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ABSTRACT. This work addresses the solvability and so-
lution of volume integrodifferential equations (VIEs) asso-
ciated with 3D free-space transmission problems (FSTPs)
involving elastic or conductive inhomogeneities. A modified
version of the singular volume integral equation (SVIE) as-
sociated with the VIE is introduced and shown to be of
second kind involving a contraction operator, i.e., solvable
by Neumann series, implying the well-posedness of the ini-
tial VIE. Then, the solvability of VIEs for frequency-domain
FSTPs (modelling the scattering of waves by compactly-
supported inhomogeneities) follows by a compact perturba-
tion argument. This approach extends work by Potthast [16]
on 2D electromagnetic problems (transverse-electric polariza-
tion conditions) involving orthotropic inhomogeneities in a
isotropic background and contains recent results on the solv-
ability of Eshelby’s equivalent inclusion problem as special
cases. The proposed modified SVIE is also useful for itera-
tive solution methods, as Neumannn series converge (i) un-
conditionally for static problems and (ii) on some inhomo-
geneity configurations for which divergence occurs with the
usual SVIE for wave scattering problems.

1. Introduction. Volume integral equations (VIEs), also known as
Lippmann-Schwinger integral equations, arise naturally when consid-
ering penetrable inhomogeneities embedded in a homogeneous back-
ground medium (for which a fundamental solution is explicitly known).
Their derivation and use in, e.g., acoustics, elastodynamics or electro-
magnetism goes back several decades. Since their geometrical support
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is confined to the spatial region where material properties differ from
the background, VIEs are, in particular, useful for deriving asymp-
totic or homogenized models. By directly linking remote measurements
to unknown inhomogeneities, they also provide a convenient forward
modeling approach for medium imaging inverse problems. However,
whereas the theory of boundary integral equations is extensively doc-
umented, the mathematical properties of VIEs have undergone a com-
paratively modest coverage, much of it pertaining to electromagnetic
scattering problems.

In a previous work [1], to which we refer the reader for bibliography
related to the above opening remarks, we established the solvability of
a VIE formulation for anisotropic elastodynamic scattering. Therein,
the VIE problem for an imaginary frequency was shown to be coercive,
the real-frequency scattering problems of interest then being found to
be compact perturbations of the former.

This work also addresses the solvability and solution of VIEs asso-
ciated with free-space transmission problems (FSTPs) involving elastic
or conductive inhomogeneities, but from a quite different viewpoint.
Here, we focus on the singular volume integral equation (SVIE) gov-
erning (in the elastic equilibrium case) the unknown initial stress that
produces a displacement field identical to that solving the FSTP (Esh-
elby’s equivalent inclusion method, see [3, 12]). We introduce a simple
transformation of the SVIE and show the resulting modified SVIE to
be of the second kind involving a contraction operator, i.e., solvable
by Neumann series, which implies the well-posedness of the initial VIE
formulation of the static FSTP. Then, the VIEs for frequency-domain
FSTPs (modelling the scattering of waves by compactly-supported in-
homogeneities) involve integral operators that are compact perturba-
tions of those in corresponding zero-frequency VIEs, so their solvabil-
ity follows from uniqueness results on the scattering problem. This
approach was initially proposed by Potthast [16] for 2D electromag-
netic problems (transverse-electric polarization conditions) involving
orthotropic inhomogeneities in a isotropic background. The purpose of
this work is to extend Potthast’s approach to 3D anisotropic elasticity
and potential transmission problems. A similar but distinct transfor-
mation of VIEs has been proposed in [15] and companion papers for
electromagnetic wave scattering by lossy inhomogeneities, with Neu-
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mann series shown to be always convergent; that treatment, however,
is inoperative for lossless materials such as those considered here.

In addition to providing a direct means for establishing the well-
posedness of VIE formulations for zero-frequency problems involving
inhomogeneities (and the induced well-posedness of VIEs for wave scat-
tering problems), the proposed approach has bearing on iterative solu-
tion methods: the underlying restructuration of the VIE formulation
makes convergence of Neumann series guaranteed for static problems,
and improved for wave scattering problems. Regarding the latter point,
we show that there exist inhomogeneity configurations for which Neu-
mann series are convergent for the modified SVIE while diverging for
the original SVIE.

This work also extends results in recent investigations on Eshelby’s
equivalent inclusion method [3], in particular [4, 9] (addressing the
existence of solutions for Eshelby’s method in the case of ellipsoidal
inhomogeneities) and [5] (where the solvability of the singular VIE for
isotropic inhomogeneity and background materials is established using
Mikhlin’s theory of singular integral operators [11]).

This article is organized as follows. The 3D elastostatic FSTP is re-
cast in Section 2 as a second-kind SVIE involving a (singular) contrac-
tion operator, leading to the main solvability result (Theorem 2.3). The
corresponding result for 3D potential problems involving anisotropic
conductivities (Theorem 3.1) is (more concisely) established in Sec-
tion 3. The induced well-posedness of VIE formulations for the scat-
tering of waves is then briefly discussed in Section 4. The existence of
scatterer configurations such that fixed-point iterations are convergent
if applied to the modified SVIEs but divergent for the standard ver-
sion of the SVIE (Proposition 5.3) is then shown in Section 5. Finally,
Section 6 collects auxiliary proofs.

