
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 30, Number 2, Summer 2018

EXISTENCE OF A MILD SOLUTION FOR A
NEUTRAL STOCHASTIC FRACTIONAL

INTEGRO-DIFFERENTIAL INCLUSION WITH
A NONLOCAL CONDITION

ALKA CHADHA, D. BAHUGUNA AND DWIJENDRA N. PANDEY

ABSTRACT. This paper mainly concerns the existence of
a mild solution for a neutral stochastic fractional integro-
differential inclusion of order 1 < β < 2 with a nonlocal
condition in a separable Hilbert space. Utilizing the fixed
point theorem for multi-valued operators due to O’ Regan
[29], we establish an existence result involving a β-resolvent
operator. An illustrative example is provided to show the
effectiveness of the established results.

1. Introduction. In the past few decades, the theory of fractional
calculus has become a most interesting area for researchers due to its
wide applicability in sciences and engineering in such areas as mate-
rial sciences, mechanics, seepage flow in porous media, fluid dynamic
traffic models, population dynamics, economics, chemical technology,
medicine and many others. One of the major applications of frac-
tional calculus is the hypothesis of fractional evolution equations. The
fractional derivatives give a phenomenal instrument for describing the
memory and the process of genetic properties of different materials is
a major advantage of fractional calculus. For more details regarding
fractional calculus and fractional differential equations, the interested
reader is referred to the monographs [21, 32], and the references cited
therein. Moreover, the investigation of the abstract nonlocal Cauchy
problem was introduced in [8]. It has been observed that differen-
tial equations with nonlocal conditions are more realistic for describing
many phenomena and have better effects in applications than the prob-
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lem without nonlocal conditions. Many researchers have investigated
the differential equations with nonlocal condition, and certain results
have been obtained, see [7]–[39], and the references cited therein.

Fractional differential inclusions play a significant role in the inves-
tigation of different dynamical processes and phenomena represented
by a discontinuous or multivalued equation, arising, specifically, in the
investigation of the dynamics of economics, dynamic Coulomb friction
problems and biological macrosystems. In addition, they are extremely
valuable in demonstrating existence theorems in control theory and
differential variational inequalities. Fractional differential inclusions
in infinite-dimensional spaces have not been considered, in particular,
fractional differential inclusions with a nonconvex multivalued term.
For more details on differential inclusions, the reader is referred to
[19, 34] as well as [4, 5, 10, 17, 24, 25, 30, 35, 37, 38, 39]. In
addition, stochastic differential equations have gained much attention
due to the large number of problems in real life situations to which
mathematical models are applicable, and which are fundamentally sto-
chastic instead of deterministic. Stochastic differential equations have
an extraordinary application in different fields of science and engineer-
ing, for example, finance, numerical analysis, physics, biology, medical,
control theory and social sciences, see [26, 28]. The theory of stochas-
tic differential equations has been very rapidly developed, and there are
numerous, fascinating results on the qualitative properties of the solu-
tion, such as existence, uniqueness and stability of solutions of different
stochastic differential equations and integro-differential equations, see
[12, 33, 36] and the references given therein.

An existence result for neutral delay fractional integro-differential
equations with nonlocal condition in a separable Banach space is stud-
ied in [22], utilizing the theory of the measures of noncompactness
and condensing maps. Ezzinbi et al. [16] extended the results of [15]
and discussed the existence and regularity of solutions for some nonlo-
cal neutral partial differential equations using the strongly continuous
semigroup. Using the fixed point theorem for multi-valued operators,
due to Dhage [14], and fractional power of operators, Lin and Hu
[24] derived sufficient conditions for the existence of the mild solu-
tion to neutral stochastic functional integro-differential inclusions in-
volving nonlocal and impulsive conditions. Yan and Zhang [36] ob-
tained the existence of the mild solution to nonlocal stochastic integro-
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differential equations with the aid of Schaefer’s fixed point theorem
and the analytic resolvent operator. Sufficient conditions proving the
existence of the mild solution of fractional stochastic differential inclu-
sions with state-dependent delays were obtained in [17] via the non-
linear alternative of Leray-Schauder type for multivalued maps due to
O’Regan. Li and Liu [23] considered neutral stochastic differential
inclusions with infinite delay and proved existence results utilizing a
fixed point theorem for condensing maps due to Martelli [27]. The
existence of mild solutions in the mean square moment for impulsive
neutral stochastic integro-differential inclusions of the fractional order
with state-dependent delay was studied in [37] with the aid of the non-
linear alternative of Leray-Schauder type for multivalued maps, due to
O’Regan [29] and the solution operator. Balasubramaniam, et al. [3],
discussed the existence results in the pth moment for stochastic delay
evolution inclusions by utilizing the compact semigroup and fixed point
theorem for condensing maps, due to Martelli [27]. Liu and Liu [25]
considered the existence of the mild solution for fractional semi-linear
differential inclusions involving a nonconvex set-valued function. With
the aid of a fixed point theorem for the condensing multivalued map
and an analytic resolvent operator, sufficient conditions providing ex-
istence results was derived in Chang and Nieto [11]. After reviewing
the previous work, we find that there is very little research, to the best
of our knowledge, which has been done in regards to the mild solution
for nonlocal neutral stochastic integro-differential inclusions involving
the fractional derivative in a pth moment utilizing resolvent operators.
This fact is the inspiration of our present work.

In this paper, we consider the following, neutral stochastic integro-
differential inclusion with nonlocal conditions in a separable Hilbert
space (U; ∥ · ∥U) with inner product (·, ·)U,

(1.1) cDβ
t [y(t)− F (t, y(h1(t)),

∫ t

0

a1(t, s, y(h2(s))) ds)] ∈ Ay(t)

+

∫ t

0

f(t− s)y(s) ds+G(t, y(h3(t)),

∫ t

0

a2(t, s, y(h4(s))) ds)
dw(t)

dt
,

t ∈ J = [0, T ],

(1.2) y(0) = y0 + h(y) ∈ U, y′(0) = 0,
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where cDβ
t means the Caputo fractional derivative of order 1 < β < 2,

0 < T < ∞, A and f(t), t ≥ 0, are closed, densely linear operators
defined on a common domain in a Hilbert space U. The functions F ,
G, h1, h2, h3, h are appropriate continuous functions to be specified
later and hj ∈ C(J, J), j = 1, 2, 3, 4. We assume that {w(t) : t ≥ 0} is a
given V-valued Brownian motion or Wiener process with a finite trace
nuclear covariance operator Q ≥ 0 to be defined later; here, V means
another separable Hilbert space with norm ∥ · ∥V and inner product
(·, ·)V.

The purpose of this work is to study the existence of the mild solution
for the nonlocal fractional order system (1.1)–(1.2) utilizing fixed point
theory for multivalued maps, a generalization of previous results. As a
motivation example for this class of equations, we consider the following
boundary value problem with nonlocal condition

(1.3)
∂

∂t

[
z(t, x)− F

(
t, z(cos t, x),

∂z

∂t
(cos t, x)

)]
=
∂2z(t, x)

∂x2
+G

(
t, z(cos t, x),

∂z

∂x
(cos t, x)

)
∂w(t)

∂t
,

z(t, 0) = z(t, π) = 0,(1.4)

z(0, x) = z0(x) + h(z(t, x)), x ∈ [0, π], t ∈ [0, 1].(1.5)

This nonlocal fractional stochastic system can also be incorporated
into an abstract neutral equation, as mentioned above. Since F and
G involve the spatial partial derivative, the results obtained by other
authors cannot be applied to our system even if h(·) = 0. This is
the main motivation of this paper. In addition, this work proposes
a framework for studying the neutral stochastic fractional integro-
differential equation with nonlocal conditions, the main contribution
of the work. The rest of the paper is organized as follows. Section
2 discusses some basic definitions, lemmas and theorems, useful in
proving our results. Section 3 focuses on the existence of a mild
solution to system (1.1)–(1.2) with the aid of a fixed point theorem
of multi-valued mapping and a resolvent operator. Section 4 provides
an example.
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2. Preliminaries. In this section, we discuss some basic definitions,
notation, theorems, lemmas and some basic facts regarding analytic
resolvent operators. Throughout, the notation (U, ∥ · ∥U, (·, ·)U) and
(V, ∥ · ∥V, (·, ·)V) stand for the separable Hilbert spaces. The notation
C(J,U) stands for the Banach space of continuous functions from J to U
with supremum norm, i.e., ∥y∥J = supt∈J ∥y(t)∥U, for all y ∈ C(J,U),
and L1(J,U) denotes the Banach space of functions y : J → U which
are Bochner integrable, normed by

∥y∥L1 =

∫ T

0

∥y(t)∥U dt,

for all y ∈ L1(J,U). A measurable function y : J → U is Bochner
integrable if and only if ∥y∥ is Lebesgue integrable. For more details
concerning the Bochner integral, the reader is referred to [38]. The
notation B(U) stands for the Banach space of all linear bounded
operators from U onto itself with norm

(2.1) ∥g∥B(U) = sup{∥g(y)∥ : ∥y∥ ≤ 1}, for all g ∈ B(U).

