the spectrum A of H [11]. If we 
project this into PJi, we can express the reduced motion U'(t) by the 
reduced resolvent R (z) = PR(z)P: 

(4) u'(t) = -^£ ff (*) e~izt dz. 
2iri J 

II. 3. The scattering system {PHoP, H} has the following elementary 
properi tes [1] : 

(1) The wave operators fl± exist and are partial isometries between 
PJl and QJi (with Ç the projection on the continuous part of J-f with 
respect to H) linking the spectra Ao and A. 

CIMI = ç, nln± = p, QHQ = ii±PH0pnl. 
(2) The scattering operator S exists on PJ/, commutes with PH0P 

and is unitary in PJi\ 

S = [ita., [PH0P, S] = 0, SSf = tfS = P. 

(3) The scattering amplitude T = S — I also commutes with PH0P 
and satisfies the relation 

rpf rp __ rji rpiï ^_ ^^ rri rrrf 

II. 4. In order to define the experimental quantities of scattering, 
we introduce the spectral representation of PJi with respect to PHQP. 

If the spectrum Ao of PH0P is absolutely continuous, we have the 
direct integral representation <=H- —» { J / ( A ) } : 

tfr G P ^ - > {<X|*)}; Ptf0F</f->{A<ANO}; 

ll*ll2=/AoIK^)ll2^ 
where ||(X|^)||2 is the norm in <S(\) [2]. Since T commutes with 
PHQP it is reduced by {< /̂(X)} and we have 

7>^{r(X)<Ah/r)} 

where the T(A) are operators in ^/( \ ) . If the interaction V satisfies 
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suitable conditions, T(A) is Hilbert-Schmidt and can be expressed 
in terms of V and R(z) as follows [3] 

(5) T(k) = -Ziri lim <A|V + VR(k + fc)V|X>. 

II. 5. The scattering operator S = T + /, being also reduced by 
{ J / ( A ) } and hence unitary in each ^ / (A) , can be written 

(6) S(X) = e2iô(x) = T(X) + lx 

where the selfadjoint operators 8(A) in Jt(k) are the phase-shift operai-
ors. ô(k) is determined modulo 2TT -lk by continuity. 

Furthermore we introduce the total scattering cross-section cr(A) 
(neglecting kinematical factors) by 

(7) *(A) = ^ T r x ( r t ( \ ) T ( \ ) ) , 

the trace being taken over Ji (A). Using the unitarity condition, we can 
also write 

(7) a(k) = - ^ T r x ( r ( X ) + T\K)) = - ^ -Re Trx T(X). 

This is the so-called optical theorem. 
From (6) and (7) we see that the scattering amplitude and cross-

section can be expressed in terms of the phase-shift by 

(8) T(k) = 2i ei8^ sin 0(A); a(A) = Trx sin2 8(A). 

III. The main problems. 
A. The decay problem. 

III. 1. THEOREM. The reduced motion U(t) satisfies the integro-
differential equation 

(9) i-j- U{t) = PHPU(t) - i £ dr PHPe-rpirp*PHPU(t - r). 

PROOF. Projecting the identity zR(z) — 1 = HR(z) into the sub-
spaces PJ/, PJt, we obtain the coupled system 

zR(z) - P = PHR(z) + PHPR{z)P, 

zPR(z)P = PHR(z) + PHPR(z)P, 

and eliminating PR(z)P: 

zR(z) - P= PHR(z) + PHP(z - PHP)-lPHR(z). 

The result (9) then follows from the inverse Laplace transform (4) by 
using the convolution theorem. 
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III. 2. Equation (9) is called the Master Equation for the reduced 
motion and applies not only to decay-scattering systems, but in general 
for evolutions obtained from a unitary group {U(t)} by projection 
into a subspace [4]. The simplest nontrivial example is the following: 

U (t) starts out, at t = 0, with vanishing gradient and, owing to the 
finiteness of the complementary space PJi, its motion is strictly 
periodic. The evolution of a subsystem PJi becomes truly aperiodic 
only in the case where the generator H of U(t) has a continuous 
spectrum. It can be verified easily that U'(t) defined in this example 
satisfies the Master Equation (9). 

III. 3. Although the continuity of the spectrum of H forces the 
decay of the finite subspace PS to be approximately exponential (as 
is shown below in Chapter VII), some essential characteristics of the 
trivial example in III. 2 remain generally valid. For instance: 

THEOREM. The reduced motion of U'(t) of the space PJ4 is not a 
group. 

PROOF. Suppose it were. Then PU(ti)U(t2)P'= PU(ti)P-PU(h)P 
and hence PU(ti)PU(t2)P = 0. Now let t2 = — *i = t, and <p an arbi
trary element in PJi. Noting that U(-t)= U\t), we have ||Pl/(f)P, ||2 

= (<p, PU(-t)PU(t)P<p) = 0 for all <p G P J / and therefore PU(t)P = 
0 = PU(t)P, for all t. Hence U(t) is reduced by P, P which contradicts 
the definition of a decay-scattering system. 

THEOREM. The decay rate (djdt)p(t) vanishes at t = 0. 

PROOF. From (2) and the unitarity of U(t) follows 

-j- TrP(PU\t)PUm ) \ t = 0 

= TrP(iPHU\t)PU{t)P^ - iPU*(t)PHU(t)Pv ) | ,= 0 

= iTxpiPHP* - PHPJ = 0. 

III. 4. A general study of reduced motions could start from the 
Master Equation (9), for instance, by setting up the iterative series 

i^U'(*\t)= PHPU'<*-U(t)- i f dr PHP e-rpH* PHPU'i-»(t - T) 
dt Jo 

with I7'<°>(t) satisfying i(dldt) U'<°\t) = PHPU^°\t). We do not 
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pursue this approach here, but turn instead to a study of the analytic 
structure of the reduced resolvent B!(z). U(i) can then be discussed 
by the help of equation (4). 

B. The inverse decay problem. 
III. 5. A suitable starting point for an investigation of this prob

lem is given by the theory of extensions of Hilbert spaces. 
DEFINITION. A one-parameter family of bounded operators U(t) 

[ t real] in a Hilbert space S ' is of positive type, if for every family 
{<Pt} of elements in S ' such that <pt = 0 for almost all t, we have 

2S(ft.v(t-%^o. 
t f 

THEOREM (BY B. SZ.-NAGY [5] ). If {U ' (t)} is a one-parameter, weakly 
continuous, positive type family of operators in S', then there exists 
a unique minimal extension S~D S' and a continuous group of 
unitary operators {U(t)} in Jf such that S ' = PS and U(t) = PU(t)P 
for all t. The minimality of the extension is defined in the sense that 
the set {U(t)(p} [ W, \fy> GÈ S '] spans the space S. 

