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ABSTRACT. In this paper, a split-step collocation method
is proposed for solving linear stochastic Volterra integral
equations (SVIEs) with smooth kernels. The Hölder condi-
tion and the conditional expectations of the exact solutions
are investigated. The solvability and mean-square bounded-
ness of numerical solutions are proved and the strong conver-
gence orders of collocation solutions and iterated collocation
solutions are also shown. In addition, numerical experiments
are provided to verify the conclusions.

1. Introduction. Stochastic Volterra integral equations (SVIEs)
are widely used in many fields such as mechanics, biology, finance
and medicine. Hence, the research of SVIEs is very applicable, and
over the past decades, many mathematicians have obtained significant
results. The existence and uniqueness results of solutions of SVIEs
were investigated in [8, 18].

Since, in many applications, there are no closed solutions, it is impor-
tant to provide approximate solutions by some numerical approaches
[9, 20, 21]. Recently, many numerical methods for Volterra inte-
gral equations (VIEs) have been proposed, such as quadrature, Runge-
Kutta and block methods, Chebyshev polynomial methods, collocation
methods, etc., in [1, 2, 7, 14]. On the other hand, there are also some
research results on numerical methods for SVIEs, such as stochastic
operational matrices of block pulse functions in [10, 12, 13], triangu-
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lar and operational matrices of integrations in [11], the generalized hat
basis functions in [5] and delta function approximations in [17].

Split-step methods represent a class of fully implicit methods which
allow the incorporation of implicitness in the stochastic part of the sys-
tem with relatively little additional cost. Such an advantage makes
them very attractive for solving equations with noise. Originally
proposed by Higham [6], he applied the split-step backward Euler
(SSBE) method to nonlinear autonomous stochastic differential equa-
tions (SDEs). Under the one-sided Lipschitz condition, the 1/2 strong
convergence order is proved. The SSBE method is a special case of sto-
chastic split-step θ (SSθ) methods introduced in [3], while the strong
convergence order 1/2 is the same for SSθ methods with 0 6 θ 6 1.

In this paper, we consider a one-stage collocation method for linear
SVIEs of the second kind:

(1.1)

X(t) = g(t) +

∫ t

0

K(t, s)X(s) ds

+

∫ t

0

σ(t, s)X(s) dW (s), t ∈ I := [0, T ],

where ∆ := {(t, s) : 0 6 s 6 t 6 T}, g ∈ C1(I) is a deterministic
continuous function, K ∈ C1(∆) and σ ∈ C1(∆) are two deterministic
kernels and {W (t), t > 0} is a standard Brownian motion defined on a
complete probability space (Ω,F , P ) with a filtration {Ft}t≥0 under
the usual conditions.

This paper is organized as follows. In Section 2, we extend colloca-
tion methods and iterated collocation methods for deterministic VIEs
to SVIEs under the conditional expectation sense, which, based on the
definition of the Itô integral, is implemented in the split-step approach.
In Section 3, some fundamental properties of exact solutions to lin-
ear SVIEs are discussed, such as mean-square boundedness, the Hölder
condition and properties of conditional expectations of the exact solu-
tions. In Section 4, the solvability, the mean-square boundedness and
the strong convergence order of numerical solutions is investigated. In
Section 5, some numerical examples for strong convergence order are
presented.
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2. Collocation methods. In this section, we will establish a col-
location method for linear SVIEs by combining the approaches of one-
stage collocation methods for deterministic VIEs in [1] with the condi-
tional expectation for continuous numerical solutions of semi-implicit
Euler methods to stochastic pantograph differential equations in [19].

2.1. Collocation methods for deterministic VIEs. For the de-
terministic VIEs,

(2.1) u(t) = g(t) +

∫ t

0

K(t, s)u(s) ds, t ∈ I := [0, T ],

the one-stage collocation methods approximate the exact solution by a
piecewise constant function

uh ∈ S
(−1)
0 (Ih) := {v

∣∣
(tn,tn+1)

is a constant for 0 6 n 6 N − 1},

which satisfies the collocation equation

(2.2) uh(tn,1) = g(tn,1) +

∫ tn,1

0

K(tn,1, s)uh(s) ds,

where h = T/N is the stepsize, Ih = {tn = nh : 0 6 n 6 N},
tn,1 = tn+ c1h, n = 0, 1, . . . , N − 1, 0 6 c1 6 1. Indeed, the collocation
equation is exactly the same as the original equation at the collocation
points tn,1. The iterated collocation solution uit

h corresponding to the
collocation solution uh is defined by

uit
h (t) = g(t) +

∫ t

0

K(t, s)uh(s) ds, t ∈ I.

It trivially satisfies

uit
h (tn,1) = uh(tn,1) for all n = 0, 1, . . . , N − 1.