Herein, we assume that A, f(t), t ≥ 0, are closed linear operators
densely defined on a common domain D(A) on the Hilbert space U. Let
[D(A)] denote the domain of A with the graph norm. For 0 < η ≤ 1,
the notation (−A)η represents the fractional power of the operator −A
with dense domain D((−A)η) in U. It is easy to verify that D((−A)η)
is a Banach space with the norm

(2.2) ∥y∥η = ∥(−A)ηy∥, for all y ∈ D((−A)η).

Hence, we signify the space D((−A)η) by Uη endowed with the η-norm
(∥ · ∥η) and this norm is equivalent to the graph norm of (−A)η, that
is, ∥y∥η = (∥y∥2 + ∥Aηy∥2)1/2. Also, we have that Uκ ↩→ Uη for
0 < η < κ, and therefore, the embedding is continuous. Then, we de-
fine U−η = (Uη)

∗ for each η > 0. The space U−η stands for a Banach
space with the norm ∥z∥−η = ∥A−ηz∥, z ∈ U−η, known as the dual
space of Uη. For more details on the fractional powers of closed linear
operator, the reader is referred to [31].

Let (Ω,F ,P;F) (F = {Ft}t≥0) be a complete filtered probability
space satisfying the condition that F0 contains all P-null sets, where
Ω is a space, F is a σ-algebra of subsets of Ω and P is a countably
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additive, non-negative measure on (Ω,F) with total mass P(Ω) = 1.
A filtration F is a sequence of σ-algebra {Ft}t≥0 with Ft ⊂ F for
each t and t1 ≤ t2 ⇒ Ft1 ⊂ Ft2 . A U-valued random variable is an
Ft-measurable function

u(t) : Ω −→ U,

and the space

S = {u(t, ω) : Ω −→ U : t ∈ [0, T ]}

which contains all random variables is called a stochastic process. In
addition, we use the notation u(t) instead of u(t, w) and u(t) : J →
U ∈ S.

Let {ei}∞i=1 be a complete orthonormal basis of K. We assume that
{w(t) : t ≥ 0} is a cylindrical V-valued Wiener process defined on
(Ω,F ,P;F) with a finite trace nuclear covariance operator Q ≥ 0, i.e.,

Tr(Q) :=

∞∑
i=1

λi = λ <∞

such that Qei = λiei. Then, we obtain w(t) =
∑∞

i=1

√
λiwi(t)ei;

here, {wi(t)}∞i=1 are mutually independent one-dimensional standard
Brownian motions. At this point, the above V-valued stochastic
process w(t) is called a Q-Wiener process. The symbol L(V,U) stands
for the space of all bounded linear operators from V into U with
the usual norms ∥ · ∥L(V,U) and L(U) when V = U. Suppose that
Ft = σ{w(s) : 0 ≤ s ≤ t} is the σ-algebra generated by w and FT = F .
For ψ ∈ L(V,U), we define

(2.3) ∥ψ∥2Q = Tr(ψQψ∗) =

∞∑
n=1

∥
√
λnψen∥2.

The operator ψ is a Q-Hilbert-Schmidt operator if ∥ψ∥2Q < ∞. The
symbol LQ(V,U) stands for the space containing all Q-Hilbert-Schmidt
operators ψ : V → U. The completion LQ(V,U) of L(V,U) with the
topology induced by the norm ∥ · ∥Q is a Hilbert space with the same
norm topology; here, ∥ψ∥2Q = (ψ,ψ). For a basic study on stochastic
differential equations, the reader is referred to [12].

In order to set the structure for our primary existence results, we
provide the following definitions.
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Definition 2.1. The Riemann-Liouville fractional integral operator J
of order β > 0 is defined by

(2.4) RLJβt F (t) =
1

Γ(β)

∫ t

0

(t− s)β−1F (s) ds,

where F ∈ L1((0, T ),U).

Definition 2.2. The Riemann-Liouville fractional derivative is given
as

(2.5) RLDβ
t F (t) = Dm

t Jm−β
t F (t), m− 1 < β < m, m ∈ N,

where Dm
t = dm/dtm, F ∈ L1((0, T ),U) and RLJm−β

t F ∈Wm,1((0, T ),
U). Here, the notation Wm,1((0, T ),U) stands for the Sobolev space
defined by:

(2.6) Wm,1((0, T ),U)

=
{
y ∈ U : there exists a z ∈ L1((0, T ),U) :

y(t) =
m−1∑
k=0

dk
tk

k!
+

tm−1

(m− 1)!
∗ z(t), t ∈ (0, T )

}
.

Note that z(t) = ym(t) and dk = yk(0).

Definition 2.3. The Caputo fractional derivative is given as
(2.7)

cDβ
t F (t) =

1

Γ(m− β)

∫ t

0

(t− s)m−β−1Fm(s) ds, m− 1 < β < m,

where F ∈ Cm−1((0, T ),U) ∩ L1((0, T ),U).

Let Lp(Ω,Ft,U) be the Banach space of all Ft-measurable pth
power integrable random variables with values in U. The nota-
tion LF

p ([0, T ],U) stands for the Banach space of all pth power in-
tegrable and Ft-measurable processes with the values in U. Let
C([0, T ], Lp(F ,U)) be the Banach space of all continuous mappings
from [0, T ] into Lp(F ,U) with supt∈[0,T ]E∥y(t)∥pU < ∞. In particu-

lar, the notation C denotes the Banach space C([0, T ], Lp(Ω,F ,U)),
the family of all Ft-measurable U-valued stochastic processes with the
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norm
∥y∥C =

(
sup

t∈[0,T ]

E∥y(t)∥pU
)1/p

.

Here, E denotes the expectation with respect to a probability P, i.e.,
Ey =

∫
Ω
ydP.

Let L0
p(Ω, C) be the family of all F0-measurable, C-valued random

variables y(0). We use the symbol P(U) for the family of all subsets of
U, and denote:

(2.8)

Pcl(U) = {Z ∈ P(U) : Z is closed},
Pbd(U) = {Z ∈ P(U) : Z is bounded},
Pcv(U) = {Z ∈ P(U) : Z is convex},
Pcp(U) = {Z ∈ P(U) : Z is compact}.

Now, we present a few facts on multi-valued analysis. The multi-
valued Υ : U → P(U) is called convex (closed) valued if Υ(x) is convex
(closed) for every x ∈ U. If Υ(B) = ∪u∈BΥ(u) is bounded in U for all
B ∈ Pbd(U) i.e., supu∈B{sup{∥z∥ : z ∈ Υ(u)}} < ∞, then map Υ is
bounded on bounded sets.

A multi-valued map Υ : U → P(U) is called upper semicontinuous
(usc) if, for any u ∈ U, the set Υ(u) is a nonempty closed subset of
U and if, for each open set G of U which is contained in Υ(u), there
exists an open neighborhood N of u such that Υ(N ) ⊂ G. The map Υ
is called completely continuous if Υ(G) is relatively compact for every
bounded subset of G ⊆ U. If the multi-valued map Υ is completely
continuous with nonempty compact values, then Υ is usc if and only if
Υ has a closed graph, i.e., un → u, vn → v, vn ∈ Υ(un) ⇒ v ∈ Υ(u).
For y ∈ U and N , G ∈ Pbd,cl, we denote by

D(y,N ) = inf{∥y − z∥U : z ∈ N}

and

ρ̃(N ,G) = sup
u∈N

D(u,N ),

and the Hausdorff metric Ud : Pbd,cl(U) → Pbd,cl(U) → R+ by

Ud(B̃, C̃) = max{ρ̃(B̃, C̃), ρ̃(C̃, B̃)}.
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The map Υ has a fixed point if there exists a y ∈ U with y ∈ Υ(y).
A multi-valued map Υ : J → Pbd,cl,cv(U) is called measurable if, for
each y ∈ U, the function t 7→ D(y,Υ(t)) is a measurable function for
each t ∈ [0, T ]. For more details on multi-valued maps, the reader is
referred to [13, 20].