III. 6. We now assume that we are given a one-parameter, weakly 
continuous, positive type family of operators {£/(£)} describing the 
evolution of unstable particles in a finite dimensional Hilbert space 

S ', and we further assume the validity of the following: 
Postulate. The selfadjoint generator H of the unitary continuous 

group {U(t)} obtained from {U'(t)} by extension has a positive 
continuous spectrum A = [0, oo ] . 

Then we define a decay-scattering system {H0, H} in the extended 
space by the decomposition 

(10) H = Ho + V; H0 = PHP + PHP; V = PHP + PHP. 

It is obvious that in this decay-scattering system the given space 
j / ' = p j / 0f the unstable particles appears indeed as the discrete part 
of <S with respect to H0 and the masses of the unstable particles are 
the discrete positive eigenvalues {m{\ of the operator PHP in PS. 

We note, however, that the decomposition (10), and hence the 
masses m^ are not uniquely determined by the sole requirement that 
the given quantities <=H', U'(t) be obtained from a decay-scattering 
system by projection into the discrete part of H0. In fact, the term 
PHP could, for example, be included in V rather than H0, without 
changing either PJi and U'(t) or the scattering amplitude. But the 
discrete space <H* = PS then becomes a zero-energy eigenspace of 
Ho and the unstable particles have mass zero. 

Among all possible decompositions of H, (10) can be characterized 
by the additional requirement that the perturbation V be minimal in 



232 L. P. HORWITZ AND J.-P. MARCHAND 

the sense that V contains only those forces which are responsible for 
the decay of the unstable particles, i.e., the forces which relate PJi to 
PJi (cf. IV.1). The only effect of the term PHP in (10) is to shift around 
the masses of the unstable particles. 

The above postulate about the positivity of the spectrum of H 
restricts implicitly the class of decay laws {lf(t)} compatible with a 
decay-scattering system. This leads to the (unsolved) 

Problem. Characterize among all continuous positive type operator 
families {U'(t)} in Ji' those which yield in the extended space Jt a 
unitary group {U(t)} whose generator has a continuous positive 
spectrum. 

C. The resonance problem. 
III. 7. In entire generality this problem is difficult. We shall take 

it up in special cases later (V. 3, VII. 5, VIII. 3); here we restrict our
selves to some heuristic remarks. 

Let the continuous spectrum Ao of H0 be simple and let n and ri be 
the dimensions of the discrete parts of Ji with respect to H0 and H. 
A generalization of Levinsons theorem then yields the relation 

8 (oo) -8 (0 ) = ; r ( n - ri) 

for the phase-shift 8(A) which in this case is a numerical, real-valued 
and continuous function on Ao- There exist therefore at least \n — n! | 
points APi G Ao for which 8(APi) is an odd multiple of 7r/2, and 
according to (8) <r(APi) = 1. In other words, the scattering cross-
section <J(A) has at least \n — ri\ maxima with value 1. If we call the 
maxima of a(A) with value 1 true resonances, in distinction to acci
dental relative maxima ("bumps") in the background scattering, we 
then have the 

THEOREM. In a decay-scattering system with n unstable particles 
(dim P = n), simple energy spectrum and no bound states in H, there 
are at least n true resonances ina(A). 

III. 8. The converse problem is more complicated. There can, in 
principle, exist more than n true resonances in a(A), if 8(A) is not 
monotonically increasing. It can, however, be shown [7] that 
causality requires a lower bond for the derivative of 8(A); the occur
rence of more than n true resonances can then be excluded for a class 
of sufficiently weak interactions V. 

III. 9. In cases involving higher multiplicities of Ao and symmetry 
breaking, no analogue to Levinson's theorem is known and the precise 
link between unstable particles and resonances is not easy to establish. 
(See VII. 3 for an approximate treatment of this question.) In the 
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presence of symmetries (Chapter VIII) the system reduces, however, 
into 1-dimensional systems, in which the above characterization of 
the resonances can again be applied. 

IV. An algebraically soluble model. 
IV. 1. Let {H0, H} be a, decay-scattering system in which the fol

lowing additional conditions are valid: 

(11) d i m P = n < o o ; P V P = 0 . 

We refer to such a decay-scattering system as the n-dimensional 
Friedrichs' model [8]. We note that the rank of V = PVP + PVP + 
PVP is finite (2n) in this model. Hence, according to a theorem of 
Kato [9] , {PHQP, H} forms indeed a scattering system and the last 
condition of definition 1.3 is a consequence of (11). 

The Friedrichs' model is algebraically soluble because of the follow
ing two facts: 

(1) The reduced resolvent B!(z) can be explicitly expressed in terms 
of the free resolvent Ro(z) and the interaction V. 

(2) The scattering amplitude depends only on K(z) and not on the 
other parts of the total resolvent R(z). 

IV. 2. THEOREM. The reduced resolvent R(z) is expressed by V 
and Ro(z) as follows: 

(12) B!(z) = h~l(z); h(z) = | > - rm)Pi ~ PVP - PVP Ro(z)PVP. 

Here h(z) is an operator function in P<=H, and {Pi} is a set ofn orthog
onal, 1-dimensional projectors corresponding to the discrete eigen
values nii ofPH0P (which may coincide). 

PROOF. Projection of the second resolvent equation R(z) = Ro(z) 
+ Ro(z)VR(z) into the subspaces PJi, Pji yields the coupled system 

PR(z)P = PRQ(Z)P + PRo(z)PVP R(*)P + PKo(^)PVP R(z)P, 

P R(z)P = P Ro(z)PVPR(s)P. 

Eliminating PR(z)P and multiplying from the left by P(z — H0)P = 

= 2t(% — mi)Pi, we obtain 

(13) r X (* - rni)Pi - PVP - PVP Ro(z)PVP ] # ( * ) = P, 

from which (12) follows by taking the inverse within the subspace P. 
IV. 3. According to (5) and (11) the scattering amplitude in the 

spectral representation with respect to PH0P becomes 

(14) T(X) = -arf<X|VR'(A + <0)V|X> 
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and hence depends only on the reduced resolvent R (z). 
Let {<pi} be the orthonormal basis in PJi corresponding to the pro

jectors Pit In this basis the function h(z) defined in (12) takes on the 
matrix form 

(15) hijiz) = (z - mJSij - Vij - f T r * W d X ) 
•>Ao Z — k 

where the interaction function Xy-(X) is defined by 

(16) XtfA) = <k\V^)(k\V<pj). 

