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ABSTRACT. In previous work [12], Lo and Tatar stud-
ied the exponential decay for a laminated beam with vis-
coelastic damping acting on the effective rotation angle in
the case of equal-speed wave propagations. In this paper,
we continue consideration of the same problem in the case
of non-equal wave speeds. In this case, the main difficulty
is how to estimate the non-equal speed term. To overcome
this difficulty, the second-order energy method introduced in
Guesmia and Messaoudi [6] seems to be the best choice for
our problem. For a wide class of relaxation functions, we
establish the general decay result for the energy without any
kind of internal or boundary control.

1. Introduction. In previous work [12], Lo and Tatar considered
the following laminated beam with structural damping and memory:

PPt + G(d} - sz)x = Oa

Ip(3w — V) — Gt(l/’ —¢z) = DBw — ) s

(1.1) +/ g(t —8)(3w — 1) pe(s) ds = 0,
0

4 4
ILowy + G — a) + g’yw + gﬁwt — Dw,, =0,
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under initial conditions
QD(.T, O) = (po(.%),'g/)(x, 0) = wo(ﬂf)»w(%o) = w()(x)
spt(x?o) = 901(95)a¢t($a 0) = ¢1($)a wt(xa O) = ’lUl(.’L'),

(1.2)

and boundary conditions

(13) me(oat) = (p(lat) = ¢(0,t) = 'l/}z(Lt) = U)(O,ﬁ) = wz(]-?t) =0,

for D = 1, where (,t) € (0,1) x (0,4+00), x is the space variable along
the beam of length 1, ¢ denotes the time variable, ¢(z,t) denotes the
transverse displacement of the beam which departs from its equilibrium
position, 1 (z,t) represents the rotation angle, w(x,t) is proportional
to the amount of slip along the interface at time ¢ and longitudinal
spatial variable x, 3w — v denotes the effective rotation angle and
the third equation of (1.1) describes the dynamics of the slip; the
coefficients p, G, 1,,D,v,8 > 0 denote the density of the beams, the
shear stiffness, the mass moment of inertia, the flexural rigidity, the
adhesive stiffness of the beams and the adhesive damping parameter,
respectively; g : RT — R* is a non-increasing function. In that paper,
the authors established an exponential decay result under the equal-
speed wave propagation case: G/p = D/I,. As for the previous results
and developments of the laminated beam, the authors have stated and
summarized in great detail in [12]; thus, we just omit it here. For
a better understanding of the present work, the reader is strongly
recommended to [12] and the references therein.

It is easy to find that, if the slip w is assumed to be identically zero,
then the first two equations of system (1.1)—(1.3) can be reduced exactly
to the Timoshenko beam system. During the last few years, many
people have been interested in the question of stability of Timoshenko
systems with memory and different speeds of wave propagation. For
example, in [6], Guesmia and Messaoudi studied a one-dimensional
Timoshenko system with only one control given by a viscoelastic term
on the angular rotation equation of the form

p1@1t — k1(@e + 1)z =0,

(1.4) t
ptht - kaza: + k’l(@z + ¢) + / g(s)wzz(xut - S) ds = 07
0
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where (z,t) € (0, L) x (0,400), p1, p2, k1 and ko are positive constants
and g is a positive differentiable function satisfying: there exist a non-
increasing differentiable function ¢ : RT™ — (0,+00) and a constant
p > 1 such that

g (t) < —s(t)gP(t) forallt > 0.

For sufficiently regular initial data, the authors established a general
decay result for the energy of the solution in case of different wave
speeds (ki/p1 # ka/p2). Guesmia, et al., [8] considered a vibrating
system of Timoshenko type in a one-dimensional bounded domain with
an infinite history acting in the equation of the rotation angle of the
form

(1.5)

preee — k1(pa +¥)e =0,
—+o0
ptht - ]{;Qw.L.L + kl (<)0.L + w) + / 9(3)¢u (Z‘,t - 8) dS = Oa
0

(x,t) € (0,L) x (0,400). The authors proved a general decay of the
solution for the case of equal-speed wave propagation as well as for the
nonequal-speed case. For more papers related to various systems with
memory, we refer the reader to [1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 14,
16].