Definition 2.4. Let Υ : U → Pbd,cl(U) be a multivalued mapping.
Then, Υ is called a multivalued contraction if there exists a constant
µ ∈ (0, 1) such that

(2.9) Ud(Υ(x)−Υ(y)) ≤ µ∥x− y∥U,

for each x, y ∈ U. The constant µ is called a contraction constant of Υ.

Definition 2.5. The multi-valued map G : [0, T ] × U × U →
Pbd,cl,cv(L(V,U)) is called Lp-Carathéodory if

(a) the map t 7→ G(t, y, z) is measurable for each (y, z) ∈ U× U;
(b) the map (y, z) 7→ G(t, y, z) is usc for almost all t ∈ J ;
(c) there exist a continuous function Wg ∈ L1([0, T ];R+) and a

continuous increasing function Θg : [0,∞) → (0,∞) such that

∥G(t, y, z)∥pU = sup
g∈G(t,y,z)

E∥g∥pU ≤Wg(t)Θg(E∥y∥pU + E∥z∥pU),(2.10)

for all (y, z) ∈ U× U and for almost every t ∈ J.

Thus, we have the following result stated as

Lemma 2.6 ([13]). Let U be a Hilbert space and I a compact interval.
If G is an Lp-Carathéodory multi-valued map with NG,u ̸= 0, and Υ is
a linear continuous mapping from Lp(I,U) to C(I,U), then the map

(2.11)
Υ ◦ NG : C(I,U) −→ Pcp,cv(U),
u 7−→ (Υ ◦ NG)(u) = Υ(NG,u),

is a closed graph operator in C(I,U)×C(I,U), where NG,u denotes the
selectors set from G, defined as

(2.12) g ∈ NG,u

=

{
g∈Lp(I, L(V,U)) :g(t)∈G

(
t, u(h3(t)),

∫ t

0

a2(t, s, u(h4(t))) ds

)
for almost every t∈ [0, T ]

}
.
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Now, we present an α-resolvent operator, which appeared in [1].

Definition 2.7 ([1]). A one-parameter family of bounded linear oper-
ators Sβ(t), t ≥ 0, on U is said to be a β-resolvent operator for

cDβ
t y(t) = Ay(t) +

∫ t

0

f(t− s)y(s) ds,(2.13)

y(0) = x, y′(0) = 0,(2.14)

if

(i) the function Sβ(·) : [0,∞) → L(U) is strongly continuous;
(ii) Sβ(0)x = x, for all x ∈ U and α ∈ (1, 2);
(iii) for x ∈ D(A), Sβ(·)x ∈ C([0,∞), [D(A)]) ∩ C1((0,∞),U); and

(2.15)

cDβ
t Sβ(t)x = ASβ(t)x+

∫ t

0

f(t− s)Sβ(s)x ds,

= Sβ(t)Ax+

∫ t

0

Sβ(t− s)f(s)x ds, t ≥ 0.

In what follows, we consider the following assumptions:

(P1) The operator A : D(A) ⊂ U → U is a closed, densely linear
operator. Let β ∈ (1, 2). For some ϕ0 ∈ (0, π/2] for every ϕ < ϕ0, there
exists a constant C0 = C0(ϕ) > 0 such that λ ∈ ρ(A) for each

(2.16) λ ∈
∑
0,βη

= {λ ∈ C, λ ̸= 0, | arg(λ)| < βη};

here, η = ϕ+ π/2 and ∥R(λ,A)∥ ≤ C0/|λ| for all λ ∈
∑

0,βη.

(P2) f(t) : D(f(t)) ⊆ U → U for t ≥ 0 is a closed linear operator with
D(A) ⊆ D(f(t)), and f(·)x is strongly measurable on (0,∞) for every
x ∈ D(A). For t > 0 and x ∈ D(A), there exists a d(·) ∈ L1

loc(R+) such

that d̂(λ) (Laplace of d(·)) exists for Re(λ) > 0 and ∥f(t)x∥ ≤ d(t)∥x∥1.
Furthermore, the operator-valued function

f̂ :
∑
0,π/2

−→ L([D(A)],U)

has an analytical extension, denoted by f̂ to
∑

0,η such that

∥f̂(λ)y∥ ≤ ∥f̂(λ)∥ · ∥y∥1
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for each x ∈ D(A) and

∥f̂(λ)∥ = O

(
1

|λ|

)
, λ→ ∞.

(P3) There exist positive constants Ci, i = 1, 2, and a subspace

D̂ ⊆ D(A), dense in [D(A)], such that

A(D̂) ⊆ D(A),

f̂(λ)(D̂) ⊆ D(A)

and
∥Af̂(λ)y∥ ≤ C1∥y∥

for all y ∈ D̂ and λ ∈
∑

0,η.

In the continuation, we have that, for θ ∈ (π/2, η) and r > 0,∑
r,θ

= {λ ∈ C : λ ̸= 0, r < |λ|, | arg(λ)| < θ},

and, for Γr,θ,

(2.17)

Γ1
r,θ = {teiθ : t ≥ r},

Γ2
r,θ = {reiζ : −θ ≤ ζ ≤ θ},

Γ3
r,θ = {te−iθ : t ≥ r},

where Γi
r,θ, i = 1, 2, 3, are the paths such that

Γr,θ =
3∪

i=1

Γi
r,θ

is oriented counterclockwise. Let Gβ(λ) = λβ−1(λβI − A − Af̂(λ))−1,
and define the set ρβ(Gβ) as

(2.18) ρβ(Gβ) = {λ ∈ C : Gβ(λ) ∈ L(U)}.

Now, we define the operator family Sβ(t), t ≥ 0, by

(2.19) Sβ(t) =

{
1/2πi

∫
Γr,θ

eλtGβ(λ) dλ t > 0,

I t = 0.
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Definition 2.8 ([2]). Let β ∈ (1, 2). Then, Rβ(t), t ≥ 0, is defined by

(2.20) Rβ(t)x =

∫ t

0

gβ−1(t− s)Sβ(s) ds, t ≥ 0,

where gβ−1(t) = (tβ−2)/(Γ(β − 1)), t > 0, β − 1 ≥ 0.

For more details, see [1].

Lemma 2.9 ([2]). There exists a positive number r1 such that∑
r1,η

⊆ ρβ(Gβ)

and the map

Gβ :
∑
r1,η

−→ L(U)

is analytic. Furthermore, we have

(2.21) Gβ(λ) = λβ−1R(λβ , A)[I − f̂(λ)R(λβ , A)]−1,

and there are constants M̃i for i = 1, 2, such that

(2.22)

∥Gβ(λ)∥ ≤ M̃1

|λ|
,

∥AGβ(λ)y∥ ≤ M̃2

|λ|
∥y∥1, y ∈ D(A),

∥AGβ(λ)∥ ≤ M̃2

|λ|1−β

for each λ ∈
∑

r1,η
.

Lemma 2.10 ([1]). We assume that conditions (P1)–(P3) are satis-
fied. Then, there exists a unique β-resolvent operator for the system
(2.13)–(2.14).

Lemma 2.11 ([1]). The function Sβ : [0,∞) → L(U) is strongly con-
tinuous and Sβ : (0,∞) → L(U) is uniformly continuous.
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Lemma 2.12 ([1]). If the function Sβ(·) is exponentially bounded in
L([D(A)]), then Rβ(·) is exponentially bounded in L([D(A)]).

Lemma 2.13 ([1]). The operator families Sβ(t) and Rβ(t) are compact

for all t ≥ 0 if R(λβ0 , A) is compact for some λβ0 ∈ ρ(A).

Lemma 2.14 ([12]). For any p ≥ 1 and for arbitrary L0
2(V,U)-valued

predictable process φ(·) such that

(2.23) sup
s∈[0,t]

E∥
∫ s

0

φ(τ) dw(τ)∥2pU ≤ Cp

(∫ t

0

(E∥φ(s)∥2p
L0

2
)1/pds

)p

,

for each t ∈ [0,∞), where Cp = (p(2p− 1))p.

Next, we present the fixed point theorem, which is the main tool for
establishing the result.