We also note the relations 

(17) h(k - iO) = h\k + iO), h(k + *>) - h(k - iO) = 2ni Trx X(X). 

With the help of these functions the scattering amplitude (14) reads 

(18) T(k) = -2ni TrP[X(X)h-1(X + »)] 

and the cross-section, using (7), (17), and (18): 

(19) <r(k) = - ^ T r , TrP[X(X)(fc-1(X + » ) - h~lt(k + » ) ) ] . 

Finally the reduced motion (4) becomes 

(20) u>(t)=— 4 h-l(z)e~iztdz. 
Ziri J 

In equations (18) and (20), scattering and decay are entirely ex
pressed in terms of the interaction functions X(X) and h(k) which in 
turn are explicit functions of the interaction V alone, according to 
(15) and (16). 

V. Analysis in the simplest case. 
V. 1. In this chapter we analyze the exact solutions of the Fried

richs' model in the simplest case where 

(1) H0 has a single bound state <p with eigenvalue mo (i.e. 
dim P = 1), 

(2) The absolutely continuous spectrum of H0 is simple, 

(21) (3) V = PVP + PVP (no self interaction PVP\). 

The purpose of this review of Friedrichs' original article [8] is to illus
trate some of the abstract results obtained in Chapter III and to 
provide an intuitive basis for the next chapter where we shall treat in 
more generality the analytic structure of the reduced resolvent in a 
decay-scattering system. 
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From IV. 3 we obtain the following expressions for the reduced 
resolvent, the scattering cross-section and the reduced motion: 

(22) B!(z) = h~l(z) l ; X(X) = |<A|V*>)|2 , 

z- w o - f ^-dk 
JAo Z— A 

(20) U(t) = - i - r <£ B!(z) e~izt dz. 
2TTI J 

V. 2. First we investigate the existence of a bound state in H. 

THEOREM. If X(k) > 0 for all X > 0, H has a bound state if and only 
if h(0) = 0; its eigenvalue k is then necessarily negative (it cannot be 
embedded in Ao). 

PROOF. The spectral representation of <H with respect to H0 consists 
of a number (the component ^ 0

 = (<P^) of \fß in the subspace FJi) 
and a Lebesgue square-integrable function (X|0): 

* - • Wo, <A |^ )K Hot/*-* {™o<f<o,X<X|<fO}. 

The interaction (21) is represented by 

V*-* { | A ) {k\V<p){k\*)dk, <lß0(k\V<p)y 

Therefore the eigenfunction equation Hty = \\fß leads to the equa
tions 

( X - m o ) 0 o = f Wp)(k\ip)dX; (k-k)(k\<lß)=*lß0(k\V<p) 
J A ( ) 

and, substituting the second into the first, to 

(24) l-m0= l~^\d\. 
J k k 

Since X(k) > 0 for k > 0, the right-hand side diverges unless X = 0. 
(24) then implies the inequality 

JA0 A — X 

or h(0) è 0. 

V. 3. Next we test the conclusions from Levinsons theorem stated 
in III. 7. From (23) we see that a(k) has a true resonance if and only 
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if the function h(k) = X - m0 - J(X(X')A7(X - X')) vanishes. Since 
h(k) is continuous and h(k) —» oo for X -* °° ? there must exist a zero if 
h(0) < 0, in other words, according to the above theorem, if H has no 
bound state. This leads to the 

COROLLARY. a(k) has a true resonance if H has no bound state (in 
accordance with the theorem in III. 7). 

V. 4. We now consider the analytic structure of the reduced resol
vent. 

THEOREM. If H has no bound state, the reduced resolvent R(z) is 
regular analytic in the entire complex plane cut by the spectrum Ao of 
Ho. If H has a bound state, then R(z) has a pole at its eigenvalue X 
on the negative real axis. 

Note that, according to [15] and [17], X(X) can be interpreted as 
the difference between two Hilbert transforms and is therefore defined 
pointwise (for the present purpose). 

PROOF. From (22) it follows that R(z) is regular except for poles 
(X(X) is integrable!). But poles cannot occur off the real axis since for 
Imz^ 0 

lmh(z)=lmz(l+ J ^ dk W 0. 

Suppose there were a pole at X = 0. Then h(k) = 0 implies 

or h(0) ^ 0, and hence H has a bound state (V. 2). Conversely, if X is 
a bound state of H, it satisfies (24), hence h(k) = 0 and R(z) has a pole. 

V. 5. For the analytic continuation of R (z) we have the following 

THEOREM. R(Z) can be continued from above into its second sheet 
if and only if the interaction function X(X) is analytic and can be con
tinued into the lower half plane. The continuation is 

1 
(25) R'll(z) 'ii/v> = _ 

- m0 - l ^ ^ r dk + 2TTÌX(£) 
J z — X 

PROOF. If X(z) is analytic, R'll(z) is also. Hence it is sufficient to 
show that R'u(k - iO) = R'l(k + iO). But this follows immediately 
from the relation 

f aw M = if mi 
x ± io - x' n - v w 
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It can be seen from (25) that for sufficiently small interactions, i.e., 
\\V<p\\2 = JA X(X)dk << 1, the reduced resolvent R(z) has exactly 
one simple pole zp in the second sheet near the real axis. We shall use 
this as a postulate in the more general context of Chapter VI, al
though we should note that the uniqueness of the pole cannot be 
proved for completely arbitrary interactions V. (This question leads to 
the bifurcation problem which is in general difficult. Pole trajectories 
for increasing "coupling" have been discussed for this model in [10].) 

V. 6. Let us finally briefly consider the decay problem. We have 
now the possibility to deform the integration path in (20) into the 
second sheet from above through Ao- In this process we pick up the 
contribution from the pole zp in the second sheet plus some contri
butions from the branch points. As we shall see in more generality in 
Chapter VII, the pole contribution leads to an exponential decay while 
the other terms are significant only for small and very large times. The 
latter have been partly estimated in [10]. It turns out that the asymp
totic behavior of U(t) for t —> <*> is polynomial rather than exponential 
(see VII). 

VI. Analytic structure of the reduced resolvent 
VI. 1. From the discussion of the explicit model in Chapter V it is 

apparent that an entirely general theoiy of the reduced resolvent in 
terms of the interaction V alone would be difficult to establish. There 
does not seem to exist a simple criterion for V which, for example, 
ensures that there is exactly one pole in the analytic continuation of 
R(z). 