In the special case c1 = 1, uh(t) ≡ un for t ∈ (tn, tn+1) satisfies

(2.3) un = g(tn+1) + Fn(tn+1) + h

(∫ 1

0

K(tn+1, tn + θh) dθ

)
un,

and the iterated collocation solution is given by

(2.4) uit
h (t) = g(t) + Fn(t) +

(∫ t

tn

K(t, s) ds

)
un,
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where

Fn(t) :=
n−1∑
ℓ=0

h

(∫ 1

0

K(t, tℓ + θh) dθ

)
uℓ.

2.2. Collocation methods for SVIEs. Different from the deter-
ministic case, the numerical solutions to (1.1) must be Ft-adapted
stochastic processes based on the definition of the Itô integral. From
the right continuity of the filtration Ft, i.e., ∩t>tnFt = Ftn , a suitable
collocation space for one-stage collocation methods is

S(−1)
0 (Ih) :=

{
v
∣∣
(tn,tn+1)

is an Ftn -measurable constant

random variable, 0 6 n 6 N − 1} .

The one-stage collocation methods are established as follows.

(i) When the kernel in the diffusion term is dependent upon s, the Itô
integral is difficult to implement during the numerical process. Hence,
according to Maruyama’s approach, it is approximated by

∫ t

0

σ(t, s)Xh(s) dW (s) ≈
∫ t

0

σ(t, sh)Xh(s) dW(s),

where sh = tn for s ∈ (tn, tn+1).

(ii) The collocation equation for SVIEs cannot be defined in the
same form as the deterministic case since, in general, the left-handed
is Ftn -measurable but the right-handed is Ftn+1 -measurable. In order
to overcome this the authors introduce the conditional expectation to
the numerical scheme in [19]. The version for SVIEs is presented in
the following form

(2.5) Xh(tn,1) = E
(
g(tn,1) +

∫ tn,1

0

K(tn,1, s)Xh(s) ds

+

∫ tn,1

0

σ(tn,1, sh)Xh(s) dW (s)|Ftn

)
,
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and the iterated collocation solution is defined by

(2.6) Xit
h (t) = g(t) +

∫ t

0

K(t, s)Xh(s) ds

+

∫ t

0

σ(t, sh)Xh(s) dW (s) for all t ∈ I.

2.3. Implementation. For the deterministic functions g and K, it
follows from Fubini’s theorem that

E
(
g(t) +

∫ t

0

K(t, s)Xh(s) ds | Ftn

)
= g(t) +

∫ t

0

K(t, s)Xh(s) ds for t ∈ (tn, tn+1).

Since Xh(t) is an Ftn -measurable for t ∈ (tn, tn+1),

E
(∫ tn

0

σ(t, sh)Xh(s) dW (s) | Ftn

)
=

∫ tn

0

σ(t, sh)Xh(s) dW (s)

and, by the properties of conditional expectations,

E
(∫ t

tn

σ(t, sh)Xh(s) dW (s) | Ftn

)
= E (σ(t, tn)Xh(tn)(W (t)−W (tn)) | Ftn)

= σ(t, tn)Xh(tn)E (W (t)−W (tn) | Ftn) = 0.

The last equality comes from the independence increment of the Brow-
nian motion and E(W (t)−W (tn)) = 0. Hence, the special case c1 = 1
of collocation methods is implemented as follows:

(i) Xh(t) = X∗
n is an Ftn -measurable constant random variable for

t ∈ (tn, tn+1);

(ii) the collocation equation (2.5) has the form

(2.7) X∗
n = g(tn+1) + Fn(tn+1) + h

(∫ 1

0

K(tn+1, tn + θh) dθ

)
X∗

n,

where

Fn(t) = h
n−1∑
ℓ=0

(∫ 1

0

K(t, tℓ + θh) dθ

)
X∗

ℓ +
n−1∑
ℓ=0

σ(t, tℓ)X
∗
ℓ∆Wℓ;
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(iii) the iterated collocation equation Xit
h , an Ft-adapted stochastic

process is defined by
(2.8)

Xit
h (t) = g(t)+Fn(t)+

(∫ t

tn

K(t, s) ds

)
X∗

n+σ(t, tn)X
∗
n(W (t)−W (tn)).

Remark 2.1. Let K(t, s) ≡ λ, σ(t, s) ≡ µ and g(t) = X0 be constants.
Then, the collocation equation (2.7) and the iterated collocation equa-
tion (2.8) read

X∗
n = X0 + λhX∗

n +
n−1∑
ℓ=0

λhX∗
ℓ +

n−1∑
ℓ=0

µX∗
ℓ∆Wℓ,

Xit
h (tn+1) = X0 +

n∑
ℓ=0

λhX∗
ℓ +

n∑
ℓ=0

µX∗
ℓ∆Wℓ.