Theorem 2.15 (Nonlinear alternative of Leray-Schauder type for
multivalued maps [29]). Let U be a Hilbert space, B an open, convex
subset of U and y ∈ U. Assume that :

(i) Λ : B → Pcd(U) has a closed graph; and
(ii) Λ : B → Pcd(U) is a condensing map such that Λ(B), a subset of

a bounded set in U, holds. Then either :
(a) there exists a fixed point of the mapping Λ in B; or
(b) there exist y ∈ ∂B and λ ∈ (0, 1) such that y ∈ λΛ(y) +

(1− λ){y0}.

3. Main result. Before expressing and demonstrating the main
result, we present the definition of the mild solution to problem (1.1)–
(1.2).

Definition 3.1. An Ft-adapted stochastic process y ∈ C is called a
mild solution of the problem (1.1)–(1.2) if:

(i) y0, h ∈ L0
p(Ω, C);

(ii) y(0) = y0 + h(y), y′(0) = 0;
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(iii) y(t) ∈ U has càdlàg paths on t ∈ [0, T ] almost surely, and there is
a function g ∈ NG,y(h3(t)),

∫ t
0
a2(t,s,y(h4(s)) ds

such that:

(3.1)
y(t) ∈ Sβ(t)[y0 + h(y)− F (0, y(h1(0)), 0)]

+ F

(
t, y(h1(t)),

∫ t

0

a1(t, s, y(h2(s))) ds

)
+

∫ t

0

ARβ(t− s)F

(
s, y(h1(s)),

∫ s

0

a1(s, τ, y(h2(τ))) dτ

)
ds

+

∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)

F

(
ξ, y(h1(ξ)),

∫ ξ

0

a1(ξ, τ, y(h2(τ))) dτ

)
dξ ds

+

∫ t

0

Rβ(t− s)g(s) dw(s), t ∈ [0, T ],

Now, we make the following assumptions to establish the required
result.

(B1) The operator families Sβ(t), t > 0, and Rβ(t), t > 0 are com-
pact, and there exist constants M1 and δ > 0 such that ∥Sβ(t)∥L(U) ≤
M1e

−δt and ∥Rβ(t)∥L(U) ≤M1e
−δt for each t > 0 and

∥(−A)ηRβ(t)∥U ≤M2t
β(1−η)−1, t ∈ (0, T ].

(B2) For each z ∈ [D((−A)1−η)], f(·)z ∈ C([0, T ],U), and there is
a positive function W(·) ∈ L1([0, T ],R+) and a constant M3 > 0 such
that

∥f(s)Rβ(t)∥L([D((−A)η)],U) ≤M3W(s)tβη−1, 0 ≤ s < t ≤ T.

(B3) The function F : [0, T ] × U × U → [D((−A)ϑ)] is a Lipschitz
continuous, and there is a constant LF > 0 such that

∥(−A)ϑF (t1, y1, z1)− (−A)ϑF (t2, y2, z2)∥pU
≤ LF [|t1 − t2|+ ∥y1 − y2∥pU + ∥z1 − z2∥pU],
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for each (t, y, z), (t1, y1, z1), (t2, y2, z2) ∈ [0, T ]× U× U and 0 < ϑ < 1
with

L2
F = sup

t∈J
∥(−A)ϑF (t, 0, 0)∥p;

here, L2
F is a positive constant.

(B4) The map a1 : D1 × U → U is continuous, and there exists a
positive constant La1 such that∥∥∥∥ ∫ t

0

[a1(t, s, z1)− a1(t, s, z2)] ds

∥∥∥∥p
U
≤ La1∥z1 − z2∥pU,

for all z1, z2 ∈ U and t ∈ [0, T ] with L1
a1

= T sup(t,s)∈D1
∥a1(t, s, 0)∥pU,

where D1 = {(t, s) ∈ [0, T ]× [0, T ] : t ≥ s}.

(B5) The multi-valued map G : J ×U×U → Pbd,cl,cv(L(V,U)) is an
Lp-Carathéodory function such that:

(i) the map G(t, ·, ·) : U × U → Pbd,cl,cv(L(V,U)) is usc for each
t ∈ [0, T ] and G(·, y, z) is measurable for each (y, z) ∈ U × U. Then,
the set

NG,z =

{
ϱ ∈ Lp([0, T ], L(V,U)) : ϱ(t) ∈ G

(
t, z(h3(t)),∫ t

0

a2(t, s, z(h4(s))) ds

)
for almost every t ∈ [0, T ]

}
for fixed z ∈ C, is nonempty;

(ii) there exist a continuous function mg : [0, T ] → [0,∞) and a
continuous increasing function Θg : [0,∞) → (0,∞) such that

∥G(t, y, z)∥pU = sup{E∥g∥pU : g ∈ G(t, y, z)} ≤ mg(t)Θg(E∥y∥pU+E∥z∥pU),

for almost every t ∈ [0, T ] and each (y, z) ∈ U× U with∫ ∞

1

ds

s+Θg(s) + Θa2(s)
= ∞.
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(B6)

(i) The function a2(t, s, ·) : U → U is continuous for each (t, s) ∈ D1,
and the function a2(·, ·, y) : D1 → U is strongly measurable for each
y ∈ U.

(ii) There exist a continuous function ma2 : D1 → [0,∞) and an
increasing function Θa2 : [0,∞) → (0,∞) such that

E∥a2(t, s, y)∥pU ≤ ma2(t, s)Θa2(E∥y∥pU),

for almost every t, s ∈ [0, T ] and y ∈ U.

(B7) h : C → U is completely continuous, and there exist positive
constants C1 and C2 such that

∥h(u)∥pU ≤ C1∥u∥pU + C2.

Now, we present the following theorem, which is our main result.

Theorem 3.2. Let y0 ∈ L0
p(Ω, C). If conditions (B1)–(B7) are fulfilled,

and

K∗ = 4p−1
[
Mp

1 ∥(−A)ϑ∥pLF + ∥(−A)ϑ∥pLF (1 + La1)(3.2)

+ (Mp
2T

p−1 +Mp
3T

2(p−1)∥Wp∥L1)× LF (1 + La1)

× T p(βϑ−1)+1

p(βϑ− 1) + 1

]
< 1,

K∗ = 15p−1Mp
1 e

−δpt(C1 + 2p−1LF )(3.3)

+ 10p−1

{
∥(−A)−ϑ∥p + (Mp

2T
p−1 +Mp

3T
2(p−1)∥Wp∥L1)(3.4)

× T p(βϑ−1)+1

p(βϑ− 1) + 1

}
× LF (1 + 2p−1La1) < 1,

then system (1.1)–(1.2) admits at least one mild solution on [0, T ].

Proof. In order to demonstrate the theorem, we firstly define the
operator Φ : C → P(C) by Φy, the set of ϱ ∈ C such that:
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(3.5)
ϱ(t) = Sβ(t)[y0 + h(y)− F (0, y(h1(0)), 0)]

+ F

(
t, y(h1(t)),

∫ t

0

a1(t, s, y(h2(s)))ds

)
+

∫ t

0

ARβ(t− s)

× F

(
s, y(h1(s)),

∫ s

0

a1(s, τ, y(h2(τ))) dτ

)
ds+

∫ t

0

∫ s

0

Rβ(t− s)

× f(s− ξ)F

(
ξ, y(h1(ξ)),

∫ ξ

0

a1(ξ, τ, y(h2(τ))) dτ

)
dξ ds

+

∫ t

0

Rα(t− s)g(s) dw(s), t ∈ [0, T ];

here,

g ∈ NG,y = {g ∈ Lp(L(V,U)) :

g(t) ∈ G

(
t, y(h3(t)),

∫ t

0

a2(t, s, y(h4(s))) ds

)
almost everywhere t ∈ [0, T ]}. Clearly, the map Φ is well defined from
C into P(C) by using the facts that F , g and h are continuous functions.
In order to show that there exists a mild solution for the problem (1.1)–
(1.2), it is sufficient to prove that Φ has a fixed point.

Now, we will prove the result in several steps.