2. Elastostatic free-space transmission problem. An inhomo-
geneity occupying a bounded domain B C R3 is embedded in an un-
bounded homogeneous background medium, with the unbounded com-
plement R® \ B of B assumed to be connected. The background
and inhomogeneity materials are both assumed to be linearly elas-
tic. Their possibly anisotropic elastic properties are characterized
by their respective fourth-order elasticity tensors C € R3*3%3%3 and
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C* € L>®(B;R3*3x3%3) They satisfy the usual symmetry properties,
ie., Cijke = Cijor = Cpeij and likewise for C*, and the strong elliptic-
ity condition, ie., £:C: € > 0 and € : C*(x) : £ > co|€|> > 0 for
almost all z € B and all ¢ € R3%3. The boundedness and positivity as-
sumptions exclude the cases of (a) incompressible materials and (b) B
being a void. We also let AC := C* — C denote the elasticity tensor

perturbation in B.

The primary field variable is the vector-valued displacement. For a
given displacement field w, we denote for convenience its restrictions
as B and R?*\ B by w~ and w™, respectively. The stress tensor o[w] is
then given by o[w] = C*:e[w~] in B and by o[w] = C:e[wT] in R*\ B,
where e[w] := %(Vw + Vw?) is the linearized strain tensor associated
with w. The tractions tfw] and ¢*[w] exerted by the background and
inhomogeneity on the interface 9B, respectively, are then defined (with
n denoting the unit normal to B pointing outwards of B and (-) |+
indicating limiting values) by

thw)(x) = (C:e[w][,) -n(x),
t*[w](x) = (C*:efw] | ) n(),

x € 0B. In (2.1), and hereinafter, symbols ‘-’ and ‘:’ denote single
and double inner products, e.g., (o-n); = o;n; and (C* : €);; =
C;*j weEke, with Einstein’s convention of summation over repeated indices
implicitly used throughout and component indices always referring to
an orthonormal frame.

(2.1)

We consider FSTPs defined as follows: given a background displace-
ment field w € H} (R3;R3), find the displacement field up such that

(2.2a) div (C:eu}]) = div (C:elu]) in R®\ B,
(2.2b) div (C*:efup]) = div (C:elu]) in B,
(2.2¢) uh(€) — u(€) = O(l¢ ), €] = o0,
(2.2d) up =ujg, tlu}] = t*[uj] on 0B.

Note that no assumption other than local H' regularity is made on
the background field w; in particular, it is not assumed to verify
div (C:elu]) = 0.
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2.1. VIE formulation of the elastostatic FSTP. Let G = e,0G"
be the elastostatic fundamental tensor for the unbounded background
medium, with each vector G* defined as the decaying displacement
field solving —div (C : s[Gk]) = Jey, (0 being the Dirac distribution
supported at the origin). G is given in inverse Fourier integral form,
see [10, Theorem 6.8] and [12], by

1

23)  Gr) =g fm [ N(peFTeavip). reR\ (o)

where N (p) = K(p)~! (K(p) being the (symmetric, positive definite)
acoustic tensor defined by Kr(p) = Cijrep;pe [12]) and Bpg is the ball
of radius R centered at the coordinate origin. With these definitions
and conventions, and in view of the translational invariance of the
homogeneous full space, Gj;(y — «) is the jth component of the
displacement at y resulting from a unit point force applied at « along
the ¢th direction. The fundamental tensor G and its gradients have
the well-known property of being positively homogeneous functions:
for any r € R3\{0} and A > 0, we have

G(\r) = \"'G(r),
(2.4) VG(\r) = \"2VG(\r),
VIG(\r) = \3V2G ().

In particular, G(r) and VG(r), having respectively O(r=!) and O(r—2)
singularities at the origin, are both locally summable (tensor-valued)
functions. For an isotropic material characterized by its shear modulus
1 and Poisson’s ratio v, we have

v
2.5 c=2 IQI+T
(25) w(2grerT).
where I and Z are the second-order identity and the fourth-order
identity for symmetric tensors, respectively, and G is the well-known
Kelvin solution given by:

1

r
- [(3-4)I+7®7], withr= =T
G(r) W6mp(l = v)r (3 —4v)I +7®7], with r=|r| and 7 .
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Volume potential. Define the volume vector potential W with den-
sity h € Loy (R*RES) by
Wih|(z) = div | G(z —y)-h(y)dV(y)
(2.6) R
= | VG@-y) -h(y)dV(y).

R
By virtue of known mapping properties of integrodifferential operators
treated as pseudodifferential operators [7, Theorem 6.1.12], W is well
defined as a L2, ,(R*R3*3) — H (R%R*) operator. Moreover,
setting D := supp(h), the displacement w = WIh] is a solution in
R? of

(a) —div (C:ew]) = {giv h iﬁ ILR)é \ D,

B0 o BT e 0D
(©) wiw) = Ol ), o] .

see e.g., [1] for a proof of the same result in the more general case of
anisotropic elastodynamics. In passing, equations (2.7) (a), (b) show
that WIh] can be interpreted as the elastostatic field created in an
homogeneous unbounded elastic medium by an initial stress field h
supported in a compact region D.

Volume integrodifferential equation. Using (2.7), it is easy to
check that a displacement field w satisfying the equation w = u +
WIAC : e(w)] solves the FSTP (2.2a)—(2.2d). This suggests reformu-
lating the FSTP as the volume integrodifferential equation (VIE)

(2.8a) up — Lplug|=wu in B,

with the integrodifferential operator L5 defined by
(2.8Db) Lpw] := W[AC:e(w)],
supplemented with the representation formula

(2.8¢) ul =u+WI[AC:e(up)] inR*\B.