Denote Xit
h (tn) = Xn. Then, the above scheme yields

(2.9)
X∗

n = Xn + λhX∗
n,

Xn+1 = X∗
n + µX∗

n∆Wn,

which is the same as the scheme of the SSBE method for the SDE:

(2.10)
dX(t) = λX(t) ds+ µX(t) dW (t), t ∈ I,

X(0) = X0.

Hence, the method (2.7)–(2.8) is also named by a split-step collocation
method.

Remark 2.2. Let the diffusion kernel σ(t, s) ≡ 0. Then, the colloca-
tion equation (2.7) and the iterated collocation equation (2.8) are the
same as the corresponding equations (2.3) and (2.4) for the determin-
istic case.

Remark 2.3. For deterministic equations, the iterated collocation
solution coincides with the collocation solution at the collocation
points. This is, in general, not true for SVIEs, since Xh(tn+1) is Ftn-
measurable and Xit

h (tn+1) is Ftn+1-measurable, while it always holds
that

Xh(tn+1) = E
(
Xit

h (tn+1)|Ftn

)
,
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since

E
(
Xit

h (tn+1) | Ftn

)
= E

(
g(tn+1) +

∫ tn+1

0

K(tn+1, s)Xh(s) ds

+

∫ tn+1

0

σ(tn+1, sh)Xh(s) dW (s) | Ftn

)

= g(tn+1) +

∫ tn+1

0

K(tn+1, s)Xh(s) ds

+

∫ tn

0

σ(tn+1, sh)Xh(s) dW (s)

= Xh(tn+1).

Remark 2.4. Similarly to the above discussion, the numerical solu-
tions of (2.9) to the linear SDE (2.10) satisfy X∗

n = E(Xn+1|Ftn).

3. Properties of the exact solutions. In this section, we discuss
the mean-square boundedness and the Hölder condition of the exact
solutions to (1.1). In order to illustrate the approximation of collocation
solutions, we also introduce the conditional expectations of the exact
solutions and investigate some fundamental properties between X(t)
and the conditional expectations.

3.1. Hölder conditions. Although the exact solutions to SVIEs (1.1)
are in general not a martingale, the mean-square boundedness for
continuous g, K and σ is also established in a similar manner to SDEs.

Theorem 3.1. Assume that g ∈ C(I), K,σ ∈ C(∆). Then, the exact
solutions to (1.1) are bounded in the mean square sense, i.e., there
exists a constant C1 > 0 independent of t, such that

E|X(t)|2 6 C1 for all 0 6 t 6 T.

Proof. Let τn = inf{t : |X(t)| > n} be the stopping time and
Xn(t) = X(t ∧ τn). Then, we obtain from (1.1), the Hölder inequality
and Itô isometric formula that
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E
(
|Xn(t)|2

)
= E

(∣∣∣∣g(t ∧ τn) +

∫ t∧τn

0

K(t ∧ τn, s)X(s) ds

+

∫ t∧τn

0

σ(t ∧ τn, s)X(s) dW (s)

∣∣∣∣2)
≤ 3E

(
M2 +

∫ t

0

|K(t, s)|2ds ·
∫ t

0

|X(s ∧ τn)|2ds

+

∫ t

0

|σ(t ∧ τn, s ∧ τn)X(s ∧ τn)|2ds
)

≤ 3M2 + (3M2T + 3M2)E
(∫ t

0

|Xn(s)|2 ds
)
,

where M = max06s6t6T {|g(t)|, |K(t, s)|, |σ(t, s)|}. From Gronwall’s
inequality, we have

E(|Xn(t)|2) ≤ 3M2 exp((3M2T +M2)T ).

Hence, by Chebyshev’s inequality,

P (τn < t) = P (Xn(t) ≥ n) 6 1

n2
(3M2 exp(3M2T +M2)T ),

which implies that
∞∑

n=0

P (τn < t) < ∞.

Hence, limn→∞ τn ≥ t almost surely. Therefore, the proof is completed
by the control convergence theorem. �

For smooth kernels, a 1/2 order Hölder condition of the exact
solutions is provided in the next theorem.

Theorem 3.2. Assume that g ∈ C1(I) and K,σ ∈ C1(∆). Then, the
exact solutions to (1.1) satisfy a Hölder condition, i.e., there exists a
constant C2 > 0 independent of t and t, such that

E(|X(t)−X(t)|2) 6 C2|t− t| for all 0 6 t 6 t 6 T.

Proof. From g ∈ C1(I) and K,σ ∈ C1(∆), we have

|g(t)− g(t)|2 = O((t− t)2),

|K(t, s)−K(t, s)|2 = O((t− t)2),(3.1)
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|σ(t, s)− σ(t, s)|2 = O((t− t)2).

