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ABSTRACT. Time domain Galerkin boundary elements
provide an efficient tool for numerical solution of boundary
value problems for the homogeneous wave equation. We re-
view recent advances in their a posteriori error analysis and
the resulting adaptive mesh refinement procedures, as well
as basic algorithmic aspects of these methods. Numerical re-
sults for adaptive mesh refinements are discussed in two and
three dimensions, as are benchmark problems in a half-space
related to the transient emission of traffic noise.

1. Introduction. Efficient and accurate computational methods for
simulating sound emission in space and time are of interest from the
modeling of environmental noise to the acoustics of concert halls. This
survey reviews time domain Galerkin boundary element methods for
acoustic wave problems as studied in [16, 25, 26, 29, 42], with refer-
ences for related works. We specifically emphasize algorithmic aspects
and recent progress towards space-time adaptive mesh refinements as
well as applications to tire noise. Time domain boundary element meth-
ods prove to be stable and accurate in long-time computations and are
competitive with frequency domain methods for realistic problems from
the sound emission of tires.

Computations in time domain are of particular interest for problems
beyond the reach of frequency domain methods, such as the simulation
of transient dynamics and moving sound sources or nonlinear and
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dynamical contact problems. They can also be applied to obtain results
in frequency domain, for all frequencies in one computation, with the
help of the fast Fourier transform (FFT) to translate between time
and frequency. This approach proves competitive if a broad band of
frequencies is of interest.

Let d = 2, 3 and Ωi ⊂ Rd be a bounded polygonal domain. For
simplicity, we assume that the exterior domain Ωe = Rd \ Ωi is
connected and that the boundary Γ = ∂Ω is a Lipschitz manifold.
Our emphasis will be on case d = 3.

We aim to find a weak solution to an acoustic initial-boundary
problem for the wave equation in Ωe:

∂2u

∂t2
−∆u = 0 in R+ × Ωe,

∂u

∂n
− α

∂u

∂t
= g on R+ × Γ,(1.1)

u(0, x) =
∂u

∂t
(0, x) = 0 in Ωe.

Here, n denotes the inward unit normal vector to ∂Ωe, g lies in a
suitable Sobolev space, α ∈ L∞(Γ). Note that, in the case of an
incoming wave uinc scattered by Ωi, the right hand side is

g = −∂u
inc

∂n
+ α

∂uinc

∂t
.

In order for equation (1.1) to be well-posed, α should have a nonneg-
ative real part so that waves are not amplified at reflection. We also
consider the simpler Dirichlet problem on Γ, for which, instead of the
absorbing boundary condition, u|R+×Γ is given.

For the boundary element methods discussed here, the acoustic and
Dirichlet boundary problems are reformulated as time-dependent inte-
gral equations on R+ ×Γ. The integral equations are then numerically
approximated by a Galerkin method in space-time. We present from
[25, 26] an a priori and an a posteriori error analysis for methods
based on integral formulations of the first kind. Computational exper-
iments explore adaptive mesh refinements given in [26] and illustrate
the methods for real-world problems from the sound emission of tires.

For the sound emission of tires, the wave equation also needs to be
considered in a half space, Ωi ⊂ Rd+. One may consider Ωi as a solid
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tire, either in contact with the street (on ∂Ωi∩∂Rd+) or elevated above it

(∂Ωi∩∂Rd+ = ∅). We will concentrate on the latter case, as it simplifies

notation. The boundary of Ωe = Rd+\Ωi decomposes into the boundary

Γ = ∂Ωe ∩ ∂Ωi of the obstacle and the boundary Γ∞ = ∂Ωe ∩ ∂Rd+ of
the half-space.

In this case, the wave equation (1.1) is supplemented by acoustic
boundary conditions on Γ∞:

(1.2)
∂u

∂n
− α∞

∂u

∂t
= 0 on R+ × Γ∞,

where Reα∞ ≥ 0 [25].

1.1. Related work. Hyperbolic time domain boundary integral equa-
tions and their numerical approximation are attributed to Friedman
and Shaw [24], respectively, Cruse and Rizzo [18]. The first mod-
ern boundary element methods and the basic algorithmic approaches
were developed by Mansur [38], while mathematical analysis of time-
dependent Galerkin boundary element methods was initiated by Bam-
berger and Ha-Duong [11]. Relevant works on the numerical imple-
mentation of the resulting marching-in-on-time scheme include Terrasse
[21, 33, 49], which made the methods competitive for commercial ap-
plications.

As a main challenge in the stable implementation of time domain
integral methods, the fundamental solution to the wave equation is
singular, a Dirac distribution in odd dimensions supported on the light
cone. The discretization and accurate computation of entries in the
Galerkin matrix has been considered in detail by Maischak, Ostermann
and Stephan [37, 47] as well as Ostermann [42] for further algorithmic
details; see also [6] for an alternative approach.

The analysis initiated by Bamberger and Ha-Duong is based on fre-
quency domain. Using the Laplace transform to translate between
frequency and time domains, well-posedness and convergence of nu-
merical approximations can be analyzed for the infinite time interval
[0,∞). Recent work by Aimi et al. [2, 3, 5, 7] emphasizes formula-
tions directly related to the conserved energy of the wave equation on
a finite time interval [0, T ). At the expense of a slightly more involved
weak formulation, intrinsic coercivity directly implies the stability and
convergence of these methods.



78 H. GIMPERLEIN, M. MAISCHAK AND E.P. STEPHAN

A detailed exposition of the mathematical background of time do-
main integral equations and their discretizations is available in [45];
also, see [17, 32] for more concise introductions and [22] for recent
progress.