In this paper, for a wide class of relaxation functions, we intend to
study the general decay rate of the solutions for problem (1.1)—(1.3)
under the non-equal wave speed case: G/p # D/I,. In this case, the
additional difficulty arises in estimating the non-equal speed term (see
(3.6) below). For our purposes, we shall introduce an additional func-
tional and use the second-order energy method motivated by Guesmia
and Messoudi’s work [6], in which a linear Timoshenko system with
memory was studied.

The remaining part of this paper is organized as follows. In Section 2,
we present some hypotheses needed for our work and state the main
results. In Section 3, we prove the general decay result of problem
(1.1)—(1.3).

2. Preliminaries and main results. In this section, we begin with
some materials and known results for problem (1.1)-(1.3). We use
¢ to denote a generic positive constant which does not depend upon
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the initial data. For the relaxation function g, we have the following
assumptions:

(G1) g : RT — R7 is a differentiable function such that
+oo
g(0) >0, D - / g(s)ds =1>0.
0

(G2) There exists a non-increasing differentiable function £ : RT —
R, satisfying
g (t) < —£(t)g(t), forall t > 0.

Next, let
U = (807 3w — wawa th73wt - ’(/}tth)T

and
Uo = (00, 3wy — o, wo, 1, 3wy — by, w;)L.

Then, we consider the following spaces:

Ay = HL(0,1) x (H1(0,1))* x (L*(0,1))°,

%:{U € My | o € H0,1), 3w—1p,w € H2(0,1), 0 € H(0,1),

3wtwt,wteﬁi<0,1>,mo,t>o,¢x<17t>wm<1,t>o},

where
H10.1) = {n | ne B'(0,1) : (1) = 0},
10.1) = {n | n e H'(0,1):n(0) = 0},

)
0,1)
0,1) = H?*(0,1) N H(0,1),
0,1) = H2(0,1) N H(0,1).

The next lemma plays an important role in the proof our main result.
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Lemma 2.1 ([8]). The following inequalities hold:

2

<m>(émt@ww%w>@m%wm@
SgdﬂAQQ—QGM&—¢JQ%%&%—¢Q@DH&

2

(M)(AﬂF@@M—MW%BM—%WW@
< ~0) [ o= ) (s~ p)0) — (B~ )(6) s,
0

where go(t) = fotg(s) ds

Now, we state the following well-posedness result, which can be
proved by using the standard Galerkin method.

Theorem 2.2. For any initial data U° € %), problem (1.1)—(1.3) has
a unique weak solution
p € C(R*; HL(0,1)) NCHRT; L*(0,1)),
3w —, we C(RT; HL(0,1)) nCY(RY; L*(0,1)).
Moreover, if U° € 54, then the solution satisfies
p € C(R*; HZ(0,1)) N CH(RT; HL(0,1))
NC*RT; L2(0, 1)),

(

(
3w —1, we CRY; H2(0,1)) N CHRY; HL(0,1))
NC%(RT; L?(0,1)).

In order to state our decay result, we introduce the following energy
functional:



100 GANG LI, XIANGYU KONG AND WENJUN LIU

1 1
E(t) = 5/0 <p‘P§ + Ip(3wt - ¢t)2 + 3Ipwt2 + GW) - 90:8)2
¢
(2.3) + (D—/ g(s) ds) (3w$—w1)2+3Dwi+4vw2> dz
0

1

where, for all v € L?(0, 1),

gov_:Alzjmt—SXU@)—v@»ahdx

In order to estimate the non-equal speed term, we define the second-
order energy by

1 1
=3 | (Wft 13w — i) + 31w} + G — pur)?

t
(2.4) + (D/ g(s) ds> (3wmt¢m)2+3Dw_§t+4wa> dz
0
1
+ 59 o (3wzt - th)
Our main decay result reads as follows.