From (1.1) and the elementary inequality (a + b + c + d + e)2 6
5(a2 + b2 + c2 + d2 + e2), we obtain

E(|X(t)−X(t)|2)

= E
(
|g(t)− g(t) +

∫ t

0

K(t, s)X(s) ds−
∫ t̄

0

K(τ, s)X(s)ds

+

∫ t

0

σ(t, s)X(s) dW (s)−
∫ t̄

0

σ(t, s) dW (s)|2
)

≤5E(|g(t)− g(t)|2) + 5E
(∣∣∣∣ ∫ t̄

0

(K(t, s)−K(t, s))X(s) ds

∣∣∣∣2)
+ 5E

(∣∣∣∣ ∫ t

t̄

K(t, s)X(s) ds

∣∣∣∣2)+ 5E
(∣∣∣∣ ∫ t

t̄

σ(t, s)X(s) dW (s)

∣∣∣∣2)
+ 5E

(∣∣∣∣ ∫ t̄

0

(σ(t, s)− σ(t, s))X(s) dW (s)

∣∣∣∣2).
From the Hölder inequality and the property of the Itô integral, the
following is obtained.

E(|X(t)−X(t)|2) ≤ 5E(|g(t)− g(t)|2)

+ 5E
(∫ t̄

0

|K(t, s)−K(t, s)|2ds ·
∫ t̄

0

|X(s)|2 ds
)

+ 5E
(∫ t

t̄

|K(t, s)|2ds ·
∫ t

t̄

|X(s)|2ds
)

+ 5E
(∫ t

t̄

|σ(t, s)X(s)|2ds
)

+ 5E
(∫ t̄

0

|σ(t, s)− σ(t, s)|2|X(s)|2ds
)
.

According to (3.1), Theorem 3.1 and the property of the Itô integral,
we get

E(|X(t)−X(t)|2) 6 C2|t− t|.

The proof is complete. �
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3.2. Conditional expectation of the exact solution. Since the
collocation equations for SVIEs are defined in the sense of conditional
expectations, in this subsection, we discuss the conditional expectation
of X(t) under Fτ , i.e., Y (t, τ) = E(X(t) | Fτ ) for any given t, τ ∈
[0, T ]. It follows from Theorem 3.1 that

E
(∫ t

τ

σ(t, s)X(s) dW (s) | Fτ

)
= 0.

Hence, Y (t, τ) = X(t) for 0 6 t 6 τ , and Y (t, τ), t > τ , is a solution of

(3.2) Y (t, τ) = g(t) + Fτ (t) +

∫ t

τ

K(t, s)Y (s, τ) ds,

where

Fτ (t) =

∫ τ

0

K(t, s)X(s) ds+

∫ τ

0

σ(t, s)X(s) dW (s).

From the orthogonality of X(t) − Y (t, τ) and Y (t, τ), Theorem 3.1
implies that E(|Y (t, τ)|2) 6 E(|X(t)|2) 6 C1 for all 0 6 τ, t 6 T .

Remark 3.3. Let K(t, s) ≡ λ, σ(t, s) ≡ µ and g(t) = X0 be constants.
Then, for 0 6 τ < t 6 T , (3.2) reduces to

Y (t, τ) = X(τ) +

∫ t

τ

λY (s, τ) ds,

whose solution is Y (t, τ) = X(τ)eλ(t−τ). Hence, E|Y (t, τ)−Y (t̃, τ)|2 6
C|t− t̃|2.

Now, we discuss the estimation between X(t) and Y (t, τ).

Theorem 3.4. Assume that g ∈ C1(I), K,σ ∈ C1(∆). Then there
exists a constant C3 > 0 independent of t and τ , such that

E|X(t)− Y (t, τ)|2 6 C3|t− τ | for all 0 6 τ, t 6 T.

Proof. From the definition of Y (t, τ), we only need consider the case
0 6 τ < t 6 T . Let Z(t, τ) = X(t)− Y (t, τ). Then,

Z(t, τ) =

∫ t

τ

K(t, s)Z(s, τ) ds+

∫ t

τ

σ(t, s)X(s) dW (s).
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Taking the expectation on both sides and using the Hölder inequality
and the property of the Itô integral, the following is easily obtained:

E(|Z(t, τ)|2) ≤ 2E
∣∣∣∣ ∫ t

τ

K(t, s)Z(s, τ) ds

∣∣∣∣2
+ 2E

(∣∣∣∣ ∫ t

τ

σ(t, s)X(s) dW (s)

∣∣∣∣2)
≤ 2E

(∫ t

τ

|K(t, s)|2ds ·
∫ t

τ

|Z(t, τ)|2ds
)

+ 2E
(∫ t

τ

|σ(t, s)X(s)|2ds
)

≤ 2M2T

(∫ t

τ

|Z(t, τ)|2ds
)
+ 2M2C1|t− τ |.