The theoiy presented here will be incomplete insofar as we shall 
impose some conditions on R(z) with the purpose of avoiding the 
specific difficulties connected with the bifurcation problem and other 
similar complications. These conditions thus amount to implicit re
strictions on the class of potentials. 

The first condition is concerned with the analytic continuation of 
R(z) into the second sheet, and the second with the existence and 
properties of poles in this continuation. Before stating them formally, 
we make some heuristic remarks. 

VI. 2. It is well known [11] that A is a natural boundary of analy-
ticity for the total resolvent R(z). We now indicate how, on the other 
hand, the reduced resolvent PR(z)P may be continuable, in particular 
if dim P is finite. 

Continuability through A would imply that there exists an open 
interval of A in which the discontinuity 

D(X) = R(k + i0) - R(X - iO) 



238 L. P. HORWITZ AND J . -P . MARCHAND 

is analytic in the weak topology. We therefore calculate 

=lim
 LTTT^TT

 df-^dx = -z*ij-<s.<*m 
ciò JA(X—X ) 2 + € 2 dX aX 

where (dldk)(f, E(X)g) is the Radon-Nikodym derivative of the (abso
lutely continuous) spectral family E(X) of Jf. Suppose now that we 
restrict ourselves to the reduced resolvent R'(z) in F J / only. If dim F 
is finite, there exists a finite basis (pi in FJ/, and if we postulate that 
the functions (dldX)(<pu E(X) ,̂-) are bounded and admit an analytic con
tinuation to complex X's in an interval of A, then all finite linear com
binations/, g of (pi will have the same property and R(z) is continu -
able. The same argument clearly fails if FJi is infinite dimensional. 

VI. 3. As to the existence of poles in the second sheet and the rank 
ofR(z), the following heuristic comment may provide some insight: 

In the limit of vanishing perturbation we have 

(26) R ' ( z )^PRo(z )P= 2 — ^ 
i z — mi 

where Pi are the orthogonal projections on the eigenspaces of m^ 
Hence, in this limit, the reduced resolvent has exactly n poles at m* 
(which may coincide) with orthogonal residua Fj, and the rank of R(z) 
is n if z =p rrii. Under the perturbation these poles disappear if H 
has no eigenstates. But in the first sheet, PR(z)P is regular everywhere 
except on A. Hence the poles are likely to wander into the second sheet 
and, in general, to separate, unless the couplings of the eigenspaces 
Pi with the continuum F are identical. For sufficiently weak perturba
tion we therefore expect exactly n (= dim F) distinct poles zPi in the 
second sheet. Furthermore, we expect the residua to remain linearly 
independent, and the rank of R(z) to remain n for z j^ zPi. 

VI. 4. Based on these remarks we now formulate the assumptions 
underlying our discussion of the reduced resolvent as follows: 

Assumptions. (1) If dim F = n is finite, the reduced resolvent R(z) 
can be continued from above through the spectrum A of H and is 
regular analytic in the second sheet except for n distinct simple poles 
zPi situated in the lower half-plane near A. 

(2) The rank of the analytic continuation of R(z) is n in the regular
ity domain. 

VI. 5. An immediate consequence of these assumptions is the fol
lowing 
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THEOREM. The residues gPi of R(z) at the poles zPi are operators of 
rank one. 

PROOF. Since rank R(z) = n for z regular there exists the inverse 
R~l(z) for z regular. At the poles zPi we have det R~l(zPi) = 0, 
and rank R~l(z) = n — 1, since the poles are simple. From 
R~l(z)R(z) = F we obtain by integration around the poles 
R'-i(zPi)gPi= 0. Hence rank gPi ^ dim kernel R'-l(zPi) = n — 
rank R'~l(zPl) = n — (n — 1) = 1. Since gPi ^ 0, it follows that 
r a n k g p . = l. 

VI. 6. In order to obtain a constructive method to deal with the 
residues we introduce a "generalized generator" W(z) in F J / by 

(27) R(z)=(z-W(z))-K 

In analogy to (26) we then have the 

LEMMA. 

where Wi(z) are the n eigenvalues of W(z), Qi(z) are idempotents de
pending on z and satisfying the orthogonality and completeness re
lations 

(29) Qi(z)Qj(z) = ôijQiiz) ; ZQtiz) = P. 
i 

PROOF. The Qi(z) are constructed by forming the direct product of 
the left and right eigenvectors Vi(z) and Ui(z) of the matrix W(z). In 
the limit of vanishing interaction, Vi(z) goes over to the transpose con
jugate of Ui(z) (they become independent of z); for sufficiently small 
interaction, Ui(z) is distinct from Uj(z) for i ^ j . 

The first part of equation (29) follows from 

Qi(z) = Ui(z) ®Vi(z) 

and 

W(z)Ui(z) = Wi(z)Ui(z), Vj(z)W(z) = Wj(z)vj(z)y 

i.e., 

0 = [Wi(z) - Wj(z)] (Vj(z)ui(z))y 

so that (Vj(z)Ui(z)) = 0 for Wi(z) ^ Wj(z). The idempotence property 
is valid since we normalize to (VÌ(Z)UÌ(Z)) = 1. 

The completeness property is slightly more involved. Assuming 
the Ui to form a (not necessarily orthogonal) basis in FJ/, the ortho-
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gonality and normalization conditions imply that 

j 

where Uj is the conjugate transpose of Uj and my is the inverse of the 
matrix (UJUJ). Hence 

2 Ui(z) ® Vi(z) = £ mMz) <g> Uj(zf 

is Hermitian even though Qi(z) may not be. The third part of equation 
(29) then follows since this sum is idempotent, leaves every element of 
PJf invariant, and vanishes on PcH. We finally remark that TrPQi(z) 
= 1, since a complete orthogonal set can be constructed of linear 
combinations of the uy if the first element of the set is chosen to be 
uj\ui\, its contribution to the trace is unity and the remaining part 
vanishes by construction. 

VI. 7. The construction of the pole residues gp proceeds now as 
follows: The n poles zPi of R'(z) are the (distinct) roots of the equations 
2pi — Wi(zPi) = 0. From (28) we obtain therefore 

(30) g P i = Qi(zPi)l(l-w!(zPi)) 

i.e., the residues are porportional to the idempotents Q^Zp^). Hence 
they are in general 

(1) not of trace 1, 
(2) not selfadjoint, 
(3) not orthogonal. 
Equation (29) does not imply Qi(zpi)Qj(zPj) = 0 for zPi ^ zPj7 and 

hence we have, in general, according to (30),gPigp. ^ 0. 
As a consequence, the residues gp are in general not states. The one-

dimensional projectors on the ranges of gp are however pure states 
whose physical significance will now be established. 