Conversely, any solution of the FSTP (2.2a)-(2.2d) satisfies the VIE
(2.8a) and the representation formula (2.8¢c), so that problems (2.2a)—
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(2.2d) and (2.8a), (2.8¢c) are equivalent (a proof of this statement,
similar to that given in [1] for the elastodynamic scattering case, is
provided for completeness in subsection 6.1).

2.2. Reformulation of VIE using a contraction operator, solv-
ability. Investigating the solvability of the VIE (2.8a) is facilitated by
reformulating it as a singular volume integral equation (SVIE) for the
unknown AC : e[uy], as done recently for studying the equivalent in-
clusion problem in [5]. To this aim, we first note that the background
elasticity tensor admits the decomposition

(2.9) C =85,

where the fourth-order tensor B has the same major and minor sym-
metries as C and is, like C, positive definite as a R3%? x R3X} — R
quadratic form (B can for example be found by computing the positive
definite square root of the 6 x 6 matrix associated with C using, e.g.,

the Voigt-Mandel notation [6]). For the isotropic case, see (2.5), we
have
1 1+v
B=+2u|- —1|IRI+T|.
vl (it - rerea]
Then, applying the operator B~' : AC : € to the integro-differential

equation (2.8a), the FSTP is reformulated as a second-kind SVIE for
the new unknown density h* := B~': AC:e[uj):

(2.10a) A[h*| = B ':AC:€[u] in B.

The displacement up solving the FSTP is then given explicitly in terms
of h* by the representation formula

(2.10b) ug =u+W[B:h*] in BU(R?\ B).
The operator A : L?*(B;R3%3) — L*(B; R*3) in (2.10a) is defined by
(2.11) ARl =B (T - AC:H)[B:h],

where the singular integral operator H is given in terms of the potential
W by
H = e[W].

The tensor-valued kernel function H associated with H, whose sin-
gularity at the origin is not integrable, is the symmetrized version of
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VVG, see (2.6), consistent with the symmetry of h* (by assumption)
and of H[h*] as second-order tensors. It is given using component
notation by

Hijko(r) = 1[Gk je(r) + Giejk(r) + Gjnie(r) + Gen(r)]

(212) r e R%\ {0}.

Then, the following factorization holds, and will play a crucial role,
for the operator .A:

Lemma 2.1. The singular integral operator A defined by (2.11) admits
the factorization

A=1C"+T):(T-9)

with C* := B~ ':C*: B! and QO = O : 95, where the multiplication
operator Q1 and the integral operator Qo are defined by

Q,=(C"+I) " (C"-TI), Qy=T+2B:H:B.

Proof. We begin by recasting the integral operator Z — AC : H in
the form

I-AC:H=(T+iAC:CT)IT-K)

(2.13)
=3(T+c:cHIT-K),

with
(2.14) K=(Z+c:cH L:AC:(CT+2H),

which is possible since the positive definiteness of C and C* ensure
the invertibility of the tensor Z 4+ C*(z) : C~" for any « € B. Using
C*=B:C*:B and AC = B:(C* — I):B, we then have
(Z+c*:CcH) L:AC=B:(C*+I):(C"-I):B
which, substituted into (2.14), gives
K=B:(C"+I) ':(C"—I):(T+2B:H:B):B"
=8B:9,:9,:B7".

Finally, substituting the above value of IC into (2.13) and recalling the
definition (2.11) of A yields, after some manipulations, the claimed
factorization of A. O
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Using Lemma 2.1 then yields the following modified version of the
singular volume integral equation (2.10a):

(2.15) (- Q)h* =2(C*+I) ":B 1:AC:elul,

wherein the operator @ is a contraction:

Lemma 2.2. The operators Q1 and Qs introduced in Lemma 2.1 are
bounded L?(R3;R3X3) — L2(R3;R2%3) operators. Moreover:

Sym Sym

(i) il <1, (i) [[Qall=1.
Consequently, the L?>(B;R3X3) — L?(B;R3X3) operator @ = Q1 : Q>

sym sym
is a contraction: || Q| < 1.

Proof. See subsection 2.3. ]

By a standard Neumann series argument, Z — Q is therefore in-
vertible with bounded inverse. The multiplication operator %(C* +7)

clearly having the same property (é* being positive definite), the gov-
erning integral operator A : L*(B; R23) — L?(B;R2%}) is also bound-
edly invertible, implying unique solvability of the SVIE (2.10a). Finally,
up is given explicitly by (2.10b), and moreover, the known bounded-
ness of W : L2, (R R3X3) — Hy (R%*R?) shows that the solution
mapping u — uj is continuous as a H'(B) — H'(B) operator. This
analysis yields our main result:

Theorem 2.3. Assume that the background and inhomogeneity elas-
ticity tensors C and C* are both strongly elliptic and bounded. Then:

(a) The integral operator T — Lp : HY(B;R3) — H(B;R3) of the
VIE (2.8a) is invertible with bounded inverse. In particular, (2.8a)
can be solved in two steps:

(i) Solve (T — Q)h* = 2(C* + I)~! : B™': AC : e[u], where
Q: L*(B;R¥3) — L*(B;RYsE), defined in Lemma 2.1, is a
contraction;

(i) evaluate up using the representation formula (2.10b);

(b) the transmission problem (2.2a)—(2.2d) has a unique solution up €
HL (RS R?),

(c) the unique solution uz € H'(B;R3) of the VIE (2.8a) is the
restriction of up to B;
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(d) the field ujg outside B is given by the integral representation for-
mula (2.8¢).