Theorem 2.3. Assume that (G1), (G2) and G/p # D/I, hold. For
any U® € JA, there exists a positive constant C such that the energy
E(t) associated with problem (1.1)—(1.3) satisfies

1+ [ g(s)ds

ft £(s) ds ) for allt >0,
0

(2.5) E@<c<

0 = e E0)+ BO)+ [ Groes — voer?ar)

3. Proof of the main result. In this section, we prove the general
decay result as stated in Theorem 2.3. For this purpose, we establish
several lemmas.
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Lemma 3.1. The energy functional E(t) defined by (2.3) satisfies

d ! g(t) [*
—FE(t)=—-4 wtzdx - = 3w, — 1y )2dx
oy @0 1/3 / 5 | Gu—v.)

+ 59/ © (3wac - ¢x) <0.

Proof. Multiplying the three equations in (1.1) by ¢4, 3w, — ¥y
and 3w, respectively, integrating over (0,1) and using the boundary
conditions in (1.3), we obtain (3.1) (see [12, Lemma 2.3] for details).

O

Next, we will prove several lemmas with the purpose of creating
negative counterparts of the terms that appear in the energy E(¢).

As in [12], we first consider the following functionals:

1
I(t) = *p/o ooy da,
1
L(t) = Ip/ (3w — ) (3wr — 1) da,
0

1
I5(t) = Ip/ wwy dz
0

and

L(t) = 1, / (3uwr — ) / gt - $)[(3w — ¥)(1) — (3w — ¥)(s)] ds da.

Then, the next result holds.

Lemma 3.2. The functional I1(t) satisfies, for any &1 > 0,

L) < —p / e+ Gl 4 2) / 0 pa)?da
(3.2) 0 0

G [t ) 9G [t

Proof. Differentiating I (¢) with respect to ¢, using the first equation
in (1.1), integrating by parts and making use of the Young’s inequality,
we obtain (3.2) (see [12, Lemma 2.5] for details). O
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Lemma 3.3. The functional I5(t) satisfies, for any e > 0,
(3.3)

It) < —(I—e2(G + 1)) /01(3% —)?dz + 1, /01(3wt —y)’da

D -1
j— 2 — _—
I | 0 e S0 (e — ),

Proof. Taking the derivative of I5(t) with respect to t, using the
second equation in (1.1), integrating by parts, using Young’s inequality
and Lemma 2.1, we obtain

1 1
Ih(t) < —D/O (3ww—wz)2dx+1p/0 (3w — 1y )*dx
1 G 1
2 2
+ &0G ; (Bwy — 1) dx—|—@/0 (Y — ) dx
1 —
+52/0 (3wx—¢z)2dw+%go(3wm—z/}m)
! 2
D—1 3w, — 1,)2d
+(D-1) / (3 — ta)?dx
1 1
< —(l—eg(G—i—l))/ (Sww—wx)zdx—i—lp/ (Bwr — ) 2dz
0 0
1

D -1
) 90(3wx—1/)m)'

2
(w_‘pz) dz + de

462 0

Lemma 3.3 is proven. O
Lemma 3.4. The functional I3(t) satisfies, for any e3 > 0,

Ig(t)g—(;—53<G+ 36))/0 dex—D/0 w? dz

+ I_A'_ﬁ /1w2d$+G/l(w_ >2dl'
P 3es) o ! 4e3 Jo pel

Proof. Differentiating I3(t) with respect to ¢, using the third equa-
tion in (1.1), integrating by parts and making use of Young’s inequality,

(3.4)
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we arrive at

I3 <_7/ de_D/ w da;‘+[/wtdx+€3G/ widx

+ G (1/) d+535/ wdz +—/wtdx

453

S—(?— 3<G—|—43ﬂ))/0 de—D/ de

1
I, + — b / w?de + — ¢ (w—gaw)de,
3e3 4es
which is exactly (3.4). O

Lemma 3.5. The functional I4(t) satisfies, for any e4 > 0,
(3.5)

1 1
I4(t) < —I,(go(t) — 1) / (Bwy —n)’da + 4 / (W — po)da
0 0
1
I
+ 54(2D - l)/o (3wr - QZJT)Zd - %(40)9/ © (3w7" - 1/11)

G+2D -1
+(D—l)<1—|—+42€4>go(3wm—wz).