Step 1. We show that there is an open set B ⊂ C such that y ∈ λ(Φy)
for each λ ∈ (0, 1) and y /∈ ∂B. Let us consider y ∈ C. Then, we have
that there exists a g ∈ NG,y such that, for each λ ∈ (0, 1),

y(t) = λSβ(t)[y0 + h(y)− F (0, y(h1(0)), 0)]

(3.6)

+ λF

(
t, y(h1(t)),

∫ t

0

a1(t, s, y(h2(s))) ds

)
+ λ

∫ t

0

ARβ(t− s)F

(
s, y(h1(s)),

∫ s

0

a1(s, τ, y(h2(τ))) dτ

)
ds

+ λ

∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)
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F

(
ξ, y(h1(ξ)),

∫ ξ

0

a1(ξ, τ, y(h2(τ))) dτ

)
dξ ds

+ λ

∫ t

0

Rα(t− s)g(s) dw(s), t ∈ [0, T ].

This yields the following:

E∥y(t)∥pU
≤ 5p−1E∥Sβ(t)[y0 + h(y)− F (0, y(h1(0)), 0)]∥pU

+ 5p−1E

∥∥∥∥F(t, y(h1(t)), ∫ t

0

a1(t, s, y(h2(s))) ds

)∥∥∥∥p
U

+ 5p−1

∥∥∥∥ ∫ t

0

ARβ(t− s)F

(
s, y(h1(s)),

∫ s

0

a1(s, τ, y(h2(τ))) dτ

)
ds

∥∥∥∥p
U

+ 5p−1

∥∥∥∥ ∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)

F

(
ξ, y(h1(ξ)),

∫ ξ

0

a1(ξ, tau, y(h2(τ))) dτ

)
dξ ds

∥∥∥∥p
U

+ 5p−1

∥∥∥∥ ∫ t

0

Rβ(t− s)g(s) dw(s)

∥∥∥∥p
U

≤ 15p−1Mp
1 e

−δpt[∥y0∥p + C1∥y∥p + C2
+ 2p−1∥(−A)−ϑ∥p(LF ∥y(h1(0))∥pU + L2

F )]

+ 5p−1∥(−A)−ϑ∥p[2p−1LF (∥y(t)∥pU
+ 2p−1La1∥y(t)∥+ 2p−1L1

a1
) + 2p−1L2

F ]

+ 5p−1Mp
2T

p−1

∫ t

0

(t− s)p(βϑ−1)[2p−1LF (∥y(t)∥pU + 2p−1La1∥y(t)∥

+ 2p−1L1
a1
) + 2p−1L2

F ] ds

+ 5p−1Mp
3T

2(p−1)

∫ t

0

∫ s

0

Wp(t− ξ)(t− s)p(βϑ−1)

× [2p−1LF (∥y(t)∥pU + 2p−1La1
∥y(t)∥+ 2p−1L1

a1
) + 2p−1L2

F ] dξ ds

+ 5p−1Mp
1CpT

p/2−1e−δpt

∫ t

0

epδsmg(s)Θg

(
E∥y∥pU +

∫ s

0

ma2(s, τ)Θa2

(E∥y∥pU dτ)
)
ds
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≤ 15p−1Mp
1 e

−δpt[∥y0∥p + C1∥y∥pU + C2 + 2p−1(LF ∥y(h1(0))∥pU + L2
F )]

+ 10p−1∥(−A)−ϑ∥p[LF (∥y(t)∥pU + 2p−1La1∥y(t)∥+ 2p−1L1
a1
) + L2

F ]

+ 10p−1Mp
2T

p−1[LF (∥y(t)∥pU + 2p−1La1∥y(t)∥

+ 2p−1L1
a1
) + L2

F ]
T p(βϑ−1)+1

p(βϑ− 1) + 1

+ 10p−1Mp
3T

2(p−1)∥Wp∥L1 [LF (∥y(t)∥pU + 2p−1La1∥y(t)∥

+ 2p−1L1
a1
) + L2

F ]
T p(βϑ−1)+1

p(βϑ− 1) + 1
+ 5p−1Mp

1CpT
p/2−1e−δpt

×
∫ t

0

epδsmg(s)Θg

(
E∥y∥pU +

∫ s

0

ma2(s, τ)Θa2(E∥y∥pU) dτ
)
ds,

≤ 15p−1Mp
1 e

−δpt(∥y0∥p + C2 + 2p−1L2
F ) + 10p−1

[
∥(−A)−ϑ∥p

+ (Mp
2T

p−1+Mp
3T

2(p−1)∥Wp∥L1)
T p(βϑ−1)+1

p(βϑ− 1)+1

]
×(2p−1LFL1

a1
+ L2

F )

+

[
15p−1Mp

1 e
−δpt(C1 + 2p−1LF ) + 10p−1

{
∥(−A)−ϑ∥p

+ (Mp
2T

p−1 +Mp
3T

2(p−1)∥Wp∥L1)
T p(βϑ−1)+1

p(βϑ− 1) + 1

}
× LF (1 + 2p−1La1)

]
sup

t∈[0,T ]

E∥y(t)∥p + 5p−1Mp
1CpT

p/2−1e−δpt

×
∫ t

0

epδsmg(s)Θg

(
E∥y∥pU +

∫ s

0

ma2(s, τ)Θa2(E∥y∥pU) dτ
)
ds.

Thus, we obtain

sup
t∈[0,T ]

E∥y(t)∥pU

≤ 1

1−K∗

[
15p−1Mp

1 e
−δpt(∥y0∥p + C2 + 2p−1L2

F )

+ 10p−1

[
∥(−A)−ϑ∥p+(Mp

2T
p−1+Mp

3T
2(p−1)∥Wp∥L1)

T p(βϑ−1)+1

p(βϑ− 1)+1

]
× (2p−1LFL1

a1
+L2

F )

]
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+
5p−1Mp

1CpT
p/2−1e−δpt

1−K∗

×
∫ t

0

epδsmg(s)Θg

(
E∥y∥pU +

∫ s

0

ma2(s, τ)Θa2(E∥y∥pU) dτ
)
ds,

where

K∗ = 15p−1Mp
1 e

−δpt(C1 + 2p−1LF )

+ 10p−1

{
∥(−A)−ϑ∥p + (Mp

2T
p−1 +Mp

3T
2(p−1)∥Wp∥L1)

× T p(βϑ−1)+1

p(βϑ− 1) + 1

}
LF (1 + 2p−1La1) < 1.

Let ζ(t) = supt∈[0,T ]E∥y(t)∥pU and N ∗ = M1 max{1, e−δT }. Since
K∗ < 1, we obtain

eδptζ(t) ≤ 1

1−K∗

[
15p−1Mp

1 (∥y0∥p + C2 + 2p−1L2
F )

+ 10p−1N ∗
[
∥(−A)−ϑ∥p

+ (Mp
2T

p−1 +Mp
3T

2(p−1)∥Wp∥L1)× T p(βϑ−1)+1

p(βϑ− 1) + 1

]
× (2p−1LFL1

a1
+ L2

F )

]
+

5p−1Mp
1CpT

p/2−1

1−K∗

∫ t

0

epδsmg(s)

×Θg

(
ζ(s) +

∫ s

0

ma2(s, τ)Θa2(ζ(τ)) dτ

)
ds.

We denote by χ the right-hand side of the above inequality and obtain

(3.7) ζ(t) ≤ e−δptχ(t) for all t ∈ [0, T ],

with

χ(0) =
1

1−K∗

[
15p−1Mp

1 (∥y0∥p + C2 + 2p−1L2
F )

+ 10p−1N ∗
[
∥(−A)−ϑ∥p + (Mp

2T
p−1 +Mp

3T
2(p−1)∥Wp∥L1)

× T p(βϑ−1)+1

p(βϑ− 1) + 1

]
× (2p−1LFL1

a1
+ L2

F )

]
,
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and

χ′(t) =
5p−1Mp

1CpT
p/2−1

1−K∗ epδtmg(t)

×Θg

(
ζ(t) +

∫ t

0

ma2(t, s)Θa2(ζ(s)) ds

)
,

≤ 5p−1Mp
1CpT

p/2−1

1−K∗ epδtmg(t)

×Θg

(
e−δptχ(t) +

∫ t

0

ma2(t, s)Θa2(e
−pδsχ(s)) ds

)
, t ∈ [0, T ].

Now, we take Ψ = e−δptχ(t) +
∫ t

0
ma2(t, s)Θa2(e

−pδsχ(s)) ds. Then,

Ψ(0) = χ(0), e−pδtχ(t) ≤ Ψ(t) and, for each t ∈ [0, T ], we get

Ψ′(t) = −pδe−pδtχ(t) + e−δptχ′(t) +ma2(t, t)Θa2(e
−pδtχ(t)),

≤ −pδΨ(t) +
5p−1Mp

1CpT
p/2−1

1−K∗ mg(t)Θg(Ψ(t)) +ma2(t, t)Θa2(Ψ),

≤ max

{
(−pδ), 5

p−1Mp
1CpT

p/2−1

1−K∗ mg(t),ma2(t, t)

}
× [Ψ(t) + Θg(Ψ(t)) + Θa2(Ψ)], t ∈ [0, T ].