According to Gronwall’s inequality, we get

E(|Z(t, τ)|2) 6 2M2C1e
2M2T 2

|t− τ |.

Therefore, the proof is complete with C3 = 2M2C1e
2M2T 2

. �

From the definition, Y (t, τ) satisfies a Hölder condition with order

at least 1/2. While, for t, t̃ ≥ τ , the general result of the one order
Hölder condition of Y (t, τ) in Remark 3.3 is proved in the following
theorem.

Theorem 3.5. Assume that g ∈ C1(I), K,σ ∈ C1(∆). Then, there

exists a constant C4 > 0, independent of t, t̃ and τ , such that

(3.3) E(|Y (t, τ)− Y (t̃, τ)|2) 6 C4|t− t̃|2 for all τ 6 t 6 t̃ 6 T.

Proof. Let τ 6 t 6 t̃ 6 T . Then, by (3.2), we get

E(|Y (t, τ)− Y (t̃, τ)|2)

6 4E(|g(t)− g(t̃)|2) + 4E
∣∣∣∣ ∫ t

t̃

K(t, s)Y (s, τ) ds

∣∣∣∣2
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+ 4E
∣∣∣∣ ∫ t̃

0

(K(t̃, s)−K(t, s))Y (s, τ) ds

∣∣∣∣2
+ 4E

∣∣∣∣ ∫ τ

0

(σ(t, s)− σ(t̃, s))Y (s, τ) dW (s)

∣∣∣∣2.
Hence, (3.1) and the Hölder inequality imply that

E(|Y (t, τ)− Y (t̃, τ)|2)

6 O(|t− t̃|2) + 4E
(∣∣∣∣ ∫ t̃

t

K(t̃, s)Y (s, τ) ds

∣∣∣∣2)
6 O(|t− t̃|2) + 4M2|t− t̃|E

(∫ t̃

t

|Y (s, τ)|2 ds
)

6 O(|t− t̃|2) + 4C|t− t̃|2M2 = C4|t− t̃|2.

Therefore, the proof is complete. �

Corollary 3.6. Assume that g ∈ C1(I), K,σ ∈ C1(∆). Then,

E|X(t)− Y (s, τ)|2 6 2C3|t− τ |+ 2C4|t− s|2 for all 0 6 τ 6 s, t 6 T.

Proof. From Theorems 3.4 and 3.5, the desired result is reached by
(3.4)

E|X(t)− Y (s, τ)|2 = E|X(t)− Y (t, τ) + Y (t, τ)− Y (s, τ)|2

6 2E|X(t)− Y (t, τ)|2 + 2E|Y (t, τ)− Y (s, τ)|2.

The proof is complete. �

4. Numerical analysis of collocation methods. In this section,
we investigate the solvability, mean-square boundedness and strong
convergence order of the collocation and iterated collocation solutions.

4.1. Solvability and mean-square boundedness. We first provide
the solvability of collocation methods for sufficiently small stepsize.

Theorem 4.1. Assume that g ∈ C1(I), K,σ ∈ C1(∆). Then there
exists an h > 0 such that each equation of (2.7) has a unique solution
for h ∈ (0, h).
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Proof. Suppose that the collocation solutions exist up to [0, tn].
Then, from (2.7), we have(

1− h

∫ 1

0

K(tn+1, tn + θh) dθ

)
X∗

n = g(tn+1) + Fn(tn+1).

Since ∫ 1

0

K(tn+1, tn + θh) dθ

is bounded by
∥K∥∞ = sup

(t,s)∈∆

|K(t, s)|,

as long as 0 < h < h = 1/∥K∥∞, there exists a unique solution to
(2.7). Therefore, the proof is complete. �

Remark 4.2. The condition in Theorem 4.1 is a sufficient condition
but not necessary. In order to see this consider a constant kernel
K(t, s) ≡ λ < 0. Then, the collocation solutions uniquely exist for
h > 0.

Next, we discuss the mean-square boundedness of the collocation
solutions Xh(t).

Theorem 4.3. Let g ∈ C(I), K,σ ∈ C(∆) and h < 1/(6M2(T + 1)).
Then, there exists a constant C5 > 0, independent of t, such that

(4.1) E(|Xh(t)|2) 6 C5 for all t ∈ I.