Recent interest has especially centered around fast methods and
adaptivity and interface problems, including coupling to finite elements
with possibly different time discretizations. In particular, we refer
to the work of Sylvand on fast multipole methods [48]. First steps
towards adaptive mesh refinements will be discussed in this article.
They concern space [26], time [44] and space-time in dimension 2 [29],
but the optimal algorithmic implementation of these methods is only
beginning to be understood.

For interface problems, Abboud, et al. [1] initiated the mathematical
analysis of FEM-BEM coupling in the time domain, coupling discontin-
uous finite elements to time domain integral equations. A subsequent
work by Banjai, Lubich and Sayas [13] provides a fundamental gen-
eral analysis of the coupling between different discretizations, includ-
ing convolution quadrature. Energy-based formulations of FEM-BEM
coupling have been investigated by Aimi and collaborators [4, 8], while
the authors study adaptivity in the context of fluid-structure interac-
tion [28]. Certain truly transient phenomena studied by engineers can-
not be simulated in the frequency domain because they involve nonlin-
ear contact and damage, see [34, 46] for time domain BEM approaches
to such problems. Their mathematical analysis remains a difficult chal-
lenge for future work.

In the engineering literature, fast methods are being developed and
studied, especially in the group of Michielssen, see e.g., [52]. We
finally mention the alternative Ansatz functions in time that have been
explored in [19, 20].

As an alternative to time domain boundary elements, the past few
years have seen rapid progress for convolution quadrature methods
[14, 15, 45]. Convolution quadrature exploits the convolution struc-
ture in time for integral equations to approximate them through the
frequency domain by an inverse Laplace transform. Given a frequency
domain solver, their implementation does not struggle with the care-
ful, accurate computation of distributional integrals like time domain
boundary elements do. However, for long-time simulations and certain
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nonlinear problems with constraints, such as dynamic contact and fric-
tion problems, the variational nature of Galerkin time domain methods
may be advantageous.

Apart from wave propagation problems in Rd, applications like the
sound emission and propagation above a street may naturally lead to
problems posed in a half-space [16]. Here, current work is motivated by
the exact fundamental solutions obtained by Ochmann [41], as they al-
low acoustic Robin boundary conditions on the infinite boundary of the
half-space. Further engineering applications involve wave propagation
in moving coordinate systems or with moving sources [9, 43].

2. Boundary integral formulations. Similar to elliptic problems,
the initial-boundary value problem (1.1) for the wave equation can be
formulated as an integral equation of either the first or second kind
on Γ.

We introduce the single layer potential in time domain as

Sφ(t, x) =

∫
R+×Γ

G(t− τ, x, y)φ(τ, y) dτ dsy,

where G is a fundamental solution to the wave equation. Specifically
in three dimensions, it is given by

Sφ(t, x) =
1

4π

∫
Γ

φ(t− |x− y|, y)
|x− y|

dsy.

We similarly define the double-layer potential as

Dφ(t, x) =

∫
R+×Γ

∂G

∂ny
(t− τ, x, y)φ(τ, y) dτ dsy.

For acoustic boundary conditions, we require the single-layer op-
erator V , its normal derivative K ′, the double-layer operator K and
hypersingular operator W for x ∈ Γ, t > 0:

V φ(t, x) = 2

∫
R+×Γ

G(t− τ, x, y)φ(τ, y) dτ dsy,

Kφ(t, x) = 2

∫
R+×Γ

∂G

∂ny
(t− τ, x, y)φ(τ, y) dτ dsy,

K ′φ(t, x) = 2

∫
R+×Γ

∂G

∂nx
(t− τ, x, y)φ(τ, y) dτ dsy,
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Wφ(t, x) = −2

∫
R+×Γ

∂2G

∂nx∂ny
(t− τ, x, y)φ(τ, y) dτ dsy.

For the absorbing half-space, the single-layer potential S and boundary
integral operators V,K,K ′,W are analogously defined in terms of an
appropriate Green’s function which satisfies the acoustic boundary
condition (1.2) on Γ∞. Explicit formulas have been obtained by
Ochmann [40, 41], in particular, for d = 3:

V φ(t, x) =
1

2π

∫
Γ

φ(t− |x− y|, y)
|x− y|

dsy

+
1

2π

∫
Γ

φ(t− |x− y′|, y)
|x− y′|

dsy −
2α∞

π

×
∫ ∞

0

∫
Γ

∂

∂s

[
H(t−s−|x−y′|)√

(t−s+α∞(x3+y3))2+(α2
∞−1)R2

]
φ(s, y) dsyds.

Here, y′ denotes the reflection of y = (y1, y2, y3) ∈ Γ on the street ∂R3
+:

y′ = (y1, y2,−y3). Furthermore, R2 = (x1 − y1)
2 + (x2 − y2)

2, and H
is the Heaviside function.

The boundary integral operators are considered between space-time

anisotropic Sobolev spaces Hs
σ(R+, H̃r(Γ)). In order to define them, if

∂Γ ̸= ∅, first extend Γ to a closed, orientable Lipschitz manifold Γ̃.

The definition of the usual Sobolev spaces of supported distributions
on Γ are:

H̃r(Γ) = {u ∈ Hr(Γ̃) : suppu ⊂ Γ}, r ∈ R.

Furthermore, Hr(Γ) is the quotient space Hr(Γ̃)/H̃r(Γ̃ \ Γ).

In order to define an explicit family of Sobolev norms, we introduce

a partition of unity αi subordinate to a covering of Γ̃ by open sets Bi.
For diffeomorphisms φi mapping each Bi into the unit cube ⊂ Rd, a
family of Sobolev norms is induced from Rd:

||u||r,ω,Γ̃ =

( p∑
i=1

∫
Rd

(|ω|2 + |ξ|2)r|F
{
(αiu) ◦ φ−1

i

}
(ξ)|2dξ

)1/2

.