VI. 8. Let Pp be the one-dimensional projectors on the ranges of 
gp. Then we have 

LEMMA. 

(31) TrP(W(zp)Pp) = zp; TrP(W(zp)gp) =- ^ — - • 
1 — Wp (Zp) 

PROOF. Integrating the relation R-{(z)R(z) = (z - W(z))B!(z) = P 
around the pole zp, we obtain (zp — W(zp))gp = 0. Since gp is rank 1, 
it is also true that (zp — W(zp))Pp = 0. The result follows from these 
two relations by taking the trace and by using (30). 
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If we split zp into its real and imaginary parts and W(zp) into its 
Hermitian and skew Hermitian parts: 

zp = kp - iTp/2; W(zp) = W<+)(^) + iW<-)(%p) 

we obtain the more detailed result 

(31') TrP(W<+)(zp)Pp) = Ap; TrF(W<->(zp)Pp) = - r p / 2 . 

We now introduce a physical terminology for these quantities; its 
justification will become clear in the next section. 

DEFINITION. We call the projectors Pp on the ranges of the residues 
gp the resonant states, the operators W<+)(%p), W^^Zp) the mass 
and the decay operators, Xp the resonance mass and Fp the decay 
constant. Then equation (31') can be expressed in the following form: 

THEOREM. The expectation values of the mass and decay operators 
in the resonance states are the resonance mass and the decay constant 
for that state. 

VII. Phenomenological approximations. 
VII. 1. The simplest decay and resonant-scattering processes can 

be described approximately in terms of a contractive semigroup for the 
reduced motion, and the so-called Breit-Wigner function for the scat
tering cross-section [ 12]. The approximations involved are of the 
following general types: 

(1) pole approximation, 
(2) weak interaction limit, 
(3) simplifying assumptions about the structure of the residues. 

We shall proceed in steps in order to exhibit the necessity of the 
various assumptions in deriving these phenomenological descriptions. 

VII. 2. The pole approximation consists in retaining for the reduced 
resolvent B!(z) only the first terms of its Laurent expansion: 

(32) R'(z)= 2 — ^ . 
p Z Zp 

In this approximation R(z) is thus a meromorphic operator function 
with n isolated simple poles zp; the branch cut A has disappeared. 
Inserting (32) into the expressions (4) for the reduced motion, we 
obtain 

(33) u\t)= 2 g p « p ( - M = Sgpexp(-«( V - Ç ) * ) • 

From this expression the physical significance of the real and 
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imaginary parts of the poles zp appears clearly as the resonance mass 
and the decay constant (cf. the definition in VI. 8). Furthermore, we 
see that for [/(t) to be a contractive semigroup it is necessary and 
sufficient that the residues are orthogonal idempotents, i.e., that 

(34) g„g„' = 8, PP&P' 

VII. 3. In the study of the scattering cross-section we restrict our
selves to the Friedrichs' model in which <r(X) depends only on the 
reduced resolvent. In pole approximation (32) equation (19) becomes 

r ( x ) == J5L £ xr, fTrp(X(X)gp) TrP(X(X)gI)| 
Zp A Zp 

<35) -fr? (x-J+ (W^->,)T,,W*)fo-g»] 
-(«V2)Tr,.[X(x)(g, + g})]}. 

(This approximation is fairly good in the neighborhood of Xp. In the 
nondegenerate case, where all the mi are different, the poles closest 
to X make up the principal contributions.) 

In order to get the Breit-Wigner form (in its restricted definition as 
a precise Lorentz form) we first suppose that the residues are self-
adjoint: gp = gp . Then the first term in (35) vanishes. Second we have 
to evaluate the term TrP(X(X)gp). Here we assume the limit of weak 
interaction to hold, in which higher order terms in the coupling ||V|| 
are neglected. Using (15) and (27), we can then write for W(z) at the 
pole Zp in the second sheet: 

W(zp) = 5 > ^ i +PVP+ f Tr*X(y,W - 2TH Trx X(zp) 
i J Zp- k 

= X rrnPi + PVP+ rf T r x y W - in Trx X(kp). 

I J kp A 

Therefore 

:.W^(Zp)=-7rTYkX(kp) , 

and hence, according to (31) (X ~ kp) 

TTP Trx(X(X)gp) = Trp Trx(X(Xp)gp) 

= - ± Trp(W<->(zp)gp) = r - . 
7T 2TT(1 - u?p(zp)) 

Insertion of this into (35) yields the scattering cross-section in Breit-
Wigner form: 
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(36) <7(A) - I (x _ J2 + (Fp/2)2 ( l _ w>M ) . 

(The last factor ("inelasticity") would be unity if, for example, (34) 
were satisfied.) 

VII. 4. We summarize these findings in the following 

THEOREM. The reduced motion U'(t) and the cross-section a(X) 
have in pole approximation the forms (33) and (35). If the pole 
residues gp are orthogonal idempotents in the sense of equation (34), 
then the reduced motion forms a contractive semigroup. If the pole 
residues gp are selfadjoint and if the limit of weak interaction holds, 
then the scattering cross-section has the Breit-Wigner form (36). 

In the form (36) the cross-section appears as the superposition of n 
resonances with the resonant masses Xp as the centers, and the decay 
constants Tp/2 as the widths, of their distributions. 

VII. 5. The approximations considered here exhibit in a striking 
fashion the close link which exists in a decay-scattering system be
tween the phenomena of decay and resonance. As we can see from 
equations (33) and (36), the reduced motion U(t) and the cross-
section <J(X) are both characterized by the location of the poles zp in 
the reduced resolvent K(z). Hence \p = Re zp takes on the dual 
aspects of the decay and the resonance energies and — Tp/2 = ImZp 
those of the decay constants and the widths of the resonances. 

In pole approximation the decay is essentially exponential (equation 
(33)), whereas, according to the global remarks made in Chaper III, 
the initial decay rate vanishes. This raises the question of the validity 
of the pole approximation in the decay problem. We do not attempt 
here a general study of this question (see V. 6 for the 1-dimensional 
case). 