Proof. From the elementary inequality (a+ b+ c)2 6 3(a2+ b2+ c2),
we have

E(|Xh(tn+1)|2)

= E
(∣∣∣∣g(tn+1) +

∫ tn+1

0

K(tn+1, s)Xh(s) ds

+

∫ tn

0

σ(tn+1, sh)Xh(s) dW (s)

∣∣∣∣2)
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6 3E(|g(tn+1)|2) + 3E
(∣∣∣∣ ∫ tn+1

0

K(tn+1, s)Xh(t) ds

∣∣∣∣2)
+ 3E

(∣∣∣∣ ∫ tn

0

σ(tn+1, sh)Xh(t) dW (s)

∣∣∣∣2).
Using mean-square boundedness, Hölder inequality and the property
of the Itô integral in [15], we obtain that

E(|Xh(tn+1)|2)

6 3M2 + 3TE
(∫ tn+1

0

|K(tn+1, s)Xh(s)|2ds
)

+ 3E
(∫ tn

0

|σ(tn+1, sh)Xh(s)|2ds
)

6 3M2 + 3TM2E
(∫ tn+1

0

|Xh(s)|2ds
)

+ 3M2E
(∫ tn

0

|Xh(s)|2ds
)

= 3M2 + 3M2(T + 1)E
(∫ tn+1

0

|Xh(s)|2ds
)
,

which is equivalent to

E(|X∗
n|2) 6 3M2 + 3M2(T + 1)hE

( n∑
j=0

|X∗
j |2

)
.

It follows from the condition on the stepsize that

E(|X∗
n|2) 6 6M2 + 6M2(T + 1)hE

( n−1∑
j=0

|X∗
j |2

)
,

which implies by the discrete Gronwall inequality in [1] that

(4.2) E(|Xh(t)|2) 6 C5 for all t ∈ I,

where C5 = 6M2 exp(6M2(T + 1)T ). The proof is complete. �

Corollary 4.4. Let g ∈ C(I) and K,σ ∈ C(∆). Then, there exists a
constant C6 > 0 such that

E(|Xit
h (t)|2) 6 C6 for all t ∈ I.
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Proof. This result is trivial from (2.7), (2.8) and Theorem 4.3. �

4.2. Strong convergence order. We first present the strong con-
vergence order of the collocation solutions Xh(t) to the conditional
expectations Y (t, tn).

Theorem 4.5. Assume that g ∈ C1(I), K,σ ∈ C1(∆) and h <
1/6M2(T + 1). Then, there exists a constant C7 > 0, independent
of tn, such that

E(|Y (tn+1, tn)−Xh(tn+1)|2) 6 C7h(4.3)

for all n = 0, 1, . . . , N − 1,

where Y (tn+1, tn) is defined by (3.2).

Proof. According to (2.5) and (3.2), we know

E(|Y (tn+1, tn)−Xh(tn+1)|2)

= E
(∣∣∣∣ ∫ tn+1

0

K(tn+1, s)(Y (s, tn)−Xh(s)) ds

+

∫ tn

0

σ(tn+1, s)(Y (s, tn)−Xh(s)) dW (s)

+

∫ tn

0

(σ(tn+1, s)− σ(tn+1, sh))Xh(s) dW (s)

∣∣∣∣2).
By the mean-square boundedness, the Hölder inequality, (3.1) and the
property of the Itô integral, we have

E(|Y (tn+1, tn)−Xh(tn+1)|2)

6 3TM2E
(∫ tn+1

0

|Y (s, tn)−Xh(s)|2ds
)

+ 3M2E
(∫ tn

0

|Y (s, tn)−Xh(s)|2ds
)

+ 3E
(∫ tn

0

|(σ(tn+1, s)− σ(tn+1, sh))Xh(s)|2ds
)

6 3(T + 1)M2E
( n∑

ℓ=0

∫ tℓ+1

tℓ

|Y (s, tn)− Y (tℓ+1, tℓ)

+ Y (tℓ+1, tℓ)−Xh(tℓ+1)|2ds
)
+O(h2)
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≤ 6(T + 1)M2E
( n∑

ℓ=0

∫ tℓ+1

tℓ

|Y (s, tn)− Y (tℓ+1, tℓ)|2ds
)

+ 6(T + 1)M2E
( n∑

ℓ=0

∫ tℓ+1

tℓ

|Y (tℓ+1, tℓ)−Xh(tℓ+1)|2ds
)
+O(h2),

which implies that

E(|Y (tn+1, tn)−Xh(tn+1)|2)

≤ 6(T + 1)M2E
( n−1∑

ℓ=0

∫ tℓ+1

tℓ

|X(s)− Y (s, tℓ)

+ Y (s, tℓ)− Y (tℓ+1, tℓ)|2ds

+

∫ tn+1

tn

|Y (s, tn)− Y (tn+1, tn)|2ds
)

+ 6(T + 1)M2E
( n∑

ℓ=0

∫ tℓ+1

tℓ

|Y (tℓ+1, tℓ)−Xh(tℓ+1)|2ds
)

+O(h2).