Proof. Taking the derivative of I4(t) with respect to ¢, using the
second equation in (1.1), integrating by parts, using Young’s inequality
and Lemma 2.1, we deduce
G(D -1
%g o (?’wm %)

€4
D(D -1
464

1
L(t) < 4G / (W — po)?dz +
0

1
+ E4D/ (Bw, — wx)2dm + o (Bwz — vy)
0

1

LD 1) / (3w — 2)2dz — Lgol) / (3uwy — y)°de

D —1)?
1
I
+ 84Ip/O (3wt - wt)de - %(40)9/ © (3wm - 1/%)
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1 1
< (Lgolt) —eal,) / (Buwy — 0)’da + £4C / (6 — u)2dz

1
+(254D—54l)/ (3w$—wz)2daﬁ—%io)g’o(3ww—w$)
0
G(D -1 D(D —1 D —1)?
+<D—l+ (454 ) 4 (464 ) ! 464)>go(3wm—1/11)

1 1
< —L(go(t) — 1) / (Bwn — 0)’de + 4G / (W — o2)2da

1
I
+ea20 =) [ @ - par — 22050 (30, )
0 dey
G+2D -1
+0-0(1+ 220 G, - o).
454

The proof is complete. |

Further, we introduce an additional functional:

D 1
Is(t) = ?" e, — do)de

1
- Ip/ (Bwy — Pi) (Y — z) dz
0
o [ t
- 6/ g@t/ g(t — ) (3w, — ¥,)(s)dsdx.
0 0
Lemma 3.6. The functional I5(t) satisfies, for any e5 > 0,
1
B <G [ (6= enids
0

D 1
+ <C¥p — Ip> / gﬁt(?)’th — ’ll)mt) dl’
0

1 1
1
(3.6) + 18551p/ wide +1, (255 + ) / (3w; — ;) ?dx
0 4&5 0

1
+ 20490 [ s
0

pg(t) /1 e py(0)
+ 4€5G 0 (3wL ,(/)I) dz 4€5G

g/ © (Sw.L - %L)
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Proof. Taking the derivative of I5(t) with respect to ¢ and using the
first two equations in (1.1), we have

+ ?/ (Pt(?’wwt - '(/)wt) dSL‘
0
1 1
— J— 2 J— J— p—
1 t
- Pz - 3 zx — Yzxx d d
+/0(¢ w)/og(t 8)(3tre — Pra)(s) ds dz

(3.7) )
-1, / (3uwr — o) (% — a)e da

/(zb sor)r/t (t — 5)(3wy — 1) (s) ds dx

G/ w/ (t— )(Bwgy — ,)(5) ds da

~ pg(0)
O [ v, b0y

The sixth term in (3.7) can be rewritten as follows

1 1
-1, / (Bwy — ) (b — pu)i de = —I, / (Buwy — o)t de
(3.8) 0 0

1
+ Ip/ (Bwy — V) par dex.
0

Then, due to (3.7) and (3.8), and integrating by parts, we deduce

(3 9)
D 1
— —G/ 2 (Gp — Ip) /0 gpt(?)wm — Qprt) dx

1y [ o= vpee =240 [, w0 d
1 t
5 [ =910 00 - Gu,—b)(o)] dsde
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Next, using Young’s inequality and Lemma 2.1 for the last three terms
of this equality, we obtain

1 D 1
B0 <6 [ (6 pardes (G”—Ip) / B~ ) o
0
1
+es5l, / V7 dx—l—f/ (Bw; — +€5pcg;(t)/ 7 da
0
pg(t) 50 2
+455G/0( N OK G/O‘ptd“

pg(0) ,
- 4€5Gg O(Swm_w:v)'