The norms for different ω ∈ C \ {0} are equivalent, and F denotes the



ADAPTIVE BOUNDARY ELEMENT METHODS 81

Fourier transform. They induce norms on Hr(Γ):

||u||r,ω,Γ = inf
v∈H̃r(Γ̃\Γ)

||u+ v||r,ω,Γ̃,

and on H̃r(Γ):
||u||r,ω,Γ,∗ = ||e+u||r,ω,Γ̃.

e+ extends distribution u by 0 from Γ to Γ̃. It is stronger than ||u||r,ω,Γ
whenever r ∈ 1/2 + Z.

We now define a class of space-time anisotropic Sobolev spaces:

Definition 2.1. For s, r ∈ R, define

Hs
σ(R+,Hr(Γ))

= {u ∈ D′
+(H

r(Γ)) : e−σtu ∈ S ′
+(H

r(Γ)) and ||u||s,r,Γ <∞},

Hs
σ(R+, H̃r(Γ))

= {u ∈ D′
+(H̃

r(Γ)) : e−σtu ∈ S ′
+(H̃

r(Γ)) and ||u||s,r,Γ,∗ <∞}.

D′
+(E), respectively, S ′

+(E), denotes the spaces of distributions, re-
spectively, tempered distributions, on R with support in [0,∞), taking

values in E = Hr(Γ), H̃r(Γ). The relevant norms are given by:

∥u∥s,r,Γ =

(∫ +∞+iσ

−∞+iσ

|ω|2s∥û(ω)∥2r,ω,Γdω
)1/2

,

∥u∥s,r,Γ,∗ =

(∫ +∞+iσ

−∞+iσ

|ω|2s∥û(ω)∥2r,ω,Γ,∗dω
)1/2

.

For |r| ≤ 1, the spaces are independent of the choice of αi and φi,
see [25, 32] for a more detailed discussion.

The representation formula uses S and D to express a solution to
the wave equation in terms of its Dirichlet and Neumann data on Γ:

Theorem 2.2. Let u ∈ L2(R+, H1(Ω))∩H1
0 (R+, L2(Ω)) be the solution

of equation (1.1) for a Lipschitz boundary Γ. Then:

u(t, x) = Sφ(t, x)−Dp(t, x),
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where φ = [u] is the jump of u across Γ and p = [∂u/∂n] is the jump
of the normal flux.

As shown in [33] by reformulation to an interior problem, the initial
boundary value problem (1.1) is equivalent to a system of integral
equations of the first kind on Γ,

(2.1)

{
K ′p−Wφ+ α(∂φ/∂t) = F

p+ α(V ∂tp+K∂tφ) = G.

Here, φ = [u] and p = [∂u/∂n] as above, and, for an incoming wave
uinc scattered by Ωi, we have

F = −2
∂uinc

∂n
and G = −2α

∂uinc

∂t
.

If α−1 ∈ L∞(Γ), we may pair these equations with test functions ∂tψ,
respectively, q/α, to obtain the space-time variational formulation:

Find Φ = (φ, p) ∈ H1
σ(R+, H̃1/2(Γ))×H1

σ(R+, L2(Γ)) such that, for

all Ψ = (ψ, q) ∈ H1
σ(R+, H̃1/2(Γ))×H1

σ(R+, L2(Γ)):

(2.2) a(Φ,Ψ) = l(Ψ).

Here,

(2.3) l(Ψ) =

∫ ∞

0

∫
Γ

F∂tψ dsx dσt+

∫ ∞

0

∫
Γ

Gq

α
dsx dσt,

and a(Φ,Ψ) is given by

(2.4)

∫ ∞

0

∫
Γ

(
α(∂tφ)(∂tψ) +

1

α
pq +K ′p(∂tψ)

−Wφ(∂tψ) + V (∂tp)q +K(∂tφ)q
)
dsx dσt,

for dσt = e−2σtdt, σ > 0. The complementary Neumann problem,
α = 0, is discussed in [16, 27].

A single-layer ansatz u = 2Sϕ leads to the integral formulation
V ∂tϕ = ∂tf for the Dirichlet problem. Its variational formulation reads:

Find ϕ ∈ H1
σ(R+, H̃−1/2(Γ)) such that

(2.5) b(ϕ, ψ) = ⟨∂tf, ψ⟩, for all ψ ∈ H1
σ(R+, H̃−1/2(Γ)),



ADAPTIVE BOUNDARY ELEMENT METHODS 83

where

b(ϕ, ψ) =

∫ ∞

0

∫
Γ

(V ∂tϕ)ψ dsx dσt,

⟨∂tf, ψ⟩ =
∫ ∞

0

∫
Γ

(∂tf)ψ dsx dσt.

Adapting fundamental observations in [11, 32] to our situation, the
bilinear forms a(Φ,Ψ) and b(ϕ, ψ) are continuous and, in a weak sense,
coercive. They are related to the physical energy of the system. As
a consequence, both the acoustic and Dirichlet problems admit unique
solutions for sufficiently smooth data, see [25] for details.

In addition to the variational formulations as integral equations of
the first kind, for computations, an integral equation of the second
kind will prove useful. We will only state the Neumann case, α = 0.
Here a single-layer ansatz u = Sφ leads to the integral equation
(−I +K ′)φ = 2g and the weak formulation:

Find φ ∈ H1/2σ([0,∞), H̃−1/2(Γ)) such that, for all test functions

ψ ∈ H
1/2
σ ([0,∞), H−1/2(Γ)), the following holds:∫ ∞

0

∫
Γ

(−I +K ′)φψ dsx dσt = 2

∫ ∞

0

∫
Γ

g ψ dsx dσt.(2.6)

As it is equivalent to the original initial boundary value problem, this
formulation also admits a unique solution for smooth right hand sides.
However, while the integral equations of the first kind were related to
the energy and coercive, this may not be the case for equation (2.6).