Thus, this yields that∫ Ψ(t)

Ψ(0)

dς

ς +Θg(ς) + Θa2(ς)

≤
∫ T

0

max

{
(−pδ), 5

p−1Mp
1CpT

p/2−1

1−K∗ mg(t),ma2(t, t)

}
dt <∞.

Hence, from the above inequality, we deduce that there exists a constant

Q̃ such that Ψ(t) ≤ Q̃, for each t ∈ [0, T ], and thus, we conclude that

∥y(t)∥pU ≤ ζ(t) ≤ e−δptχ(t) ≤ Ψ(t) ≤ Q̃, where Q̃ depends only upon
M1, δ, p, Cp, T and on functions mg(·), ma2(·, ·), Θg(·) and Θa2(·).
Therefore, there exists an r > 0 such that ∥y∥pC ̸= r. We set

B = {y ∈ C : ∥y∥pC < r}.

From the choice of B, there is no y ∈ ∂B such that y ∈ λΦy for some
0 < λ < 1.



278 A. CHADHA, D. BAHUGUNA AND D.N. PANDEY

Step 2. Φ has a closed graph. We consider yq → y∗, ϱq ∈ Φyq,
yq ∈ B and ϱq → ϱ∗. We show that ϱ∗ ∈ Φy∗. Now, for ϱq ∈ Φyq, it
implies that there exists a gq ∈ NG,yq) such that

ϱq(t) = Sβ(t)[y0 + h(yq)− F (0, yq(h1(0)), 0)]

(3.8)

+ F

(
t, yq(h1(t)),

∫ t

0

a1(t, s, y
q(h2(s))) ds

)
+

∫ t

0

ARβ(t− s)F

(
s, yq(h1(s)),

∫ s

0

a1(s, τ, y
q(h2(τ))) dτ

)
ds

+

∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)F

(
ξ, yq(h1(ξ)),∫ ξ

0

a1(ξ, τ, y
q(h2(τ))) dτ

)
dξ ds

+

∫ t

0

Rβ(t− s)gq(s) dw(s), t ∈ [0, T ].

We must prove that there exists a g∗ ∈ NG,y∗) such that

ϱ∗(t) = Sβ(t)[y0 + h(y∗)− F (0, y∗(h1(0)), 0)]

(3.9)

+ F

(
t, y∗(h1(t)),

∫ t

0

a1(t, s, y
∗(h2(s))) ds

)
+

∫ t

0

ARβ(t− s)F

(
s, y∗(h1(s)),

∫ s

0

a1(s, τ, y
∗(h2(τ))) dτ

)
ds

+

∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)F (ξ, y∗(h1(ξ)),∫ ξ

0

a1(ξ, τ, y
∗(h2(τ)))dτ) dξ ds

+

∫ t

0

Rβ(t− s)g∗(s) dw(s), t ∈ [0, T ].
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Now, for each t ∈ [0, T ], we obtain

∥∥∥∥[ϱq(t)− Sβ(t)[y0 + h(yq)− F (0, yq(h1(0)), 0)]

(3.10)

− F

(
t, yq(h1(t)),

∫ t

0

a1(t, s, y
q(h2(s))) ds

)
−
∫ t

0

ARβ(t− s)F

(
s, yq(h1(s)),

∫ s

0

a1(s, τ, y
q(h2(τ))) dτ

)
ds

−
∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)F

(
ξ, yq(h1(ξ)),∫ ξ

0

a1(ξ, τ, y
q(h2(τ))) dτ

)
dξ ds

]
−
[
ϱ∗(t)− Sβ(t)[y0 + h(y∗)− F (0, y∗(h1(0)), 0)]

− F

(
t, y∗(h1(t)),

∫ t

0

a1(t, s, y
∗(h2(s))) ds

)
−
∫ t

0

ARβ(t− s)F

(
s, y∗(h1(s)),

∫ s

0

a1(s, τ, y
∗(h2(τ))) dτ

)
ds

−
∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)F

(
ξ, y∗(h1(ξ)),∫ ξ

0

a1(ξ, τ, y
∗(h2(τ))) dτ

)
dξ ds

]∥∥∥∥p
C

−→ 0 as n→ ∞.

We consider the following, continuous linear operator

Ξ : Lp([0, T ],U) → C([0, T ],U),

defined by

(3.11) (Ξg)(t) =

∫ t

0

Rβ(t− s)g(s) dw(s), t ∈ [0, T ].

Thus, Lemma 2.6 provides that Ξ ◦NG is a closed graph mapping. By
the definition of Ξ, we also have
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ϱq(t)− Sβ(t)[y0 + h(yq)− F (0, yq(h1(0)), 0)]

− F

(
t, yq(h1(t)),

∫ t

0

a1(t, s, y
q(h2(s))) ds

)
−
∫ t

0

ARβ(t− s)F

(
s, yq(h1(s)),

∫ s

0

a1(s, τ, y
q(h2(τ))) dτ

)
ds

−
∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)F

(
ξ, yq(h1(ξ)),∫ ξ

0

a1(ξ, τ, y
q(h2(τ))) dτ

)
dξ ds ∈ Ξ(NG,yq ),

for each t ∈ [0, T ]. Since yq → y∗ for some g∗ ∈ NG,y∗ , we obtain that,
for every t ∈ [0, T ],

ϱ∗(t)− Sβ(t)[y0 + h(y∗)− F (0, y∗(h1(0)), 0)]

− F

(
t, y∗(h1(t)),

∫ t

0

a1(t, s, y
∗(h2(s))) ds

)
−
∫ t

0

ARβ(t− s)F

(
s, y∗(h1(s)),

∫ s

0

a1(s, τ, y
∗(h2(τ))) dτ

)
ds

−
∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)F

(
ξ, y∗(h1(ξ)),∫ ξ

0

a1(ξ, τ, y
∗(h2(τ))) dτ

)
dξ ds

=

∫ t

0

Rβ(t− s)g∗(s) dw(s).

Therefore, Φ has a closed graph.

Next, we show that the mapping Φ is a condensing operator. We
introduce the following decomposition of the map Φ into Φ1 and Φ2,
where the mapping

Φ1 : B −→ C

is given by Φ1y, the set ϱ1 ∈ C such that

ϱ1(t) = −Sβ(t)F (0, y(h1(0)), 0) + F

(
t, y(h1(t)),

∫ t

0

a1(t, s, y(h2(s))) ds

)
+

∫ t

0

ARβ(t− s)F

(
s, y(h1(s)),

∫ s

0

a1(s, τ, y(h2(τ))) dτ

)
ds
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+

∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)F

(
ξ, y(h1(ξ)),∫ ξ

0

a1(ξ, τ, y(h2(τ))) dτ

)
dξ ds,

and the mapping
Φ2 : B −→ C

is given by Φ2y, the set ϱ2 ∈ C, such that

ϱ2(t) = Sβ(t)[y0 + h(y)] +

∫ t

0

Rβ(t− s)g(s) dw(s),

for each t ∈ [0, T ]. In order to prove the result, we first prove that Φ1

is a contraction while Φ2 is a completely continuous operator.