It is worth noting that
1 1
/ Y2 dr = / (¢ — 3w + 3w,)?dx.
0 0
Hence, by using the fact that ¢ is non-increasing, we have
1
B <G [ (0 p)ids
0

D ! !
+ (Cf — Ip> / (pt(?)’th - "Z}zt) dx + 18551;)/ w?dx
0 0

L\ [} esp | espg(t)\ [
+ (255Ip + 4;)/0(31015 —apy)?dx + (G + — G /()wfdx

py(t) [* pg(0) ,
+ 4€5G /0 (3ww - %)Zd @g © ( xz 1!]90)
1 1
< *G/O (¢ — ‘Pm)zdx + <DGP - Ip) /0 Pt (Bwat — Yur) dz
1

1 1
+ 1855Ip/ widz + 1, (255 + ) / (Bwy — ) *da
0 455 0
1
+ 20 490) [ o
0

pg(t)
4€5G

1

; (3w, — 1y )?dr — M "o (Bwy — Py).

+ 4€5Gg

This completes the proof of the lemma. O
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Now, to estimate the second term in (3.6), we shall use the second-
order energy defined by (2.4). Noting that 3w(z,0) — ¢(z,0) =
3wp(x) — Yo(x), and using the fact that

5 | ot =) G0n — v ds
= gt/o 9(8)(Bwzy — Vue)(t — ) ds

= /(; g(t - 3)(3wmmt - T/szt)(s) ds + g(t)(ngxm - 1/101:5)7

we obtain
(3.10)
1 1
E'(t) = _45/ wda — %/ (Bwer — Vpy)da
0 0

1 1
+ 59/ 0 (Bwyt — Pat) — g(t)/ (3wt — Yir) (Bwoza — Yoz ) d.
0
As in [6], we have the following lemma:

Lemma 3.7. The second-order energy E(t) satisfies, for all t > 0,

(3.11) E(t)<c (E<o> + / (Buges - woza?dx) .

Proof. By using (2.4), (3.10) and Young’s inequality, we obtain
_ 1
El(t) S _g(t)/ (3wtt - wtt)(?’w()ww - wsz) d.’IJ
0

1
< g(;)/o <Ip(3wtt — ) + !

T(ngxz - 1/1011)2) dx
P

1
S g(t)E(t) + 7A (3w0:rz - ¢Ozz)2dx7
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which implies
9 <~ iy 98) i gtsras [
—( E(t)e Jo Q(S)ds> A Jo 9(s) s/ (3wom—¢0m)2d$
ot 21, 0

g(t)

< =7
= 2I,

1
/ (3w0wz - w0$z)2dx-
0

Then, a simple calculation yields

E(t)ei f0+oo g(s)ds < E(t)ei fot g(s)ds

- 1 t 1
QIP 0 0

- 1 “+oo 1

E0)+ — </ g(s) ds) / (BWoze — Yowe)?dex.
21)0 0 0

Consequently, (3.11) follows. O

IA

IA

Now, we are in a position to prove our main result. Let N, Ny, N3,
N4 and N5 > 0. We define

¢ to
go(t):/ g(s)dsZ/ g(s)ds=g1 >0, t>ty>0
0 0

and
(3.12)
L(t) = N((E(t) + E(t)) + Iy (t) + NoIy(t) + NaIs(t) + Ny Iy (t) + N5 I5 ().

Combining (3.1), (3.2), (3.3), (3.4), (3.5), (3.6) and (3.10), we obtain,
for all t > tg,

L'(t) < —p(l - Nf 1+ 9(0))> /01 p7de
-1, (N4(91 —&e4) — No — Ny (265 + :)) /01(3wt —y)?da

€5

1
- <4N6 — N3 (Ip - ﬂ) — 18N565Ip) / widz
353 0

— N3D—E / widm—Ng l—&‘g G—Fﬁ / w2dx
251 0 3 3 0
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(3.13)
G<N5—( —&—51)—%22— i\% —N4€4) /01(¢ z)
—~ (g(t)(];[ - gzg) + No(l — &2 — £26)