VIII. Symmetry and symmetry breaking. 
VIII. 1. Consider a scattering system {Ho, H} with spherically 

symmetric potential V. This means that the angular momentum 
operator L commutes with both H0 and H, and therefore with the 
scattering operator S. The projectors Pz on the eigenspaces of L with 
definite angular momentum eigenvalues £ reduce the scattering 
system: 

^ = É e ^ * > s = £ s t , {S(x)}={ is t(x)|, 

etc. Such an operator L is called a dynamical symmetry of the system. 
A further dynamical symmetry is, for instance, the third component 
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L3 of the angular momentum with eigenvalues m = —I, • • • , + £, and 
we know that in a system without spin a state is completely determined 
if we specify its energy and its angular momentum eigenvalues i, m. In 
this case we call the system {L, L3} a complete symmetry. We now 
formalize this in the following 

DEFINITION. A selfadjoint operator A is called a dynamical symmetry 
of the decay-scattering system {H0, H} if it commutes with H0 and H. 
A commuting set {A„} of dynamical symmetries is called complete if 
the system {H0, A«} is maximal commuting, i.e. if {H0, A«}" = {J/0> Ä»} '> 
where {Ho, A J " is the von Neumann algebra generated by {H0, A«} 
and {Ho, A«} ' its commutant [13]. 

VIII. 2. We first consider the case of a complete system of dynamical 
symmetries. For simplicity we assume that the spectrum of H0 consists 
of an absolutely continuous part Ao with uniform multiplicity (possibly 
oo ), and a single point eigenvalue mo > 0 with corresponding pro
jectors P and P, while the spectra of A« are discrete. Let us denote by 
Ci the discrete points in the product spectrum fXA* of {A„} and by l{ 

the projectors on the corresponding eigenspaces. Since {A«} is com
plete, the common eigenspaces Ĵ P of A^ and PH0P are one-dimensional 
(with {(pi} the corresponding orthonormal basis in P<=¥), and the con
tinuous spectra of PiPH0PPi are simple. 

The spectral representation of J / with respect to the set {H0, A«} 
has now the following form: 

t 

where tyi = (<pu ifß) and where (X, City) are numerical valued, square 
integrable functions on Ao such that 

Sfl<^^l*)2^<0 0 -

VIII. 3. Since the family {U} reduces both H0 and H, we have 
1^= 0 for i ^ j , and the decay-scattering system {H0, H} splits 
into a direct sum of one-dimensional decay-scattering systems {hHoh 
UH h} in liJi, In particular the pole residua gPi become orthogonal 
and Levinson's theorem (III. 7) holds in each subspace U 

THEOREM. In the case of complete dynamical symmetry the decay-
scattering system decomposes into a direct sum of one-dimensional 
systems. In each system the scattering cross-section has at least one 
true resonance, if PiHPi has no bound state. The pole residua are 
orthogonal, and hence in the absence of inelasticity, the semigroup 
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property and the Breit-Wigner form for the resonances are valid in 
pole approximation. 

VIII. 4. If the potential V in our example of VII. 1 were not 
spherically symmetric, then the angular momentum operator L would 
not commute with H and S (although it still would with H0). We call 
such an operator a broken symmetry. 

DEFINITION. A selfadjoint operator A is called a broken (dynamical) 
symmetry of the decay-scattering system, if it commutes with H0 but 
not with H. A is a weakly broken symmetry, if ||I<V1/|| < < ||I<VIi|| 
for ij£j. (Here Zj are again the spectral projections of A.) 

A decay-scattering system with a broken symmetry does not reduce 
into a direct sum of one-dimensional systems with orthogonal pole 
residua, and none of the nice conclusions of the theorem in VII. 3 
hold. In particular, the nonorthogonality of the pole residua results in 
a system without the semigroup property, even in the pole approxima
tion. 

In the next chapter we shall evaluate the effect of a broken symmetry 
in a concrete example. 

IX. Physical applications. 
IX. 1. The decay of the neutral K-mesons in a slightly idealized 

description yields an almost perfect illustration of the formalism de
veloped so far. It leads in fact to the simplest model of a multi-dimen
sional decay-scattering system with weak symmetry breaking. 

In a second example (2°-decay) we shall consider the situation of 
two bound states embedded in the continuum of H0 of which only one 
is decaying whereas the other remains as a bound state of H. Such a 
situation is not incompatible with our general definition of the decay-
scattering system, but it presents in a simple way the phenomenon of 
a so-called (finite) mass renormalization. 

A. The decay of the neutral K-mesons [14]. 
IX. 2. The neutral K-mesons are produced by strong interactions 

and they decay only through weak interactions, the ratio between 
strong and weak interactions being approximately 1013. It is therefore 
natural to split H into a free Hamiltonian Ho which contains all the 
strong interactions (including final state interactions of the decay 
products), under which the K°-mesons are stable, and a weak per
turbation V which induces their decay. 

The K°-meson space is two-dimensional [15] and all K°'s have an 
identical well-defined free mass mK (—500 Mev). Under the weak 
interactions they decay into either TT-mesons or into channels with 
leptons. For simplicity, we do not discuss here the leptonic decay 
(involving electrons, neutrinos, etc.). 
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The CP-operator (charge conjugation times partiy) is a broken 
symmetiy of the system, with two eigenvalues ± 1 . The linear com
binations of neutral K-mesons which are eigenstates of CP with 
eigenvalues + 1 and —1 are called, respectively, Ki and K2. The 
27T-states are CP + 1 and the 37r-states CP— 1 eigenstates. 

Under the weak interaction V the K-mesons decay into the 7r?s. If 
CP were a precise symmetiy, Ki would decay only into 2TT, and K2 into 
37T, and since the coupling between KA and 2TT is much larger than 
between K2 and 3TT, the Ki -decay would be much more rapid than the 
K2-decay (ratio of about 100). For an arbitrary initial K-meson beam 
the Ki -component would therefore immediately decay into 27r's while 
the K2-component would live much longer. After some time the beam 
should thus produce exclusively 37r's. 

This was, however, contradicted by experiment [16] : There is a 
small ratio (about 0.2%) of 27r's which are produced at a time where, 
under the hypothesis of CP-symmetiy, we would expect only 37r's. 
Hence the weak interaction V violates the CP-symmetry which be
comes, therefore, a weakly broken symmetry. 

We now tiy to reformulate this problem within the framework of 
our theoiy. 

(1) The K(,-7T system is a decay-scattering system. The space P of 
the unstable neutral K-mesons is two-dimensional. It is a discrete 
eigenspace of H0 corresponding to the doubly degenerate eigenvalue 
mK (= mass of K-mesons). The continuous spectrum Ao of Ho has 
multiplicity 2 and the corresponding space PJ-f of decay products 
contains the 2ÎT- and 37r-states. 