As written, the above integral equations (2.2), (2.5) and (2.6) for-
mally hold both in the whole space Rd and the half space Rd+, with layer
potentials defined in terms of the Green’s function for the appropriate
domain as above. The choice of the Green’s function assures that, even
for the absorbing half-space, we obtain an equation on Γ, not on the
unbounded ∂Ωe.

3. Discretization. If Γ is not polygonal, we approximate it by a
piecewise polygonal curve, respectively, surface, and again write Γ for
the approximation. For simplicity, when d = 3, we will use here a
surface composed of N triangular facets Γi such that Γ = ∪Ni=1Γi.
When d = 2, we assume Γ = ∪Ni=1Γi is comprised of line segments
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Γi. In each case, the elements Γi are closed with int (Γi) ̸= ∅, and for
distinct Γi,Γj ⊂ Γ, the intersection int (Γi) ∩ int (Γj) = ∅.

For the time discretization, we consider a uniform decomposition of
the time interval [0,∞) into subintervals In = [tn−1, tn) with time step
|In| = ∆t, such that tn = n∆t, n = 0, 1, . . . .

We choose a basis φp1, . . . , φ
p
Ns

of the space V ph of piecewise polyno-
mial functions of degree p in space (continuous and vanishing at ∂Γ if
p ≥ 1) and a basis β1,q, . . . , βNt,q of the space V q∆t of piecewise polyno-
mial functions of degree q in time (continuous and vanishing at t = 0
if q ≥ 1).

Let TS = {T1, . . . , TNs} be the spatial mesh for Γ and

TT = {[0, t1), [t1, t2), . . . , [tNt−1, T )}

the time mesh for a finite subinterval [0, T ).

We consider the tensor product of the approximation spaces in space
and time, V ph and V q∆t, associated to the space-time mesh TS,T =
TS × TT , and we write

V p,qh,∆t = V ph ⊗ V q∆t.

These approximation spaces lead to Galerkin formulations for the
acoustic and Dirichlet problems (2.2), (2.5) and (2.6), e.g., the Galerkin
formulation of (2.5) reads:

Find ϕh,∆t ∈ V p,qh,∆t such that

(3.1) b(ϕh,∆t, ψh,∆t) = ⟨(∂tf)h,∆t, ψh,∆t⟩ for all ψh,∆t ∈ V p,qh,∆t.

In [25, 39], we discuss a priori error estimates and the convergence of
Galerkin approximations for (2.2) and (2.5) in a half space. Analogous
results for the whole space and non-polygonal Γ date back to [11], in
slightly different Sobolev norms.

The basic estimate for the Dirichlet problem is:

Theorem 3.1 ([25]). For solutions ϕ ∈ H1
σ(R+, H̃−1/2(Γ)) of (2.5)

and ϕh,∆t ∈ V p,qh,∆t of equation (3.1) the next a priori estimate holds:

∥ϕ− ϕh,∆t∥0,−1/2,Γ,∗ . ||(∂tf)h,∆t − ∂tf ||0,1/2,Γ
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+ inf
ψh,∆t∈V p,q

h,∆t

{(
1 +

1

∆t

)
∥ϕ− ψh,∆t||0,−1/2,Γ

+
1

∆t
∥∂tϕ− ∂tψh,∆t||0,−1/2,Γ

}
.

If, in addition, ϕ ∈ Hs
σ(R+,Hm(Γ)), then

∥ϕ− ϕh,∆t∥0,−1/2,Γ,∗ . ||(∂tf)h,∆t − ∂tf ||0,1/2,Γ

+

(
(hα1 +∆tβ1)

(
1 +

1

∆t

)
+ (hα2 +∆tβ2)

1

∆t

)
||ϕ||s,m,Γ,

where

α1 = m+min

{
1

2
,− m

2(m+ s)

}
,

β1 = m+ s+min

{
1

2
,
m+ s

2m

}
,

α2 = m+min

{
1

2
,− m

2(m+ s− 1)

}
,

β2 = m+ s+min

{
− 1

2
,−1 +

m+ s− 1

2m

}
,

and m ≥ −1/2, s ≥ 0.

For the acoustic problem, we introduce the norm

|||p, φ||| =
(
||p||20,0,Γ + ||φ||20,1/2,Γ,∗ + ||∂tφ||20,0,Γ

)1/2

.

Theorem 3.2 ([25]). Assume, for simplicity, that α−1 ∈ L∞(Γ). For
the solutions

Φ = (p, φ) ∈ H1
σ(R+, H̃1/2(Γ))×H1

σ(R+, L2(Γ))

of equation (2.2) and

Φh,∆t = (ph,∆t, φh,∆t) ∈ V p̃,q̃h,∆t × V p,qh,∆t
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of its discretization, the a priori estimate holds:

|||p− ph,∆t, φ− φh,∆t|||

. ||Fh,∆t − F ||0,0,Γ + ||Gh,∆t −G||0,0,Γ +max

(
1

∆t
,

1√
h

)
× inf

(qh,∆t,ψh,∆t)∈V p̃,q̃
h,∆t×V

p,q
h,∆t

(
||p− qh,∆t||1,0,Γ + ||φ− ψh,∆t||1,1/2,Γ

)
.

As for the Dirichlet problem, better estimates are obtained under
smoothness assumptions, φ ∈ Hs1

σ (R+, Hm1(Γ)), p ∈ Hs2
σ (R+,Hm2(Γ)),

[25].

We refer to [27] for an analysis of the Neumann problem. While
computationally convenient, the analysis of numerical methods based
on equation (2.6) remains open. In particular, schemes based on
equation (2.6) are not known to be stable, or to admit unique discrete
solutions.