According to Theorems 3.4 and 3.5, we obtain that

E(|Y (tn+1, tn)−Xh(tn+1)|2)
≤ 12(T + 1)M2C3Th+ 12(T + 1)M2C4Th

2 + 6(T + 1)M2C4h
3

+ 6(T + 1)M2E
( n∑

ℓ=0

∫ tℓ+1

tℓ

|Y (tℓ+1, tℓ)−Xh(tℓ+1)|2ds
)
+O(h2).

Therefore, the proof is completed in a similar way to the proof of
Theorem 4.3. �

Corollary 4.6. The solutions X∗
n of the SSBE method for SDEs

converge to the conditional expectations E(X(tn+1)|Ftn) with the strong
order 1/2.

In the next theorem, the strong convergence orders of collocation
solutions and iterated collocation solutions for SVIEs are established,
not only at the mesh points, but also in the entire interval.

Theorem 4.7. Assume that g ∈ C1(I) and K,σ ∈ C1(∆). Then, both
the collocation solutions and the iterated collocation solutions uniformly
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converge to the exact solution to (1.1) with the strong order 1/2, i.e.,
there exists a constant C such that, for sufficiently small stepsize h > 0,

(4.4)
E(|X(t)−Xh(t)|2) 6 Ch for all t ∈ I,

E(|X(t)−Xit
h (t)|2) 6 Ch for all t ∈ I.

Proof. It follows from Corollary 3.6 and Theorem 4.5 that, for any
given t ∈ [tn, tn+1],

E|X(t)−Xh(t)|2

6 2E|X(t)− Y (tn+1, tn)|2 + 2E|Y (tn+1, tn)−Xh(tn+1)|2

6 4(C3 + C4)h+ 2C7h

for sufficiently small stepsize. For the iterated collocation solutions, it
follows from (1.1) and (2.8) that

E(|X(t)−Xit
h (t)|2)

= E
(∫ t

0

K(t, s)(X(s)−Xh(s)) ds

+

∫ t

0

σ(t, s)(X(s)−Xh(s)) dW (s)

+

∫ t

0

(σ(t, s)− σ(t, sh)Xh(s) dW (s)

)2

6 3M2(T + 1)

∫ t

0

E(|X(s)−Xh(s)|2) ds+O(h2) = O(h).

The proof is complete. �

Remark 4.8. For a special case of SVIEs

X(t) = g(t) +

∫ t

0

K(t, s)X(s) ds+

∫ t

0

σ(s)X(s) dW (s),

the method (2.7)–(2.8) reads

X∗
n = g(tn+1) +

n∑
ℓ=0

(∫ tℓ+1

tℓ

K(tn+1, s) ds

)
X∗

ℓ +
n−1∑
ℓ=0

σ(tℓ)X
∗
ℓ∆Wℓ,
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Xit
h (t) = g(t) +

n−1∑
ℓ=0

(∫ tℓ+1

tℓ

K(t, s) ds

)
X∗

ℓ +
n−1∑
ℓ=0

σ(tℓ)X
∗
ℓ∆Wℓ

+

∫ t

tn

K(t, s) dsX∗
n + σ(tn)X

∗
n(W (t)−W (tn)), t ∈ I.

Theorem 4.7 shows that the uniform strong convergence order of the
iterated collocation solutions is 1/2.

5. Numerical examples. The computations associated with the
examples were performed using Matlab. The uniform convergence
order of the iterated collocation solutions is never higher than the local
convergence order. Hence, in this section, we only compute the strong
order at the end-point T . Since the closed solution is not available,
the approximation solution of the EM method with tiny stepsize is
regarded as the reference solution. LetXit

h (t) be the iterated collocation
solutions, and let the errors and strong orders be defined as

Eh =
1

M

M∑
i=1

|(Xi
h)

it(T )− (Xi
2−12)it(T )|

and

p =
log(Eh)− log(Eh/2)

log 2
,

where (Xi
h)

it is the ith-sample path of the iterated collocation solutions
to the exact solution Xi(T ) with the stepsize h, i = 1, . . . ,M and
M = 4000 is the number of samples.

Example 5.1. Consider the following linear SDEs

dX(t) = X(t) dt+X(t) dW (t), X(0) = 1,

dX(t) = (1 +X(t)) dt+ tX(t) dW (t), X(0) = 0,

of which the equivalent form is comprised of the linear SVIEs

X(t) = 1 +

∫ t

0

X(s) ds+

∫ t

0

X(s) dW (s),(5.1)

X(t) = t+

∫ t

0

X(s) ds+

∫ t

0

sX(s) dW (s).(5.2)
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Applying the collocation method to (5.1) and (5.2), we list the errors
and orders in Table 1, which illustrates that the strong convergence is
1/2. It is consistent with the results for SDEs in [6] as well as with the
conclusions of Theorem 4.7.