(2) There is a weakly broken symmetiy CP with two eigenvalues 
Ci = 1, c2 = —1 with corresponding^ projectors Z1? I2 (I\ + I2

 = 1). 
Since CP commutes with H0, P and P are reduced by 1\ and 12. The 
common eigenvectors of h and P are called K\ and K2; the space 
l\PJi contains the TT-meson pairs and l2P<S the TT-meson triplets. 

(3) The CP-eigenstates K1? K2 are coupled to the continuum P with 
different strengths: The pole zL of R(z) corresponding to K2 is about 
100 times nearer to the real axis than the pole Zs corresponding to 
Ki ; hence the states KL, K$ which span the ranges of the pole residua 
gL, gs decay with rates differing by about a factor 100. KL is called 
the longlived and Ks the shortlived K-meson. 

(4) The weak symmetiy breaking manifests itself through the fact 
that liVIj T^ 0 for i ^ j . In particular, we have IÎPVPI2 ^ 0, which 
means that K2 can decay into a 27r-state although K2 has CP = — 1 
and27rhasCP = + 1 . 

(5) The CP-symmetiy breaking could also be achieved by a term 
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Z1PVP72 linking directly Ki and K2. (A theory in which the entire 
breaking occurs in the term PVP is called a superweak theory.) We 
assume here to the contrary that PVP conserves the CP-symmetry and 
that the entire violation lies in the terms PVP and PVP. We can then 
include PVP in HQ (since it does not induce any decay or symmetiy 
breaking). This assumption simplifies the results slightly. 

IX. 4. In this theory the reduced motion of the K-meson system is 
now expressed, in the pole approximation, by 

U ' (t) = g s e ~izsf + gL e-**L%. 

The nonorthogonality of the pole residua gs, gL is of the order of the 
ratio between symmetiy conserving and symmetiy breaking terms of 
V, i.e., gsgL == O(a), where a is the order of CP violation (amplitude) 
[141. 

The interaction functions are, in the basis K1? K2 G P: 

Trx Xij(K) = <X,Cl|VK,)<X, Ci|V*Ç)+ & , c 2 | W < X , c 2 |V^) , 

hij(z) = (z - m^ôij - r ThXi^d\ 
Jo z — \ 

from which the scattering amplitudes and cross-section are obtained 
by equations (18) and (19). 

B. The decay of 2 ° . 
IX. 5. The neutral 2 - and A-partieles are formed by strong inter

actions with masses m1 > raA > 0. The X°, however, decays under 
electromagnetic interactions (~100 times weaker than strong inter
actions), into a A° and a photon y, while A° is much more stable and 
decays only under weak interactions. The symmetiy distinguishing 
S° and A° (except for their relatively small mass difference) is the so-
called isotopie spin; it is broken by electromagnetic interactions. If 
we put the strong interactions into Ho, the electromagnetic ones into 
V and neglect the weak interactions, and if we note that the decay 
products (A, y) have necessarily a higher energy than the free mass 
m A of A, we obtain the following model: 

(1) The ( 2 , A, y)-system forms a decay-scattering system in the 
following sense: The spectrum of H0 consists of three parts: two point 
eigenvalues mA , m 1 with corresponding eigenvectors A, E and one-
dimensional projectors PA , P1, and a continuum Ao with P(Ay) = P 
extending from m A to infinity. Since ra2 > i 7 ? A , m 2 is embedded in 
Ao- The multiplicity of Ao is 1. We have 

H0 = PA H0PA + P2 H0P^ + PH0P. 

The corresponding spectral representation is 
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*->{+A,+s ,&|*)} , 
H0<<»-> {mAi/>A,rn^,X<X|^)} 

where 

fA = (A,<//); ^ = ( 2 , * ) . ' 

(2) The electromagnetic interaction V couples £ to the (A, y)-
continuum and to A but not A to the continuum (A is to be stable). We 
have 

V = PVPX + P^VP+ PA VPX + P1 VPA , 

or, in spectral representation: 

(38) V * ^ { VAS ^ , VSA * A + £ (\\Vt)(\mdk, (X|V2)^ } 

where 

V« = (A, V2), VSA = (S,VA). 

IX. 6. Under this interaction the discrete eigenvalue mj of H0 dis
appears from the spectrum of H, while the eigenvalue m A at the lower 
end of the (A, y ) -continuum shifts to the left and remains in the 
spectrum of H as a discrete point mA> < mA . In order to see this last 
point, we solve the eigenvalue equation Hi// = raA \fj. From (37), 
(38), we obtain the componentwise equations: 

( m A . - roA)*A = VAX \lß1, 

(39) (mA. - m1 ) ^ = VSA *A + J^ <*|V2)<X|*)A, 

(roA.-A)<X|+) = <X|V2)*S, 

whence the following equation for m v : 

(40) m = m 
A "S 

+ f- K^)l2 dx + -i^-
*A - x 

From this equation follows that raA, < raA. Furthermore, it can be 
proved from (39) that the corresponding eigenvector \b = A' of H 
differs from A only weakly, i.e., that ||PS A ' || and ||PA ' || are small of the 
order of || V|| compared to ||PA A' ||. But note that A' does not lie entire
ly in the subspace PJi and the corresponding projector PA, does not 
commute with P. 

IX. 7. Next we discuss the poles of the reduced resolvent R(z). It 
follows from (15) and (16) for the interaction functions: 

<41> X ( X > = ( o L ( A ) ) ' 
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( z - m A , - V A Ï \ 

The poles of R(z) occur at det (h(zp)) = 0. It is easy to verify that one 
pole occurs at m v in the first sheet by inserting (40) into (42). Let zx 

be the other pole lying in the lower half-plane of the second sheet. 
From 

z - m £ - f Xlx{k) dX + 2niX(Zl) - |VA* P = 0, 
J z2 — k zx — raA 

it follows that, in the weak interaction limit 

Im z2 = - r s 12 = -TT X(ms) 

for the decay constant (or the width of the resonance), and for the 
resonant mass we have 

Xix(k) ,. , [VAS |2 

Re^v = m ' v = m v -I- P dk + 
J rrir — 

IX. 8. The residuum of R'(z) a tmA - is PPA> P, where PA> is the pro
jection on A'. Let g be the residuum at zx. Then we obtain for the 
reduced motion in pole approximation: 

U(t) s PPA, P r i m A ' f + g s e-tes* , 

and for the evolution and asymptotic behavior of the initial states A 
and 2: 

U(t)A = A'APA' e~im^ + g s A r f e ï ' • A'PA' e -K- ' , 
t>>(lm zx)~

l 

U(t)X = A'2PA' c-'mA" + g s 2 €?-'** * • A' PA e-^'f. 
t>>(Imz1)-

1 S 

Since ||PA'|| ~ 1, ||PA A'|| - 1, while ||PS A'|| = 0(||V||) < < 1, we see 
that, under U(t), A tends to a state whose norm remains almost 1, 
while 2 decays almost to 0. This is so because a small part of A makes 
a transition into 2 which decays, while a small part of 2 goes into PA' 
which is stable. The longlived component in P<S has always the 
character of PA ', irrespective of the initial state. But the longlived A's 
arising from an initial 2 are not accompanied by a photon y. 