4. A posteriori error estimates. Computable error indicators
are a key ingredient to design adaptive mesh refinements. For
time-dependent boundary element methods such efficient and reli-
able estimates of residual type have been obtained in [26], see also
[29, 30, 31, 44] for alternative error indicators and relevant estimates
for the boundary integral operators. In the case of the Dirichlet prob-
lem, we obtain [26]:

Theorem 4.1 ([26]). Let ϕ, ϕh,∆t ∈ H1
0 ([0, T ],H

−1/2(Γ)) be the solu-
tions to equation (2.5), respectively, equation (3.1). Assume that

R = ḟ − V ϕ̇h,∆t ∈ H0([0, T ],H1(Γ)).

Then

∥ϕ− ϕh,∆t∥20,−1/2,Γ . ∥R∥0,1,Γ
(
∆t∥∂tR∥0,0,Γ + ∥h · ∇R∥0,0,Γ

)
. max{∆t, h}(∥∂tR∥L2([0,T ],L2(Γ))

+ ∥∇R∥L2([0,T ],L2(Γ)))
2.

Remark 4.2. The estimate generalizes to arbitrary subspaces V in
place of V p,qh,∆t, in particular, discretizations with smooth ansatz func-

tions in time are of interest [44].
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a) As the single-layer potential maps H1([0, T ], L2(Γ)) continuously

to H0([0, T ], H1(Γ)), V ϕ̇h,∆t belongs to H
0([0, T ],H1(Γ)), if, for exam-

ple, ϕh,∆t ∈ H2([0, T ], L2(Γ)). The a posteriori estimate is therefore
only valid for sufficiently smooth discretizations, e.g., constructed from
C1-continuous splines.

b) In practice, we will use here

∆t∥∂tR∥0,0,Γ + ∥h · ∇R∥0,0,Γ

as an error indicator.

For the acoustic problem, a simple error estimate reads as follows:

Theorem 4.3 ([26]). Let

(φ, p), (φh,∆t, ph,∆t) ∈ H1
0 ([0, T ], H

1/2(Γ))×H1([0, T ], L2(Γ))

be the solutions to equation (2.2) and its discretized variant, and assume
that

R1 = F − αφ̇h,∆t + 2K ′ph,∆t − 2Wφh,∆t ∈ L2([0, T ], L2(Γ)),

R2 = G+ α−1ph,∆t + 2V ṗh,∆t + 2Kφ̇h,∆t ∈ L2([0, T ], L2(Γ)).

Then
|||p− ph,∆t, φ− φh,∆t||| . ∥R1∥0,0,Γ + ∥R2∥0,0,Γ.

5. Algorithmic considerations. For piecewise constant test func-
tions the Galerkin discretization in space and time leads to a block-
lower-triangular system of equations, which can be solved by blockwise
forward substitution.

For example, the Dirichlet problem yields an algebraic system of the
form

n∑
m=1

V n−mbm = 2(fn−1 − fn)

in time step n = 1, 2, 3, . . . . It can be solved by forward substitution,
giving rise to the marching in on time (MOT) scheme

V 0bn = 2(fn−1 − fn)−
n−1∑
m=1

V n−mbm.
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Figure 1. Sparsity pattern of the Galerkin matrix V 0 for a uniform
discretization of the sphere [42].

The Galerkin solution of equation (3.1) is then given by:

φ̇h,∆t(x, t) =

Nt∑
m=1

Ns∑
i=1

bmi β
m,0(t)φpi (x).

The above fully discrete systems involve the computation of a series of
matrices, that (if α∞ = 0) are sparsely populated, because the Dirac-
delta fundamental solution restricts the number of interacting elements
per time step. Figure 1 shows the distribution of nonzero matrix entries
for a typical matrix V 0, when Γ is an approximation of S2 by 5120
triangles. Note that the computation of each matrix depends only
upon the time difference. Furthermore, for bounded surfaces Γ, the
matrices V n−m vanish whenever the time difference l := n−m satisfies

l >

[
diamΓ

∆t

]
,

i.e., the light cone has traveled through the entire surface Γ.
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5.1. An hp-composite quadrature of matrix elements. The
most time consuming part in the MOT algorithm is the matrix compu-
tation although the resulting matrices are sparse in each time step. An
efficient hp composite Gauss-quadrature allows for computation of the
entries in V l, and similarly for the other layer operators [37, 42, 47].

Recall the form of the matrix entries of V l in R3 as an example:

1

2π

∫∫∫
R+×Γ×Γ

φpi (y)∂tβ
n,q(t− |x− y|)
|x− y|

φpj (x)β
m,q(t) dsy dsx dσt.

The time integrals are first evaluated analytically and result in an
integration domain

E = {(x, y) ∈ Γ× Γ : rmin ≤ |x− y| ≤ rmax}

of the form of a light cone, rmin and rmax, depending upon tm and tn.
It remains to evaluate terms such as

(5.1) Gνij =

∫∫
E

kν(x− y)φpi (y)φ
p
j (x) dsy dsx,

where kν(x − y) = |x − y|ν denotes a weakly singular kernel function.
Our numerical quadrature separates the outer spatial integration from
the one which is singular inner. Define the domain of influence of
x ∈ R3 by

E(x) := Brmax(x) \Brmin(x) =
{
y ∈ R3 : rmin ≤ |x− y| ≤ rmax

}
,

as in Figure 2 (b). Figure 2 (a) similarly sketches the domain of
influence of a triangle T ,

E(T ) :=
∪
x∈T

E(x) = {y ∈ R3 : rmin ≤ |x− y| ≤ rmax, x ∈ T}.