Table 1. The errors and orders for Example 5.1.

(5.1) (5.2)
N Eh p Eh p
25 0.3172 - 0.0120 -
26 0.1689 0.45 0.0056 0.55
27 0.0639 0.70 0.0023 0.63
28 0.0317 0.51 0.0012 0.49
29 0.0151 0.53 0.0005 0.56

Example 5.2. Applying the collocation method to the following linear
SVIEs:

X(t) = 1 +

∫ t

0

(t− s)X(s) ds+

∫ t

0

X(s) dW (s),(5.3)

X(t) = 1 +

∫ t

0

(t− s)X(s) ds+

∫ t

0

sX(s) dW (s),(5.4)

we list the errors and orders in Table 2. The numerical results show
that the strong convergence is 1/2 when the kernel in the diffusion term
is independent of t.

Table 2. The errors and orders for Example 5.2.

(5.3) (5.4)
N Eh p Eh p
25 0.0703 - 0.0088 -
26 0.038 0.44 0.0046 0.47
27 0.0145 0.69 0.002 0.60
28 0.0072 0.50 0.001 0.50
29 0.0034 0.54 0.0005 0.50
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Example 5.3. Now consider SVIEs with a diffusion kernel depending
on t, i.e.,

X(t) = 1 +

∫ t

0

(t− s)X(s) ds+

∫ t

0

tX(s) dW (s),(5.5)

X(t) = 1 +

∫ t

0

(t− s)X(s) ds+

∫ t

0

(1 + t− s)X(s) dW (s).(5.6)

In this case, the Itô integration is not a Martingale, while the numerical
results in Table 3 illustrate that the convergence order is still 1/2.

Table 3. The errors and orders of convergence for Example 5.3.

(5.5) (5.6)
N Eh p Eh p
25 0.0172 - 0.2025 -
26 0.0088 0.48 0.1022 0.49
27 0.0037 0.62 0.0377 0.72
28 0.0019 0.48 0.0188 0.50
29 0.0009 0.54 0.0089 0.54

Example 5.4. Finally, consider the SVIEs with a nonsmooth kernel

X(t) = 1 +

∫ t

0

√
t− sX(s) ds+

∫ t

0

3

10
X(s) dW (s).

In this example, the errors and the orders are computed with stepsize
h = 1/25, 1/50, 1/100, 1/200 and the tiny stepsize h = 1/1000 for the
EM method. The numerical digits in Table 4 suggest the convergence
order of collocation methods for SVIEs with a nonsmooth kernel is still
1/2.

Table 4. The errors and orders of convergence for Example 5.4.

N Eh p
25 0.5982× 10−3 –
50 0.2677× 10−3 0.5801
100 0.1190× 10−3 0.5846
200 0.0519× 10−3 0.5988
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6. Conclusions and future work. In this paper, we have estab-
lished stochastic collocation methods for SVIEs in a piecewise constant
random space by means of the conditional expectation, which is also
called the split-step collocation methods. In addition to the solvability
and the mean-square boundedness of collocation solutions and iterated
collocation solutions, we have proved that the uniform strong conver-
gence orders of collocation and iterated collocation solutions are 1/2.
In future research, we plan to apply the method to SVIEs with non-
smooth or weakly singular kernels K(t, s) = (t− s)α, α ∈ (−1, 1), such
as Example 5.4, where there are many real world applications.
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stochastic Itô-Volterra integral equations, Appl. Math. Comp. 247 (2014), 1011–
1020.

18. Z. Wang, Existence and uniqueness of solutions to stochastic Volterra
equations with singular kernels and non-Lipschitz coefficients, Stat. Prob. Lett.
78 (2008), 1062–1071.

19. Y. Xiao and H.Y. Zhang, A note on convergence of semi-implicit Euler
method for stochastic pantograph equations, Comp. Math. Appl. 59 (2010), 1419–
1424.

20. X. Zhang, Euler schemes and large deviations for stochastic Volterra equa-
tions with singular kernels, J. Diff. Eqs. 244 (2008), 2226–2250.

21. , Stochastic Volterra equations in Banach spaces and stochastic
partial differential equation, Acta J. Funct. Anal. 258 (2010), 1361–1425.

Harbin Institute of Technology, Department of Mathematics, Harbin
150001, China
Email address: yxiao@hit.edu.cn

Harbin Institute of Technology, Department of Mathematics, Harbin
150001, China

Email address: shijinan2013@163.com

Harbin Institute of Technology, Department of Mathematics, Harbin
150001, China

Email address: yangzhan wen@hit.edu.cn, yangzhan wen@126.com