Proof. Ttem (a) results from the analysis of this section, in particular
Lemmas 2.1 and 2.2. Items (b), (¢) and (d) are then direct consequences
of (a) and the equivalence between the transmission problem and the
VIE formulation, see subsection 2.1). 0

Remark 2.4. Transforming the original singular integral equation
(2.10a) using the factorization of Lemma 2.1 was necessary for the
unconditional validity of the Neumann series argument. Indeed, the
integral operator AC:# involved in (2.10a) is not always a contraction:
since H is independent on AC, the condition ||AC:H| < 1 is violated
by sufficiently large stiffness perturbations AC whereas ||Q| < 1 for
any AC.

Remark 2.5. If the background medium occupies a bounded domain 2
and up satisfies well-posed boundary conditions on 02, the VIE (2.8a)
still holds, with G(x — y) replaced by the Green’s tensor Gq(y,x)
satisfying appropriate homogeneous boundary conditions on 9. Its
well posedness then stems from the fact that Wqo — W (with Wq
denoting the volume potential (2.6) with G replaced by Gg,) defines a
compact L?(Q;R3%3) — H'(€;R?) operator (its kernel function being
non-singular for y = ).

Remark 2.6. The solvability of the elastostatic SVIE is established in
[5] for the less general case of isotropic inhomogeneity and background
materials, by explicitly computing the symbolic determinant of the
singular integral operator and invoking Mikhlin’s theory of singular
integral operators [11]. Moreover, solvability results for the special
case of ellipsoidal inhomogeneities are given in [4, 9].

Remark 2.7. Lemma 2.2 provides an alternative proof of the pre-
viously mentioned boundedness of the volume potential W as a
L2, (R3;R3%3) — HL (R3;R3) operator.

comp sym loc

2.3. Proof of Lemma 2.2. The bound on ||Q;|| for Q; : L?(R3;R3%3)

sym

— L?(R% R3*3) follows at once from Q; =T — 2(C* +I)~!: the pos-



A MODIFIED VOLUME INTEGRAL EQUATION 281

itive definiteness of C* implies that 0 < (C*(z) + Z)~* < Z, i.e., that
Q)| <1 (as a R3X3 — R3X3 linear operator) at any & € B; more-

sym ~~ Tsym
over, Qq(x) =0 for « ¢ B.

Regarding the bound on ||Qsl|, we begin by noting some useful
properties of the singular integral operator H. The kernel VG defines
a tempered distribution (since VG is locally summable and belongs

to the class of slowly growing functions), making the convolution
WIh] = €[G] x h well defined for any h € L2, (R3R3X3) (note

comp Sym
that here the convolution % entails an inner product, i.e., €[G] * h =
Jrs €[G](-—y):h(y) dV (y)). Therefore, we also have that H[h] = Hxh
in the sense of distributions. Moreover, under the present conditions,

the distributional version of the Fourier convolution theorem applies:

FI#H(R)|(p) = F[H * h](p) = H(p):h(p),

with the Fourier transform F defined such that f(p) = F[f](p) =
Jgs e 2™ P f(x) AV, whenever f € L'(R?). Moreover, using (2.12)

o~

and (2.3), H(p) is given for p # 0, in component form, by

(2.16)  Hijre(p) = —L[Nje(p)pipr + Nie(p)pjpn
+ Njr(p)pipe + Nix(p)pjpel;

where N (p) is again the inverse of the acoustic tensor, see (2.3). For
any h € L*(R* R2%}), we therefore have

(2.17) F(Qa2(h))(p) = (T +2B:H(p):B):h(p).

Recalling decomposition (2.9) of C and defining the third-order
tensor D(p) by Dape(p) = Bapeapd, the acoustic tensor components
are given by K;i(p) = Dapi(p)Dapi(p). Using (2.16), we then have

(B:H:B)ijké = Bijabﬁabcdlgcdkf = _Dija[quaquc]_lefc

(where the dependence of H and D in p is omitted for brevity and,
by a slight abuse of notation, [E,c]™' denotes the ac entry of the
matrix E_l). Since Djjr = Djir, D can be set in 6 x 3 matrix form
(representing for given p a R3S — R? linear operator), and (2.17) is
equivalent to the matrix equality:

[B:H :Blsxs = —[Dlsx3[DT D515 [D ]axe.
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Let [Dlgxs = YAZT denote the singular value decomposition of
[D]gx3, where Y € R6%6 and Z € R3*? are unitary matrices while the
matrix A € R6%3 holding the singular values has the form A = [X 0],
with A € R3*3 a diagonal matrix with real positive entries. The
(positive definite) acoustic tensor is then given by K = K(p) =
[DTD]3X3 = ZA?Z", implying the positive definiteness (and invert-
ibility) of A, and we find

[B:H :Bloxs = —(YAZT) (ZA2Z7) (ZATYT)
=Y (AX AT YT
=-Y(A0"A*x0) Y"

B I 0] ¢
[

Consequently, we have

[T +2B:H:Bloxe =Y [_OI ﬂ YT,
implying |(Z 4+ 2B:ﬁ(p):B) . E(p)| = |fAL(p)| for any p. With the help
of Plancherel’s theorem, this in turn yields

HQQ[hH|L2(R3;R3X3) =e [h]||L2(R3;R3X3

sym sym)

L [Fp—

sym)’

- ||E\|L2(R3;R3Xs) -

sym

i.e., that ||Qa| =1 as a L?(R3;R2X3) — L?(R?;R2%3) linear operator.

sym sym

This implies the bound (ii), and the proof of Lemma 2.2 is complete.