Defining E(Tj , Ti) := E ∩ (Tj × Ti), we rewrite equation (5.1) as

Gνij =
∑

Ti′⊂suppφi

Tj′⊂suppφj

∫∫
E(Tj′ ,Ti′ )

kν(x− y)φpi (y)φ
p
j (x) dsy dsx

=
∑

Ti′⊂suppφi

Tj′⊂suppφj

∫
Tj′∩E(Ti′ )

φpj (x)P
p
i,i′(x) dsx,
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(a) Outer integral: Domain of influence

of triangle T̂ intersected with triangle T .

T

E(T )
E(T ) ∩ T̂

(b) Inner integral: Domain of influence

E(x) of point x ∈ E(T ) ∩ T̂ .

rmin rmax

E(x) ∩ T
x

Figure 2. Domains of influence and the illumination of test and trial
elements T̂ and T during the evaluation of the inner and outer integral.

with a retarded potential Pi,i′ given by

Pi,i′(x) :=

∫
E(x)∩Ti′

kν(x− y)φpi (y) dsy.

To simplify notation, we explain the quadrature for a simplified

integral. Given triangles T and T̂ and basis functions φ and φ̂ defined

on T and T̂ , respectively, a typical entry in the Galerkin matrix reads

(5.2)

∫
E(T )∩T̂

Pφ(x)φ̂(x) dsx, Pφ(x) :=

∫
E(x)∩T

kν(x− y)φ(y) dsy.

We evaluate the outer and inner integrals step-by-step, decomposing
the integration domain and using a grading strategy for the different
singularities. It is crucial to take into account the cut-off behavior due
to the different domains of influence, and below, we recall the rigorous
error analysis.



ADAPTIVE BOUNDARY ELEMENT METHODS 91

(a) Decomposition of E(x) ∩ T
w.r.t. x′ into nd = 5 subelements.

x′
x

x′

d

y

E(x) ∩ T

(b) Projection of x onto the triangle
plane.

Figure 3.

5.1.1. Composite inner quadrature. In order to calculate Pφ as
defined in equation (5.2), we first seek a parametric representation
of E(x) ∩ T . Let x′ denote the orthogonal projection of x onto the
triangular plane ET , and set d := |x − x′|, cf., Figure 3 (b). With
r′min /max := (r2min /max − d2)1/2, we obtain

E(x) ∩ ET = (Br′min
(x′) \Br′max

(x′)) ∩ ET
= {y ∈ ET : r′min ≤ |x′ − y| ≤ r′max} ,

E(x) ∩ T = (Br′min
(x′) \Br′max

(x′)) ∩ T.

We introduce polar coordinates (r, θ) around x′ and decompose

E(x) ∩ T =

nd∪
l=1

Dl,

Dl := {(r, θ) : θ ∈ (θl, θl+1) and r ∈ (r1,l(θ), r2,l(θ))} ,

where it can be shown that nd ≤ 12 and

r1,l :=

{
r′min e ∈ Br′min(x)

re(θ) else,
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D̂1 D̂2 D̂3 D̂4

Figure 4. Generic integration domains.

r2,l :=

{
r′max e /∈ Br′max(x)

re(θ) else.

Here, re(θ) is the parametrization of the intersected triangle edge e in
polar coordinates with respect to x′. In terms of the normal vector n
of e and the end point v of e,

re(θ) =
v · n

n1 cos θ + n2 sin θ
.

Four generic cases of decomposition types are sketched in Figure 4:

D̂1 := {(r, θ) : θ ∈ (θ1, θ2) and r ∈ (rmin, rmax)} ,

D̂2 := {(r, θ) : θ ∈ (θ1, θ2) and r ∈ (re1(θ), rmax)} ,

D̂3 := {(r, θ) : θ ∈ (θ1, θ2) and r ∈ (rmin, re2(θ))} ,

D̂4 := {(r, θ) : θ ∈ (θ1, θ2) and r ∈ (re1(θ), re2(θ))} .

From equation (5.2), we obtain

Pφ(x) =

nd∑
l=1

∫
D̂l

(d2 + r2)ν/2φ(r, θ)r dr dθ,

where d > 0 and φ is sufficiently regular. For each of the domains D̂l,
we can write the integral as

(5.3)
I(D̂l)f :=

∫ θ2

θ1

∫ r2(θ)

r1(θ)

f(r, θ) dr dθ,

f(r, θ) := (d2 + r2)ν/2φ(r, θ)r.
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We introduce our quadrature method by

Q[a,b]
n f :=

n∑
i=1

wif(xi)

to denote the Gauß-Legendre quadrature rule with n quadrature points
for evaluating

b∫
a

f dx.

Given a subdivision of [a, b] into m subintervals Ij , a variable order
composite Gauß rule with degree vector n = (n1, . . . , nm) is defined by

Qn,m,σf :=

m∑
j=1

QIjnj
f.

We use a geometric subdivision of [a, b] with m levels and grading
parameter σ ∈ (0, 1):

[a, b] =
m∪
j=1

Ij ,

where, for j = 1, . . . ,m, we let

Ij := [xj−1, xj ],

x0 := a,

xj := a+ (b− a)σm−j .

For nr = (n
(r)
1 , . . . , n

(r)
m ), mr ≥ 1 and σr ∈ (0, 1], the integral (5.3) is

then computed as

QD̂lf := Q[θ1,θ2]
nθ

(Q[r1(θ),r2(θ)]
nr,mr,σr

f).

5.1.2. Error analysis for the evaluation of equation (5.3). A
detailed analysis [42] shows that the integrand belongs to the countably
normed, weighted space B0

β(T ) of Babuska [10].

Definition 5.1 (Countably normed space Blβ(T )). We say u ∈ Blβ(T )

with respect to a weight function Φβ,α,l, if u ∈ H l−1(T ), and if

∥Φβ,α,lDαu∥L2(Ω) ≤ Cd|α|−l(|α| − l)!
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for |α| = l, l + 1, . . . . Here, the constants C > 0 and d ≥ 1 are
independent of |α|.