Finally, we treat the scattering problem. Starting from the precise 
general formula (19) for the scattering cross-section and noting that 
h"l(k + f0) = [h-l(k - t0)] *, wehave 
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a(X) = -?5-TrP[X(X)(/i-1(A + i0) - h~l(k - »))] 
2 

= -n Im TrP[X(k)h-l(k + »)] 

- *Im { W T i ò y T r p [ X ( x ) c o f ^ + i 0 ) ] } 
and, inserting (41) and (42), the following exact expression: 

oW < ^ S ^ 

X. Physical significance of decay-scattering systems. 
X. 1. In Chapter I we introduced decay-scattering systems in a 

purely mathematical way as a simple modification of the formal scat
tering systems defined by Jauch [1] and Kato [9]. A common feature 
of these abstract systems is that to a given unitary evolution U(t), with 
generator H whose spectrum is positive and continuous, there exist 
many decompositions H = H0 + V such that the pair {Ho, H} has the 
properties of a (decay-) scattering system. In particular it is always 
possible to define a decay-scattering system by 

H = H0 + V; H0= PHP + PHP 

where P, P is an arbitrary partition of the unity with dim P = n finite. 
In order to relate these mathematical constructions to a given 

experimental situation involving decay and resonance one has to 
answer the following: 

Questions. (1) Does the decay law obtained in a decay-scattering 
system yield a correct description of the time-evolution of those states 
we are willing to consider as the states of the unstable particles? 

(2) What is the relation between the scattering amplitudes obtained 
in a decay-scattering system to the resonances measured in the labora
tory? 

We are still far from having a purely operational self-consistent 
procedure which would permit one to associate in a canonical manner 
decay-scattering systems to an arbitrary collection of experimental 
data. A physical theory is rarely inductive in this strict sense. What 
usually happens is that we possess a certain amount of "exterior" 
evidence of what a theory of given phenomena should look like. For 
example the fact that there should be two neutral K-mesons was 
originally obtained from a consideration of their decay properties 
with respect to the discrete operations of space reflection and charge 
conjugation [ 15]. In other cases, like the hydrogen atom or a-decay, 
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we may use some a priori knowledge of the form of the potential 
responsible for scattering and decay. 

In the absence of a universal bootstrap theory we confine ourselves 
here to a review of some instances in which decay-scattering systems 
may actually lead to a good phenomenological description. 

X. 2. Question (1) obtained a partial answer in III.6 where the 
space Jt' of the unstable particles and their evolution U'(t) was sup
posed to belong to our a priori knowledge. We outlined there a theo
retical procedure (inverse decay problem), which, at least in principle, 
permits one to embed this system into a decay-scattering system 
{Ho, H} defined in an enlarged space Ji such that <=H' = PJi and 
U(t) = Pe~iHtP. 

In our deductive theory of the K-mesons (Chapter IX), the basic 
information consisted in a knowledge of the K-meson masses, and the 
fact that the interactions inducing their decay into the TT -mesons are 
weak and break the CP-symmetry. The decay-scattering system re
sults from including the strong interactions into the Hamiltonian 
H0; the decay law then becomes a matter for experimental verification. 

X. 3. As to Question (2) we should note that the scattering ampli
tude T(X) of a decay-scattering system never corresponds to the ampli
tude measured in an experiment, but represents rather a fictive 
experiment between "distorted waves." This comes about as follows: 

A scattering experiment correlates the free outgoing to the free 
ingoing states. The experimental S-matrix therefore corresponds to a 
decomposition of the total Hamiltonian H into the operator Hkin, 
representing the free kinetic energy of the asymptotic states, and the 
total perturbation Vtotai, whereas in the decay-scattering system 
{Ho, H} the operator Ho includes all of the interaction between the 
free particles which leaves the "unstable particles" in bound states. If 
we suppose that H has no bound states, Levinson's theorem implies 
that, for the total phase-shift 

8 t o t a l ( ° ° ) - 8 t o t a l ( 0 ) = 0 

whereas, for the phase-shift of the decay-scattering system, 

ô ( 0 0 ) - ô ( 0 ) = YITT 

with n the dimension of the discrete part of H0. From the chain-rule 
for the wave operators we obtain 

«tota! = 0 ( H + - Hkin) = fì(H<- PHoF) iì(PH0P^ Hkin) 

where iìd = Ü(PH0P *- Hkin) leads from the free to the distorted waves. 
For the relation between the corresponding scattering operators this 
implies 
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Stotal(\) = S(X) Sd(X) 

where Stotai and Sd are in the spectral representation with respect to 
#kin [17]. (L. Stodolsky [17] has used a similar construction to take 
into account the part PVP of the potential (cf. X. 1).) 

In the case of the K-mesons, for instance, the distortion is due to the 
strong interactions and S is related to the experimental Stotal by the 
strong interaction phase-shifts in the IT -meson space. 

X. 4. Still a different problem arises if we assume that the potential 
Vtotai = H — Hkin is known a priori. A typical example is provided by 
the customary description of the a-particle resonances due to the 
tunnel effect. Here the total scattering amplitude has a resonance, but 
the phase-shift satisfies 8(°°) = 8(0) since Ho and H have no bound 
states. 

The description in terms of a decay-scattering system would consist 
in introducing a state <p (= J/, called a compound nucleus, and then 
defining H0 by (43), F being the projector on cp. A procedure which 
might lead to a unique definition of <p could consist in constructing the 
state which maximalizes the expectation value of Wigner's delay-
time operator [7]. 

We note that the new potential V = H — H0 obtained in the decay-
scattering description would be nonlocal, since its rank is finite. 
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