G 1
“ Naes(2D — l)) /0 (3wy —1p)*da

s 2+ N1+ ) o s - )

454
L (N _ Nadpg(0) _ Nspg(0)
2 454 4E5G

)g/ © (3wT - wr)
Loy Ng(t) [ 2
— 4Nﬂ/0 widr — T/o (Bwy — ye) da
1
50 o (B~ ) = Nol) [ (Guie— ) Buna ~0ar) do
0

D 1
+N5< Gp Ip>/ got(?)th—ipzt)dx
0

At this point, we must choose our constants very carefully. First,
we choose e1 = G, e = 1/Ny, e3 = 1/N3, g4 = 1/Ny, e5 =
G/(2N5(1 + ¢(0))). Then, (3.13) becomes

1
L’(t)S—g/o pide
N2(1 + ¢(0)) G
(M = = I - (14 )
1

/ (3U/t—1/)t)2dx

0

3N3f 91,G o,
_<4N6—N3<I,,+ 3 >_1+;(0)>/ widx
— <N3D—g> <4N3fy <G—|— 45))/ w?dz
0

2 1
—G<N5—N2—]Z3—3)/ (W — pu)?da
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(3.14)

(o (X - MLy,

3 ' 2
_<2+G+2D—l>>/0 (Bwy — ) dx

+(D—l)<]jf2+N4<1+N4(sz_l)))90(3wx—wx)

+ <N ~ NiILg(0)  NZpg(0)(1+ g(0))

B 4 202 >g/ o (Bwy — Pz)

1
- Ng(t) /0 (Swtt - wtt)(3w0x9¢ - wax) dx

D 1
+N5(Gp _Ip>/ 0t (Bway — ay) da.
0

Then, we select No large enough such that
3
Nal — §+G+2D—l > 0.

Next, we choose N3 large enough such that

4
4]\;37 - <G+ /8) > 0.

9
N3D—§>O and 3

Furthermore, we select N5 large enough such that

After that, we choose Ny large enough such that

NZ(1+g(0)) G
Nigy = Np — === L) 7O

Finally, we select N large enough such that

3N, 91,G
ANB — N3 T - 0,
’ 3(” 3) T 9(0)
N  N2p(1
N _ Nip(1+4(0) _

2 2G?
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From the above, we deduce that positive constants c¢; and co exist
such that (3.14) becomes
L/(t) S —C1

1
/ (cpf-i-(?)wt—1/1t)2+w,52+(1/1—<px)2+(3wx—wx)z—i—wi—f—wQ) dx
0
(3.15)

N  NilLg(0) NZpg(0)(1+ g(0))
+ (5 - ) - et oO))

'gl o (3ww - 1pa:) + C2g © (3ww - wz)
1
- Ng(t) / (Swtt - wtt)(?)szw - wOmz) dl‘
0

D 1
+ N5 <Gp — Ip> / QOt(?)’lUmt — Q;Z):Et) dIIZ
0

Now, we estimate the last term on the right hand side of (3.15). This
is the main difficulty in treating the case of non-equal wave speeds. In
order to overcome this difficulty, as in [6], we have the next lemma:

Lemma 3.8. For any ¢ > 0 and t > tyg, we have the following

inequalities:
D 1
(Gp - Ip) / 1 (Bway — ay) da
0

1
<< [ o+ So)BO)
0

+ g(g © (3wazt - wzt) - g, © (3’[1)1 - wm))

(3.16)

Proof. For all t > tj, note that we have

(%p _1,,) /01%(3% — ) da = W/;%
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(3.17) . / g(t — 8)((Bwzr — Yar)(t) — (Bwyr — Vue)(8)) dsdax
Dp/G
s)ds / / (t = 5)(Bwat — Yu)(s) dsda.