If the number of angular quadrature points, nθ, is chosen propor-
tional to mr, we obtain the next theorem on the accuracy of the quad-
rature in our TDBEM:

Theorem 5.2 ([42]). Set a function f ∈ B0
β(T ) with a weight function

Φβ,α,0(r) = r|α|+β, and let max(1,
√
rmax)(θ2 − θ1) < eCθ. Then the

following holds for D̂l:

|I(D̂l)f −Q(D̂l)f | ≤ Ce−b
3√
N

for l = 1, . . . , 4. Here, N denotes the total number of quadrature points,
and b and C are positive constants independent of N , dependent on the
grading factor σr, the number of levels mr, and on f . Also,

Cθ :=



1 for D̂1,

min
θ∈(θ1,θ2)

| cos(θ − θ∗1)| for D̂2,

min
θ∈(θ1,θ2)

| cos(θ − θ∗2)| for D̂3,

min
θ∈(θ1,θ2)

(| cos(θ − θ∗1)|, | cos(θ − θ∗2)|) for D̂4,

and θ∗i denotes the angle corresponding to the edge normal ni, i = 1, 2.

6. Numerical experiments for tires. The numerical experiments
in this section will use the discretization of the Neumann problem,
equation (2.6) in R3

+, with α∞ = 0. It illustrates selected results from
[16] for ansatz and test functions which are piecewise constant in space
and time. We use σ = 0 for the computations.

6.1. Validation on a problem with a known solution. Consider-
ing a wave problem with a known solution p in the exterior of a unit ball
in R3

+ allows us to analyze the convergence properties of our method.
For some fixed 0 < R < 1, one obtains a radial pulse which solves
equation (1.1) outside a unit sphere at a distance h above the street:

u(t, x) =
r(h)− t

2r(h)

[
1 + cos

(
π(r(h)− t)

R

)]
H(R− |r(h)− t|)
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+
r(−h)− t

2r(−h)

[
1 + cos

(
π(r(−h)− t)

R

)]
H(R− |r(−h)− t|).

Here,H(t) denotes the Heaviside function and r(h) = ∥x1, x2, x3−h−1∥
and r(−h) = ∥x1, x2, x3+h+1∥. By a modification of [44] to the half-
space, the density for the single layer potential ansatz is

(6.1) φ(t, x) = −2

⌊t/2⌋∑
k=0

f1(t− 2k) + 2

⌊t/2⌋∑
k=0

∫ t

2k

e−(s−2k)f1(t− s) ds,

where

f1(t) =

[
t

2r(h)2

(
1 + cos

(
π(r(h)− t)

R

))
− π

R

r(h)− t

2r(h)
sin

(
π(r(h)− t)

R

)]
H(R− |r(h)− t|).

Figure 4 shows the relative discretization errors

∥φ∆t,h − φ∥L2([0,10];L2(Γ))

∥φ∥L2([0,10];L2(Γ))

and
∥u∆t,h(t, x0)− u(t, x0)∥L2([0,10])

∥u(t, x0)∥L2([0,10])
,

with φ∆t,h the TD-BEM Galerkin approximation of φ and p∆t,h =
Sφ∆t,h on uniform meshes. Here, x0 = (0, 0, 2.8)⊤ for h = 0.63,
R = 0.9. The figure shows a convergence rate of 0.4 for the density,
respectively, 0.65 for the sound pressure, with respect to the degrees
of freedom (dof), i.e., the product of the number of time steps and the
number of triangles. The ratio of mesh size h and time step size ∆t is
∆t/h ≈ 0.38.

6.2. Vibrating tire. Cyclic deformations of a moving tire enter the
computations through the right hand side f in equation (2.6). Physi-
cally, the right hand side f is the result of the tire vibrations

f = −2ρ
∂2vn
∂t2

.

Here, vn describes the displacement of the tire in the outer normal
direction and ρ the density of air. In [16], f is determined from
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Figure 5. Relative L2-errors of density φ∆t,h and pressure p∆t,h [16].

the particle velocity ∂u/∂τ on Γ, as supplied by the work group of
W. Kropp at the Chalmers University in Gothenburg at the LeiStra3
cooperation. These particle velocities are given for 513 equidistant
frequency points between 0 Hz and 1809.4 Hz in each of the 6,027
nodes of the triangulation in Figure 6.

Figure 7 displays the A-weighted sound pressure level of the radiated
acoustic wave. The simulation parameters are ∆t = 0.01 averaged over
321 points in the hemisphere

{x ∈ R3
+ : ∥x∥2 = 1}

[16]. These curves are obtained by a fast Fourier transform (FFT)
of the calculated sound pressure level for times t ≥ t0, with t0 =
0, 0.005, 0.02. The blue reference curve [51] is calculated by a Burton-
Miller stabilized BEM collocation method for the Helmholtz equation
with piecewise constant trial functions.

Further computational results in [16] for truck tires and the sound
amplification in the horn geometry underline that the methods pre-
sented in this paper are competitive for industrial scale transient and
broad-band frequency domain computations.

7. Adaptive mesh refinements. Fully space-time adaptive meth-
ods were explored by Gläfke [29] for two-dimensional problems. He
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(a) (b)

Figure 6. Discretization of car, respectively, truck, tires used for compu-
tations [16].
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Figure 7. Comparison of the A-weighted sound pressure level averaged
over 321 points and frequency bands for TDBEM and frequency domain
BEM [16].

does not treat the temporal domain separately from the spatial do-
main but refines the mesh of the space-time cylinder. More precisely,
the rectangular space-time elements are refined into four equally-sized
rectangles. The flexibility of this approach comes with an additional
computational cost: the MOT scheme no longer applies and one must
store and solve the full space-time system in one step.
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Error indicators η, such as those from a posteriori error estimates
derived in Theorem 4 of Section 4, lead to an adaptive algorithm, based
on the four steps:

SOLVE −→ ESTIMATE −→ MARK −→ REFINE.