3. Conductivity transmission problem. The arguments devel-
oped in the previous section for elastostatic FSTPs can also be applied
to the simpler case of transmission problems involving, e.g., electro-
static, scalar potentials in media characterized by second-order conduc-
tivity tensors. This section thus aims at setting the relevant context
and notation and concisely establishing the counterpart of Theorem 2.3,
which is a useful result in its own right.

Retaining the geometrical assumptions made in Section 2 for the
inhomogeneity support B, the inhomogeneity is now characterized by
its conductivity tensor C* € L>°(B;R3%3) (such that & - C*(z)-& >

co|€]? > 0 for almost all x € B and all £ € R?), and the background
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medium by a constant, positive definite conductivity tensor C €
Rfyxn:f The case of isotropic properties corresponds, of course, to scalar
conductivities ¢, ¢* such that C = ¢I and C*(x) = ¢*(x)I.

We consider FSTPs defined as follows: given a background potential
u € H} (R?), find the potential up such that

(3.1a) div(C-Vuf) =div(C-Vu) in R*\ B,
(3.1b) div (C* - Vug) = div (C - Va) in B,
(3.1¢)  up(€) —u(€) =O(|¢7?) €] = o0,
(3.1d) ufl =ug, n-C-Vuj=n-C*" - Vuj on dB.

Let G be the fundamental solution for the unbounded background
medium, which solves

(3.2) —div(C-VG) = 4.

Using the decomposition C = B - B, where B is the positive definite
square root of C, G is given by

1 1
Gz) = .
@) = frdet(B) B a|
If C = cI (isotropic case), we recover of course the well-known
expression G(x) = 1/(4nc|x|).
The volume potential W, acting on densities h € LZ,,,,(R* R?), is

defined by

(3.3) Wlh](z) = . VG(z —y)-h(y)dV(y),

and is a bounded L2, (R*R?) — H _(R) operator. Setting again
D := supp(h), the potential w = WI[h] solves

(3.4)
. divh  in D,
(a) —div (C~Vw)—{0 in B3\ D,
(b) w|ly+ =w|- and n-C-Vw|+:n-C*-VwL—|—h-n on 9D,

(c) w(@) = O(|=[2), || — oo
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The FSTP then admits the VIE formulation

(3.5a) uy — Lglug] =, in B,

(3.5b) ul =u+W[AC - Vug], in R®\ B,
where the integrodifferential operator Lp is defined by Lp[w] :=

WIAC - Vw]. Conversely, transposing arguments given earlier for the
elastic case, any solution of the FSTP (3.1a) satisfies the VIE (3.5a).

Theorem 3.1. Assume that the background and inhomogeneity con-
ductivity tensors C and C* are both positive definite and bounded.
Then:

(a) the integrodifferential operator I — Lp : HY(B;R3) — H(B;R3) is
invertible with bounded inverse;

(b) the transmission problem (3.1a) has a unique solution up €
Hlloc(RS);

(c) the unique solution uy € H'(B) of the integrodifferential equa-
tion (3.5a) is the restriction of up to B;

(d) the field u}; outside B is given by the integral representation for-
mula (3.5b).

Proof. As for Theorem 2.3, we only need to prove item (a). Applying
the operator B™'-AC - V to the integro-differential equation (3.5a),
we obtain the equivalent problem

(a) A[p*] = B™'-AC-Vu in B,
(b) up =u+W[B-h*] in BU(R*\ B)

for the new unknown h* := B™* -AC -Vup, and with the singular
integral operator A : L?(B;R3) — L?(B;R?) defined by

Ahl=B™'- (I - AC-VW)[B-h].
One readily checks, by inspection, that the factorization
(3.6) A=3C +D-(I-Q Q)

holds, with C*:= B '-C* B " and where the multiplication opera-
tor @, and the integral operator @, are defined by

Q, =C"+Dn'(C*-I), Q,=I+2B-VW-B.
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Moreover, Q, and Q, are bounded L?(B;R3) — L?(B;R?) operators
and verify

() @il <1, () [Qf =1.

The bound (i) holds for the same reasons as in the elastic case (with
fourth-order tensors changed to 3 x 3 matrices), and a proof for (ii) is
given thereafter. Consequently, the L?(B;R3) — L?(B;R3) operator
Q.- Q, is a contraction: ||Q;-Q,]| < 1. The same arguments as for
the elastic case then allow completion of the proof of Theorem 3.1. [

Proof of ||Q4]| = 1. As before, the distributional version of the
Fourier convolution theorem applies:

~

FIVW(h)](p) = F[H % h](p) = H(p) - h(p),

(having set H := VVG) while ﬁ(p) is given, applying the Fourier
transform to (3.2), by

H(p)=—(p-C-p)~'p@p.