Step 3. Φ1 is a contraction mapping in C. Let y∗, y∗∗ ∈ C and
t ∈ [0, T ]. Thus, we obtain:

E∥(Φ1y
∗)(t)− (Φ1y

∗∗)(t)∥pU
≤4p−1∥Sβ(t)[F (0, y

∗(h1(0)), 0)− F (0, y∗∗(h1(0)), 0)]∥pU

+ 4p−1

∥∥∥∥F(t, y∗(h1(t)), ∫ t

0

a1(t, s, y
∗(h2(s))) ds

)
− F

(
t, y∗∗(h1(t)),

∫ t

0

a1(t, s, y
∗∗(h2(s))) ds

)∥∥∥∥p
U

+ 4p−1

∥∥∥∥ ∫ t

0

ARβ(t− s)

[
F

(
s, y∗(h1(s)),

∫ s

0

a1(s, τ, y
∗(h2(τ))) dτ

)
− F

(
s, y∗∗(h1(s)),

∫ s

0

a1(s, τ, y
∗∗(h2(τ))) dτ

)]
ds

∥∥∥∥p
U

+ 4p−1

∥∥∥∥ ∫ t

0

∫ s

0

Rβ(t− s)f(s− ξ)

×
[
F

(
ξ, y∗(h1(ξ)),

∫ ξ

0

a1(ξ, τ, y
∗(h2(τ))) dτ

)
− F

(
ξ, y∗∗(h1(ξ)),

∫ ξ

0

a1(ξ, τ, y
∗∗(h2(τ))) dτ

)]
dξ ds

∥∥∥∥p
U

≤4p−1Mp
1 ∥(−A)ϑ∥pLF sup

t∈[0,T ]

E∥y∗(t)−y∗∗(t)∥pU+4p−1∥(−A)ϑ∥pLF (1+La1)



282 A. CHADHA, D. BAHUGUNA AND D.N. PANDEY

× sup
t∈[0,T ]

E∥y∗(t)− y∗∗(t)∥pU + 4p−1Mp
2T

p−1LF (1 + La1)

×
∫ t

0

(t− s)p(βϑ−1) sup
s∈[0,t]

E∥y∗(s)− y∗∗(s)∥pU ds

+ 4p−1Mp
3T

2(p−1)LF (1 + La1)

×
∫ t

0

∫ s

0

Wp(s− ξ)(t− s)p(βϑ−1) sup
ξ∈[0,s]

E∥y∗(ξ)− y∗∗(ξ)∥pU dξ ds

≤ 4p−1

[
Mp

1 ∥(−A)ϑ∥pLF + ∥(−A)ϑ∥pLF (1 + La1)

+ (Mp
2T

p−1 +Mp
3T

2(p−1)∥Wp∥L1)LF (1 + La1
)

× T p(βϑ−1)+1

p(βϑ− 1) + 1

]
∥y∗ − y∗∗∥pC ,

= K∗∥y∗ − y∗∗∥pC ,

where

K∗ = 4p−1

[
Mp

1 ∥(−A)ϑ∥pLF + ∥(−A)ϑ∥pLF (1 + La1)

+ (Mp
2T

p−1 +Mp
3T

2(p−1)∥Wp∥L1)

× LF (1 + La1)
T p(βϑ−1)+1

p(βϑ− 1) + 1

]
< 1.

Thus, we deduce that, for each t ∈ [0, T ],

(3.12) sup
t∈[0,T ]

E∥(Φ1y
∗)(t)− (Φ1y

∗∗)(t)∥pU ≤ K∗∥y∗ − y∗∗∥pC ,

with K∗ < 1. Hence, from (3.12) and inequality (3.2), we deduce that
Φ1 is a contraction on C.

Step 4. The map Φ2u is convex for every y ∈ B. Indeed, if
ũ1, ũ2 ∈ Φ2y, then there exist g1, g2 ∈ NG,y such that
(3.13)

ũj(t) = Sβ(t)[y0+h(y)]+

∫ t

0

Rβ(t−s)gj(s) dw(s), j = 1, 2, t ∈ [0, T ].
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Let λ̃ ∈ [0, 1]. Thus, for each t ∈ [0, T ], we get
(3.14)

(λ̃ũ1(t) + (1− λ̃)ũ2(t)) = Sβ(t)[y0 + h(y)]

+

∫ t

0

Rβ(t− s)(λ̃g1(s) + (1− λ̃)g2(s)) dw(s).

Since we have NG,y is convex since G has convex value, therefore, we

have λ̃ũ1(t) + (1− λ̃)ũ2(t) ∈ Φ2y.

Step 5. Φ2 maps bounded sets into bounded sets in B. In fact, it
is sufficient to show that there exists a constant L > 0 such that, for
each ũ ∈ Φ2(y), y ∈ B, it can easily be seen that E∥ũ(t)∥pU ≤ L.

If ũ ∈ Φ2(y), then there exists a g ∈ NG,y such that

(3.15) ũ(t) = Sβ(t)[y0 + h(y)] +

∫ t

0

Rβ(t− s)g(s) dw(s),

for each t ∈ [0, T ]. Thus, by the assumptions and for each t ∈ [0, T ],
we have

E∥ũ(t)∥pU ≤ 2p−1E∥Sβ(t)[y0 + h(y)]∥pU

(3.16)

+ 2p−1E

∥∥∥∥ ∫ t

0

Rβ(t− s)g(s) dw(s)

∥∥∥∥p
U

≤ 2p−1Mp
1 e

−pδt[∥y0∥pU + C1E∥y∥pU + C2]

+ 2p−1CpM
p
1

[ ∫ t

0

[e−pδ(t−s)E∥g(s)∥pU]
2/pds

]p/2
≤ 2p−1Mp

1 e
−pδt[∥y0∥pU + C1E∥y∥pU + C2] + 2p−1CpM

p
1 e

−pδt

×
∫ t

0

epδsmg(s)Θg

(
E∥y(s)∥pU

+

∫ s

0

ma2(s, τ)Θa2(E∥y(τ)∥pU) dτ
)
ds

≤ 2p−1Mp
∗ [∥y0∥

p
U + C1r + C2]

+ 2p−1CpM
p
∗Θg(r∗∗)

∫ T

0

epδsmg(s) ds := L,
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where r∗∗ = r + Θa2
(r)

∫ T

0
ma2

(µ, µ) dµ, M∗ = M1 max{1, e−δT }.
Therefore, for each ũ ∈ Φ2y, we obtain E∥ũ∥pC ≤ L.

Step 6. The operator Φ2 maps bounded sets into equicontinuous
sets of B. Let d1, d2 ∈ [0, T ] with d1 < d2. Thus, for each y ∈ B and
ϱ2 ∈ Φ2y, we have that there exists a g ∈ NG,y such that

(3.17) ϱ2(t) = Sβ(t)[y0 + h(y)] +

∫ t

0

Rβ(t− s)g(s) dw(s), t ∈ [0, T ].

Then,

E∥ϱ2(d2)− ϱ2(d1)∥pU

(3.18)

≤ 4p−1E∥(Sβ(d2)− Sβ(d1))[y0 + h(y)]∥pU

+ 4p−1E

∥∥∥∥ ∫ d1−ϵ

0

[Rβ(d2 − s)−Rβ(d1 − s)]g(s) dw(s)

∥∥∥∥p
U

+ 4p−1E

∥∥∥∥ ∫ d1

d1−ϵ

[Rβ(d2 − s)−Rβ(d1 − s)]g(s) dw(s)

∥∥∥∥p
U

+ 4p−1E

∥∥∥∥ ∫ d2

d1

Rβ(d2 − s)g(s) dw(s)

∥∥∥∥p
U

≤ 4p−1E∥(Sβ(d2)− Sβ(d1))(y0 + h(y))∥pU

+ 4p−1Cp

[ ∫ d1−ϵ

0

[∥Rβ(d2 − s)−Rβ(d1 − s)∥pUE∥g(s)∥pU]
2/pds

]p/2
+ 4p−1Cp

[ ∫ d1

d1−ϵ

[∥Rβ(d2 − s)−Rβ(d1 − s)∥pUE∥g(s)∥pU]
2/pds

]p/2
+ 4p−1Cp

[ ∫ d2

d1

[∥Rβ(d2 − s)∥pUE∥g(s)∥pU]
2/pds

]p/2
≤ 4p−1E∥(Sβ(d2)− Sβ(d1))(y0 + h(y))∥pU

+ 4p−1Cp

[ ∫ d1−ϵ

0

[
∥Rβ(d2 − s)−Rβ(d1 − s)∥pU ×mg(s)Θg(E∥y(s)∥p

+

∫ s

0

ma2(s, τ)Θa2(E∥y(τ)∥p) dτ)
]2/p

ds

]p/2
+ 8p−1CpM

p
1
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×
[ ∫ d1

d1−ϵ

[
e−pδ(d1−s) ×mg(s)Θg

(
E∥y(s)∥p

+

∫ s

0

ma2(s, τ)Θa2(E∥y(τ)∥p) dτ
)]2/p

ds

]p/2
+ 4p−1CpM

p
1

[ ∫ d2

d1

[
e−pδ(d2−s) ×mg(s)

×Θg

(
E∥y(s)∥p +

∫ s

0

ma2(s, τ)Θa2(E∥y(τ)∥p) dτ
)]2/p

ds

]p/2
≤ 4p−1E∥(Sβ(d2)− Sβ(d1))(y0 + h(y))∥pU

+ 4p−1CpΘg(r∗∗)