Noting that

n < £ ) t> tO > 07
fo g(s)ds o 9(s)ds

using Young’s inequality and Lemma 2.1 (for (3w, — ¥,+) instead of
(Bwy —1)y)), we obtain, for all € > 0 and ¢t > ¢y > 0,
(3.18)

Dp/G
ds / / t 3 gth _wa:t)( ) (3th _¢;ct)(s)) dsdz

S 2/ d$+ go(gwrt*d}rt)

On the other hand, noting that 1/( fo s)ds) < 1/( °g(s)ds), t >

to > 0, integrating by parts, exploiting (2. 2) using Young s inequality,
noting the fact that E(t) is non-increasing and (3w — ¢)(z,0) =
(Bwo — o) (), we obtain, for all e > 0 and t > tg > 0,

Dp/G o ds / / (t — 8)(Bwgt — Vyt)(s)dsdx

<Dp/G> ;
s T / o a000 ) — g(t)( )

" / g ) (Bus —6)(s) s) as

N 1
- W/O o <g(t)((3wos ~ %) = (3wor = Voa))
0 S S

— [ = )G~ 0)0) - (s — () ds) da

™

1 1
< 7/0 oidx + gg(t)/o ((Bwy — ¥2)? + (Bwor — Yox)?) dz

-2
Cl
- gg O(3wx_1/)x)
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1

<5 [ etot So0BO) - oo (Bun — ),
0 S e

Finally, inserting (3.18) and (3.19) into (3.17), we get (3.16). O

Next, we estimate the term

1
79@)/ (3wtt - q/)tt)('ngzz - q/)()zz) dl’
0
on the right hand side of (3.15).

Lemma 3.9. For anyt > ty, we have

(3.20) — g(t)/o (Bwyr — Y1r) (BWore — Yoz ) do

1
0
Proof. By using Young’s inequality and (3.11), we obtain

1
- g(t)/o (3wtt - wtt)(gw():vw - wOww) dl‘

(3.21) < 590 [ (Gun =) + Bsr — s ) da

1
< eg(t) (E(O) + / (3uwzs — ¢0m)2da:>.
0
This completes the proof of Lemma 3.9. (]

Then, inserting (3.16) and (3.20) into (3.15), choosing ¢ small enough
such that Nse < ¢; and N large enough again such that
N NilLg(0) NZpg(0)(1+g(0) Nsc
2 4 2G? €

>0,

we deduce
1
o <—c [ 6+ Gu - v +ot+ - )
0

(3.22) + (Bw, — Ve)* + w2 + w2) dz
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+ cg o (3’(1}35 - qu) + cg o (gwmt - wzt)
1
+a0)(BO) + O+ [ Bunes — voee e ).
0
Now, returning to the proof of Theorem 2.3, multiplying (3.22) by
&(t), we obtain

(3.23)
EME(t) < —c€(t)L'(t) — c(g" 0 (Bwz — ) + g 0 (Bwar — Yur))

T ee(tglt) (E(O) B0+ [ (B — o) dx).

Integrating over (0,t), using (3.1), (3.11), (3.12), (3.21) and noting the
fact that £(¢) and g are nonincreasing, we get, for ¢t > ¢y > 0,

L) as)

to

< tE(0)E(0) + C(f(to)L(to) — eI +

_c/t:< "(s) + E'(t) + g(s) /01(3wu—wtt)(3w0m _%m)dx)ds
(3.24)

+C< +/01 (3wozx — Youz) dx>/g
< o B(0) + E(to) + E(to)) + e(B(to) ~ E(t) + E(to) ~ E(1)

+ ¢(E(0) + / (Bwozz — Youe) dz) /tt g(s)ds

0

+ c(E(O) + E(0) + /01(3wom - %m)z’dw> /Ot g(s)ds

< (B0 +E0)+ [ (B0 ner e (14 g(s) as).

which yields (2.5). This completes the proof of Theorem 2.3.



GENERAL DECAY FOR A LAMINATED BEAM 115

REFERENCES

1. F. Boulanouar and S. Drabla, General boundary stabilization result of
memory-type thermoelasticity with second sound, Electr. J. Diff. Egs. 2014 (2014).

2. X.-G. Cao, D.-Y. Liu and G.-Q. Xu, Easy test for stability of laminated beams
with structural damping and boundary feedback controls, J. Dynam. Contr. Syst. 13
(2007), 313-336.