In particular, p — ﬁ(p) is C°(R3 \ {0}) and homogeneous with
degree 0 in p. For any h € L?(R3;R3), we have

FIQu(h)(p) = (I+2B-H(p)-B)-h(p)

B.p B-p) -
—(1-22P o 2P ) Rp),
( B B ) "

implying |(Z — 2B-H(p)- B) -h(p)| = |h(p)| for any p € R*\ {0}.
Plancherel’s theorem finally yields the desired bound ||Q|| = 1 through

HQ2[h]||L2(R3;R3) = Hh”LQ(]RS;]RS). O

4. Solvability of VIE formulations for elastic or acoustic
wave scattering problems. Consider the elastodynamic problem
where an incident monochromatic wave u (with given angular frequency
w, and with the time-harmonic factor e~ implicitly understood as
usual) is scattered by an inhomogeneity characterized by a perturbation
Ap = p* — p of the background mass density p in addition to the
perturbation AC of elastic moduli. The elastodynamic fundamental
tensor G, = e ® G¥ for the background medium is defined in terms
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of the radiating solutions of
—div (C:¢[G*]) — p?G* = dey,

(the reader is referred to [8] and [13] for details on G, and the meaning
of “radiating” in the cases of isotropic and anisotropic background,
respectively). The (now complex-valued) displacement field up verifies
the VIE

(4.1a) up — Liug]=u, inB

for the restriction of up to B, with the integrodifferential operator L%
defined by

(4.1b) LY [w] := W,[AC:e(w)] + WV, [Apw).

In (4.1b), W,, is the volume potential defined by (2.6) with G replaced
by G, while the additional volume potential V is given for any
g € HL (R%*R3) by

Vigl(z) = [ Gel@—v)-9y) dV(y),

Since x — G, (x) and  — V(G, — G)(x) are known to be weakly
singular and bounded, respectively, at € = 0, V and W, — W define
compact H'(B;R3) — H'(B;R?) operators. The operator Z — L%
is therefore Fredholm with index 0, and its bounded invertibility then
follows from known uniqueness results for scattering by inhomogeneities
and the Fredholm alternative. We thus recover the solvability result
established for elastodynamic VIEs in [1] using other arguments.

Essentially the same arguments apply to the VIE formulation of
scattering problems governed by the Helmholtz equation (or anisotropic
versions thereof, investigated, e.g., in [2]), as previously done in [16]
for 2D electromagnetic scattering by anisotropic inhomogeneities.

5. Fixed-point iterations. In addition to being the crucial ingredi-
ent for establishing the well-posedness of the VIE formulation of elasto-
static FSTPs, the modified SVIE (2.15), having the form (Z—Q)h* = f
with ||Q]| < 1, can be solved by fixed-point iterations, i.e., by arbitrar-
ily choosing an initial value h{, and setting

(5.1) hy  =Q:hy+f, n=12....
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The above iterations amount to computing the sequence of partial sums
of the Neumann series (Z— Q) !f = f+ Q:f+Q:Q:f+---, whose
convergence is assured for any inhomogeneity configuration (B, AC),
so that h) — h* in L?(B;R3*3).

Fixed-point iterations of the form (5.1) are also commonly applied
to the solution of wave scattering problems; they are often referred to
in this context as Born series or iterated Born approximations. Fixed-
point iterations may be applied to the frequency-domain counterpart
of the SVIE in either classical form (2.10a) or modified form (2.15),
obtained by using the relevant frequency-domain fundamental solution
therein. Their convergence is subject to restrictions on the scatterer
characteristics and the frequency (the scatterer needs to be “sufficiently
weak”). In what follows, we show the existence of scatterer configura-
tions such that fixed-point iterations are convergent if applied to the
modified SVIE but divergent if applied to the standard SVIE.

5.1. Scattering of acoustic waves. Consider the scattering of an
incident monochromatic acoustic wave u by a penetrable inhomogene-
ity, with the background and inhomogeneity materials having the same
bulk modulus g but different mass densities p, p* (the background wave
velocity being ¢ = /u/p). The complex-valued total acoustic pressure
up then satisfies the VIE

(5.2a) up — LEug] =u in B,

with the integrodifferential operator LY defined (with r := —1+4p/p* =
—Ap/p*) by

(5.2b) LE[w] := W, [rVuw].

In (5.2b), W, is the volume potential defined by (3.3) with G replaced
by the fundamental solution G, of the Helmholtz equation, i.e.,

eik\r|

(53) Gw(r) = W?

with k = w+/p/p.

Note that the conductivity-like transmission problem in the zero-
frequency limiting case is (3.1a)—(3.1d) with C = I and C* = (p/p*)1I.
The case of dissimilar values of u would result in an additional, weakly
singular, volume integral operator in equation (5.2a), similar to V,,
in (4.1b).
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The scattering problem can then be recast in terms of the SVIE
(5.4) h* —rVW,[h*] =rVu in B

for the new unknown h* := rVuj, obtained by applying the oper-
ator rV to (5.2a). In turn, the operator rVW,, can be recast in a
factorized form similar to (3.6), which transforms the singular integral
equation (5.4) into

2
(5.5) B - Q[h*] = - J:QVu in B,
with
r
“ o= by So=T4+2 .
Q r 4+ 2Q2> Q2 + VWw

The next two lemmas, whose proofs are given in the Appendix, hold
true for VW,, as a (bounded) L?(B;R3) — L?(B;R?) operator:

Lemma 5.1. There exists a constant C7 > 0, independent of w and
B, such that
[VWall = C1.