[ ∫ d1−ϵ

0

[∥Rβ(d2 − s)−Rβ(d1 − s)∥pUmg(s)]
2/pds

]p/2
+ 8p−1CpM

p
1Θg(r∗∗)

[ ∫ d1

d1−ϵ

e−[(2(p−1))/(p−2)]δ(d1−s)ds

]p/2−1

×
∫ d1

d1−ϵ

e−δ(d1−s)mg(s) ds

+ 4p−1CpM
p
1Θf (r∗∗)

[ ∫ d2

d1

e−[(2(p−1))/(p−2)]δ(d2−s)ds

]p/2−1

×
∫ d2

d1

e−δ(d2−s)mf (s) ds

≤ 4p−1E∥(Sβ(d2)− Sβ(d1))(y0 + h(y))∥pU

+ 4p−1CpΘg(r∗∗)

[ ∫ d1−ϵ

0

[∥Rβ(d2 − s)−Rβ(d1 − s)∥pUmg(s)]
2/pds

]p/2
+ 8p−1CpM

p
1Θg(r∗∗)

[
2δ(p− 1)

p− 2

]1−p/2 ∫ d1

d1−ϵ

e−δ(d1−s)mg(s) ds

+ 4p−1CpM
p
1Θg(r∗∗)

[
2δ(p− 1)

p− 2

]1−p/2 ∫ d2

d1

e−δ(d2−s)mg(s) ds,

where

r∗∗ = r +Θa2(r)

∫ T

0

ma2(µ, µ) dµ.

By inequality (3.18), we can see that the right-hand side of E∥y(d2)−
y(d1)∥pU, which is independent of y ∈ B, tends to zero as d2 → d1
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with ϵ sufficiently small. Since Sβ(t) and Rβ(t) are strongly continuous
compact operators, the compactness of Sβ(t), Rβ(t) for t > 0 imply the
continuity in the uniform operator topology. Hence, the set {Φ2(y) :
y ∈ B} is equicontinuous. For d1 < d2 ≤ 0, or d1 ≤ 0 ≤ d2 ≤ T , the
proof of equicontinuity is simple in these cases.

Step 7. The operator Φ2 maps B into a precompact set. Let
0 < t ≤ s ≤ T be fixed, and let ϵ be a real number that satisfies
0 < ϵ < t. For each y ∈ B, we consider the operator ϱϵ2 given by

(3.19) ϱϵ2(t) = Sβ(t)[y0 + h(y)] +

∫ t−ϵ

0

Rβ(t− s)g(s) dw(s),

for each g ∈ NG,y and t ∈ [0, T ]. Since Sβ(t), Rβ(t), t ≥ 0, are compact
operators and h is a completely continuous function, we deduce that
the set Vϵ(t) = {ϱϵ2(t) : y ∈ B} is precompact in U for all ϵ, ϵ ∈ (0, t).
Furthermore, we have that, for each y ∈ B,

(3.20) E∥ϱ2(t)− ϱϵ2(t)∥
p
U = E

∥∥∥∥ ∫ t

t−ϵ

Rβ(t− s)g(s) dw(s)

∥∥∥∥p
U
,

≤ CpM
p
1Θg(r∗∗)

[
2δ(p− 1)

p− 2

]1−p/2

∫ t

t−ϵ

e−δ(t−s)mg(s) ds.

Thus, we observe that the right hand side of the above inequality tends
to zero as ϵ→ 0 since there are relatively compact sets which arbitrarily
close to the set V (t) = {ϱ2(t) : y ∈ B}. Hence, we deduce that V (t)
is relatively compact, and thus, Φ2 maps B into a precompact set.
Therefore, we conclude that Φ2 : B → P(C) is completely continuous
by the Arzelá-Ascoli theorem.

As a result of Steps 1–7, we deduce that Φ = Φ1+Φ2 is a condensing
operator. Thus, by Theorem 2.15, we conclude that Φ has a fixed point
y ∈ C which is a mild solution of system (1.1)–(1.2). The proof of the
theorem is finished. �
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4. Applications. Let us consider the following, neutral stochastic
fractional integro-differential inclusions illustrated by

(4.1)

Dβ
t

[
y(t, x)−

∫ π

0

a1(t, x, θ)y(sin t, θ) dθ

]
∈ ∂2

∂x2
y(t, x)

+

∫ t

0

(t− s)ξe−ζ(t−s) ∂
2

∂x2
y(s, x) ds

+ G
(
t,
∂

∂x
y(sin(t), x),

∫ t

0

a2

(
t, s,

∂y(sin(s), x)

∂x

)
ds

)
dw(t)

dt
,

0 ≤ t ≤ 1, x ∈ [0, π],

y(t, 0) = y(t, π) = 0, 0 ≤ t ≤ 1,(4.2)

y(0, x) = y0(x) +

∫ π

0

b(x, θ) dθ, 0 ≤ x ≤ π,(4.3)

where w(t) represents a one-dimensional standard Wiener process and

Dβ
t denotes the Caputo derivative of order β. The nonlinear functions

a1 : [0, 1] × [0, π] × [0, π] → R, a2 : [0, 1] × [0, 1] × R → R, b :
[0, π] × [0, π] → R and G : [0, 1] × R × R → P(R) are continuous
mappings, and y0(·) belongs to Lp([0, π]) and F0-measurable with
E∥y0∥p <∞.

We consider U = L2([0, π]) with the norm ∥ · ∥. We now define the
operator A : U → U by Au = u′′. The domain of A is given by

(4.4) D(A) = {u ∈ U :

u, u′ are absolutely continuous u′′ ∈ U with u(0) = u(π) = 0}.

Then, we have

(a) Au=
∑∞

n=1 n
2(u, un)un, u∈D(A), where un(x)=

√
(2/π)sin(nx),

n = 1, . . . , is the orthogonal set of eigenvectors of A. Thus, it
is well known that the operator A is the infinitesimal generator of
a strongly continuous, compact, analytic semigroup T (t), which is
compact, analytic and self-adjoint in U. Thus, it is possible to define

the fractional power (−A)β̃ , 0 < β̃ ≤ 1, of A as a closed linear operator

over its domain D[(−A)β̃ ]. Moreover, A is sectorial of type, and (P1) is
fulfilled. The operator f(t) : D(A) ⊂ U → U, t ≥ 0, f(t)x = tξe−ζtx′′

for x ∈ D(A). Moreover, it is not difficult to see that the hypotheses
(P2) and (P3) are fulfilled with tξe−ζt and D(A) = C∞

0 ([0, π]); here,
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C∞
0 ([0, π]) is the space of infinitely differentiable functions that vanish

at x = 0 and x = π. We also assume that the following conditions hold.

(i) The function a1 is measurable and

sup
t∈[0,1]

∫ π

0

∫ π

0

a21(t, y, x) dy dx <∞.

(ii) The function ∂2/∂x2 is measurable, a1(t, y, 0) = a1(t, y, π) = 0,
and

sup
t∈[0,1]

[ ∫ π

0

∫ π

0

(
∂2

∂x2
a1(t, y, x)

)2

dy dx

]1/2
<∞.

Therefore, we consider

F (t, y)(·) =
∫ π

0

a(t, ·, θ)y(θ) dθ,(4.5)

G(t, y, z)(·) = G
(
t, y′(·),

∫ t

0

a2(t, s, y
′(·)) ds

)
,(4.6)

h(z)(·) =
∫ π

0

b(·, θ)z(θ) dθ, z ∈ C.(4.7)

Take h1(t) = h2(t) = h3(t) = h4(t) = sin(t). Thus, system (4.1)–(4.3)
can be written as

(4.8)

Dα
t [u(t)−F (t, u(h1(t)))] ∈ Au(t)+

∫ t

0

f(t−s)u(s) ds+G(t, u(h3(t)),∫ t

0

a2(t, s, h4(t))ds)
dw(t)

dt
, t ∈ [0, T ], u(0) = y0 + h(u).

Furthermore, F : [0, T ] × U → U1/2 (we choose ϑ = 1/2) G :

[0, T ] × U × U → L(V,U). (−A)1/2F,G are bounded linear operators.
Hence, there exists a mild solution for (4.1)–(4.3) under appropriate
functions G, F , h and Ii satisfying suitable conditions which verify the
assumptions on Theorem 3.1.
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