3. M.M. Cavalcanti, et al., Uniform decay rates for the energy of Timoshenko
system with the arbitrary speeds of propagation and localized nonlinear damping,
Z. Angew. Math. Phys. 65 (2014), 1189-1206.

4. M.M. Chen, W.J. Liu and W.C. Zhou, Existence and general stabilization of
the Timoshenko system of thermo-viscoelasticity of type III with frictional damping
and delay terms, Adv. Nonlin. Anal., doi:10.1515/anona-2016-0085.

5. A. Guesmia, On the stabilization for Timoshenko system with past history
and frictional damping controls, Palest. J. Math. 2 (2013), 187-214.

6. A. Guesmia and S.A. Messaoudi, On the stabilization of Timoshenko systems
with memory and different speeds of wave propagation, Appl. Math. Comp. 219
(2013), 9424-9437.

7. , Some stability results for Timoshenko systems with cooperative
frictional and infinite-memory dampings in the displacement, Acta Math. Sci. 36
(2016), 1-33.

8. A. Guesmia, S.A. Messaoudi and A. Soufyane, Stabilization of a linear
Timoshenko system with infinite history and applications to the Timoshenko-heat
systems, Electr. J. Diff. Eqs. 2012 (2012).

9. W.J. Liu, K.W. Chen and J. Yu, Ezistence and general decay for the full von
Kdarman beam with a thermo-viscoelastic damping, frictional dampings and a delay
term, IMA J. Math. Contr. Info. 34 (2017), 521-542.

10. W. J. Liu, K.W. Chen and J. Yu, Asymptotic stability for a non-autonomous
full von Kdrmdn beam with thermo-viscoelastic damping, Appl. Anal. 97 (2018),
400-414.

11. W.J. Liu, Y. Sun and G. Li, On decay and blow-up of solutions for a singular
nonlocal viscoelastic problem with a nonlinear source term, Topol. Meth. Nonlin.
Anal. 49 (2017), 299-323.

12. A. Lo and N. Tatar, Stabilization of laminated beams with interfacial slip,
Electr. J. Diff. Egs. 2015 (2015).

13. S.A. Messaoudi and A. Fareh, Energy decay in a Timoshenko-type system of
thermoelasticity of type 111 with different wave-propagation speeds, Arab. J. Math.
2 (2013),199-207.

14. J.E. Munoz Rivera and H.D. Ferndndez Sare, Stability of Timoshenko
systems with past history, J. Math. Anal. Appl. 339 (2008), 482-502.

15. Y. Qin, X.-G. Yang and Z. Ma, Global existence of solutions for the
thermoelastic Bresse system, Comm. Pure Appl. Anal. 13 (2014), 1395-1406.

16. F. Tahamtani and A. Peyravi, Asymptotic behavior and blow-up of solution

for a nonlinear viscoelastic wave equation with boundary dissipation, Taiwanese J.
Math. 17 (2013), 1921-1943.




116 GANG LI, XIANGYU KONG AND WENJUN LIU

17. J.-M. Wang, G.-Q. Xu and S.-P. Yung, Ezponential stabilization of lam-
tnated beams with structural damping and boundary feedback controls, SIAM J.
Contr. Optim. 44 (2005), 1575-1597.

NANJING UNIVERSITY OF INFORMATION SCIENCE AND TECHNOLOGY, COLLEGE OF
MATHEMATICS AND STATISTICS, NANJING 210044, CHINA
Email address: ligang@nuist.edu.cn

NANJING UNIVERSITY OF INFORMATION SCIENCE AND TECHNOLOGY, COLLEGE OF
MATHEMATICS AND STATISTICS, NANJING 210044, CHINA
Email address: m15651559885@163.com

NANJING UNIVERSITY OF INFORMATION SCIENCE AND TECHNOLOGY, COLLEGE OF
MATHEMATICS AND STATISTICS, NANJING 210044, CHINA
Email address: wjliu@nuist.edu.cn