Lemma 5.2. Assume that B C Br, where Bg is the ball of radius R.
We have
IV W = W)|| < Co(kR)?,

with Cy = 27 E, where E is the smallest constant satisfying inequal-
ity (6.6). The constant Cy is independent on w and B and is approzi-
mately given by Co =~ 0.61577.

We then obtain the following result on the conditions for the conver-
gence of fixed-point iterations applied to the singular integral equation
in either its classical form (5.4) or its modified form (5.5):

Proposition 5.3.

(a) Fized-point iterations applied to the integral equation (5.4) diverge
if rCy > 1

(b) fized-point iterations applied to the integral equation (5.5) converge
if CQT‘(kR)2 < 1.
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Proof. Case (a) follows directly from Lemma 5.1 and the convergence
requirement ||[rVW,,|| < 1.

Regarding case (b), we write Q5 = Q4 + 2V(W,, — W). Since
Q, : L*(R%R3) — L%(R3R?) has been shown in Section 3 to satisfy
|Q2]| = 1, and using Lemma 5.2, we have

Q5 <14 2([V(W. — W) <14 2C5(kR)?.

Therefore, the convergence condition ||Q,|| < 1 for fixed-point itera-
tions is satisfied if

r12(1 +205(kR)?) < 1, ie., Cor(kR)? < 1. O

Since the subset {(r,s) | rC; > 1, Cors® < 1} of the real (r, s)-plane
is non-empty, Proposition 5.3 implies that there are inhomogeneity
configurations (characterized by B, p* and w) for which fixed-point
iterations converge for the modified SVIE (5.5) even though they
diverge for the classical SVIE (5.4). Applying factorizations provided
by (3.6), or by Lemma 2.1 in elasticity, to the frequency-domain
singular integral operator therefore extends the range of applicability
(in terms of frequency and scatterer characteristics) of fixed-point
computational iterative methods.

5.2. Scattering of elastic waves. The analysis of subsection 5.2
can be transposed in a straightforward way to the scattering of elastic
waves by inhomogeneities such that AC # 0 and Ap = 0 and embedded
in isotropic media, yielding the elastodynamic counterpart of Proposi-
tion 5.3. This relies mainly on proving the counterparts of Lemmas 5.1
and 5.2. The elastodynamic version of the analytical solution used in
subsection 6.3 for the proof of Lemma 5.1 can be obtained using similar
separation of variable methods and at the expense of heavier algebra.
The counterpart of Lemma 5.2, e.g., setting k = w+/p/u, follows us-
ing the method of subsection 6.3, since the asymptotic behavior at the
origin and at infinity of the elastodynamic fundamental tensor and its
derivatives is similar to that of the acoustic fundamental solution.

6. Auxiliary proofs.

6.1. Proof of satisfaction of VIE by FSTP solutions. Consider
a bounded domain X C R3, and let the partial differential operator
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P’ be defined (in the distributional sense) by P'w = —div (C": e[w])
for some elasticity tensor C'. Let w € H'(X;R?), and define the
distribution w as the extension of w by 0 in R?*\ X. For any test
function ¢ € D := C$°(R3;R3), one has

(Pw, ) = (w, (P —P)p) + (w,P'p)
= (w,(P=P)e)x + (w,P'¢)x

(with (-,-) and (-, -)x, respectively, denoting the distributional duality
product and the L?(X) scalar product), since P involves only even-
order derivatives. Next, using the definition of operators P’ and P,
applying the first and second Green identities [10, Thm. 4.4] for
the domain X to (w, (P — ’P/)Lp)X and (w, ’P/Lp)X, respectively, and
combining the resulting expressions, one finds

(Pw, ¢) = —(w, t[p])ox + (t'[w], p)ox
— (€' = €):efw]. elg])x + (P'w, 0)x
(where ¢ — t'[p] denotes the surface traction operator relative to

elastic properties C’, and having used the formal self-adjointness of P’
in the last term).

Equality (6.1) holds for arbitrarily chosen bounded domain X C R3
and admissible elasticity tensor C’. It is now applied (i) for X = B
with w = ug and P = P*, (ii) for X = Bg \ B with w = u}; and
P’ =P, and (iii) for X = Bg with w = u and P’ = P (where Bg is
the ball of radius R centered at the origin, bounded by the sphere Sg),
yielding the identities

(Pug,¢) = —(up, tle])r + (" [up], @)r
— (AC:elug], el¢])s + (P up, ¢)s,
(Pug,¢) = (uh, tle))r — (tuf], @)r
— (ug, tlel)sy + (tugl, ¢)sy
+ (Puf;, ¢ P)Bp\B — (Pu, )
= (u,t[p])s, — (tlu], 0)s, — (Pu, )b,

(the sign inversion for integrals over I' in the second equality being
caused by the unit normal to I' conventionally pointing inwards of
R? \ B). Summing those equalities, noting that (2.2a), (b) imply
(Pu,¢), — (P ug, )5 — (Puf, )55 = 0 for any test function,

(6.1)
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and invoking the transmission conditions (2.2d) gives

(6.2) (P(up+up —u),¢)
= —(AC:elup], ele])p — (vs, tel)sy + (Hvs], ¢)sy

(with vp := uf — u). Equality (6.2) holds for any test function
@ € D, so is an equality between two distributions, whose supports
are compact. One can then take the distributional convolution of both
members by the fundamental tensor G, which satisfies PG = dI, to
obtain

(6.3) (ith + iip — i) = —(AC:€[Gx up), elg])n
- (va t[G * (P])SR + (t[UB]v G QO)SR’
where the left-hand side results from G * Pw = PG * w = w, and

the right-hand side from (G * w, ¢) = (w, G % ), for any compactly
supported distribution w € D’ (R?; R3).