Space-time adaptive algorithm in two dimensions [29]:
Input: Mesh T = (TS×TT )0, refinement parameter θ ∈ (0, 1), tolerance
ϵ > 0, data f .

(1) Solve V φ̇h,∆t = ḟ on T .
(2) Compute the error indicators η(�) in each space-time rectangle.
(3) Stop if

∑
i η

2(�i) < ϵ2.
(4) Mark all � ∈ T which satisfy refinement criterion based on θ.
(5) Refine each marked � into four new rectangles to obtain a new

mesh T .
(6) Go to 1.

Output: Approximation of φ̇.

In the following experiment, Gläfke uses a box pulse of the form

H(x1 + x2 + 2αt+ λ)−H(x1 + x2 + 2αt)

as the incident signal of the scattering problem with scatterer [1, 1]2.

Here, λ = 0.05 and α = 1/
√
2. The box pulse is non-smooth, which

appears to have an affect on the regularity of the solution of the
problem. Convergence order for the adaptive version turns out to
be genuinely higher than that of the uniform version, as well as for
large degrees of freedom. The meshes that result from the adaptive
algorithm, as shown in Figure 8, are heavily refined along the part of
the surface of the space-time cylinder where the box pulse moves along
the scatterer.

Space-time adaptive methods in three dimension, on the other hand,
are still in their infancy. As a test case, in [26] we concentrate on time-
independent geometric singularities of the solution, e.g., in the horn
geometry between the tire and the street. In this case we expect to
have time-independent meshes, refined near the singularities, which do
not require an update of the Galerkin matrices in every time step.
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Figure 8. Adaptive mesh refinements for a box pulse in 2d [29].

From the discrete solution φ̇h,∆t of the Dirichlet problem equa-

tion (3.1) and ḟ we determine in every triangle △ the time integrated
local error indicator

η(△)2 =

∫ T

0

∫
△
[h∇Γ(ḟ − V φ̇h,∆t)]

2,

where the time integral is approximated by a Riemann sum.

The error indicators η(△) lead to the next algorithm.

Adaptive algorithm [26]:
Input: Mesh T = T0, refinement parameter θ ∈ (0, 1), tolerance ϵ > 0,
data f .

(1) Solve V φ̇h,∆t = ḟ on T .
(2) Compute the error indicators η(△) in each triangle △ ∈ T .
(3) Find ηmax = max△ η(△).
(4) Stop if

∑
i η

2(△i) < ϵ2.
(5) Mark all △ ∈ T with η(△i) > θηmax.
(6) Refine each marked triangle into four new triangles to obtain a new

mesh T
(and project the new nodes onto the sphere). Choose ∆t such that
∆t/∆x ≤ 1 for all triangles.

(7) Go to 1.

Output: Approximation of φ̇.

According to the a posteriori estimates derived in [26], the error
between the approximate and the actual solution to the problem is
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bounded by a multiple of ϵ, up to quantities involving time-derivatives
of the residual ḟ − V φ̇h,∆t.

We consider the Dirichlet problem for the wave equation in the
exterior of the three-dimensional (discretised) unit ball with a singular

right hand side. We choose the right-hand side as ḟ(t, x) = 2 if

x1 > 0, and 0 otherwise. The function ḟ is a toy example for a
time-independent singularity, similar to the singular horn-like geometry
where a tire meets a street, see [16]. We expect adaptive mesh

refinements to be concentrated around the line of discontinuity of ḟ ,
given by x1 = 0. For simplicity, we neglect the error of the surface
approximation.

The numerical experiment depicted in Figure 9 shows the mesh gen-
erated by the above adaptive algorithm after three mesh refinements,
beginning with an initial icosahedral triangulation of the sphere with
80 nodes. Most refinements are near the discontinuity of f , as expected.

The above experiment presents only a first step towards space-time
adaptive TDBEM, for the case of the geometric singularities relevant
to sound radiation of tires. The optimal use of space-time adaptivity
and its application to the acoustic boundary conditions remain to be
explored.

8. Outlook. Engineering problems, such as sound emission of car
and truck tires or scattering problems, motivate the analysis of coupled
finite and boundary elements. The first work in this direction investi-
gates the coupling of different time and spatial discretizations for scalar
wave equations [1, 4, 8, 13]. Waves scattered by an immersed elastic
object in a fluid provide a key example of practical interest. A basic
well-posedness theory for the time-dependent problem can be found
in [23, 36]. The a priori and a posteriori analysis of numerical dis-
cretizations based on Galerkin TDBEM [28], respectively, convolution
quadrature [35], has recently been considered.

For large-scale engineering computations, the efficient assembly of
the space-time Galerkin matrix proves crucial. Fast multipole methods
based on perturbative expansions of the Green’s function in the far
field are being developed, in particular, by Sylvand [48]; also see
[12] for related work on the case of the Helmholtz-based convolution
quadrature.
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Figure 9. The first three adaptively generated meshes for V φ̇ = ḟ starting
from an icosahedral triangulation with 80 nodes, θ = 0.9 [26].
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In this article, we have provided a survey of recent advances in time
domain boundary element methods for the wave equation and appli-
cations to engineering problems. This approach proves efficient and
highly accurate for scattering and emission problems, and we demon-
strate its relevance to applications in traffic noise. The a posteriori
estimates presented in this survey lead to fast space-time adaptive
mesh refinements. They encompass a first step towards high order
hp-adaptive methods in space and time.
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