The remaining task is to evaluate each term in the right-hand side
of (6.3). We have
(6.4)

(AC:e[G xuz), ele))s

= _/]RS {/ VG(z —y):AC(y): Vug(y) dV(y)} p(z) dV (z)
B
= ~(WIAC:elug]l, ).
Moreover, the assumed decay conditions (2.2¢) for vp, together with

the boundedness of supp(y) and the known decay of x — G(x —y) for
y € supp(¢p), imply

(65)  lim (= (05, tG x P)s, + (tos]. Gr)s, ) =0

for any test function ¢ € D. Using (6.4) and (6.5) in (6.3), sending
R to infinity and noting that the resulting distributions are locally
summable functions, we obtain

up —u=WI[AC:e[ug]] in (R*\ B)UB.

Concluding, any solution up of the FSTP (2.2a)—(d) satisfies the
volume integrodifferential equation (2.8a) and the associated integral
representation formula (2.8c).
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6.2. Proof of Lemma 5.1. Let B = Bg := {z € R3, || < R}. We
establish the claimed lower bound of [|[VW,,|| for VW, : L?(Bg;R3) —
L?(Bgr;R3) by explicitly computing g := VW][h*] for some given
h* € L*(Br;R3). A simple choice is h* = ez in B, for which div h* = 0
in B. We then have g = Vv, where v is the radiating solution to the
transmission problem

(A+k*)v=0 in BUR*\B), vFt=v"
and

Onv|4 = Opv|- +e3-n  on 0B,

which is the counterpart of problem (3.4) for the Helmholtz equation.
This problem can easily be solved analytically, using spherical coordi-
nates, yielding

v(@) = k' E(kR)j1(k|z|) (z/|z])-es (x € Br),

with E(z) := —iz2h1(2) (jm and h,, denoting, respectively, the spheri-
cal Bessel and Hankel functions of first kind and order m, see e.g., [14,
Chapter 10]). The L? norm of Vv can then also be explicitly derived
(with the help of identity (2j7(2))" = 2zjo(2)j1(2) —3j%?(2) and classical
interrelations between the j,,), and we find

47
IVollZes, = 3kgl (kR)[f(kR),

with
f(2) = 1(z — cos zsin z — 4257 (2)).

Since [|h*||72(p,y = 47R?/3, we then have

170022 ()

IVWall? > S
g

= F(kR),
HL2(BR)

with

F(z) = z°|B(2)*f(2).
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The well known small- and large-argument asymptotic limiting forms
of hy and j1, see e.g., [14, Chapter 10], allow it to be shown that

1 1
im Fz) =g, Jim Fz) =3
Since F(z) > 0 for any z > 0, the above limits imply that z — F(z) has
a strictly positive minimum Fy;, (as |hi(2)] # 0 implies |E(2)]? > 0,
while f/(2) = 2j3(2) + (270(2) — 2j1(2))? > 0 and f(0) = 0 imply
f(z) > 0 for z # 0), and Lemma 5.1 holds true with C7 := v/Fiuin;
moreover, C is independent of w and R since F depends only on
the non-dimensional variable z. Numerical evidence indicates that
Fouin = F(0) = 1/9.

6.3. Proof of Lemma 5.2. The tensor-valued function r +— VV(wa
G)(r) is known to have a O(|r|™!) singularity at the origin and
to be C*°(R? \ {0}); therefore, (x,y) — VV(G, — G)(y — z) €
L?(Br x Br;R3*3). An upper bound of the norm of V(W,, — W) :
L?(Bg;R3) — L?(Bg;R3) is thus provided by the Hilbert-Schmidt
norm

IV W= W)lliis = / [VV(Go=G)(y—a)* dV () dV (y).
jwl<r Jyl<R

Now, using definition (5.3) of G,, and the homogeneity properties (2.4)
of G, it is straightforward to check that VV (G, — G)(r) = k3VV (g —
G)(kr), with the function g defined by g(z) = €!l*//(4r|z|). Setting
x =k~ 'Z and y = k~'¥ in the above double integral, we obtain

IV OV -W)lEs = [ /ﬁ IVV(9-G)(m-o)]* dV (z) dV ().
|[Z|<kR J|y|<kR

Moreover, since 7+ |r|V'V (g — G)(r) is bounded at the origin and at
infinity while being C°°(R3 \ {0}), there exists a constant E > 0 such
that

(6.6) |IVV (g —G)(r)| < Elr|~" forall » € R*\ {0},

with the best, i.e., smallest, value of 47FE found numerically to be
approximately given by 47 FE =~ 1.23154. We therefore have
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IV Wo=W)|lfis <E? / [y—x|"*dV (z)dV (g) = (kR)*E*D?,
[Z|<kR J|y|<kR

with
D2 = - -2 dV dV — 4 2
/|e|<1 /,,<1 €=l (&) dV(n) = 4m

(where the value 27 of D is found by analytical evaluation of the double
integral), implying that Lemma 5.2 holds true with Cy := 27FE =
0.61577.
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