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ABSTRACT. We demonstrate the existence of at least
one positive solution to the perturbed Hammerstein integral
equation

y(t) = γ1(t)H1

(
φ1(y)

)
+ γ2(t)H2

(
φ2(y)

)
+λ

∫ 1

0
G(t, s)f

(
s, y(s)

)
ds,

where certain asymptotic growth properties are imposed on
the functions f , H1 and H2. Moreover, the functionals
φ1 and φ2 are realizable as Stieltjes integrals with signed
measures, which means that the nonlocal elements in the
Hammerstein equation are possibly of a very general, sign-
changing form. We focus here on the case where the kernel
(t, s) 7→ G(t, s) is allowed to change sign and demonstrate
the existence of at least one positive solution to the integral
equation. As applications, we demonstrate that, by choosing
γ1 and γ2 in particular ways, we obtain positive solutions to
boundary value problems, both in the ODEs and elliptic
PDEs setting, even when the Green’s function is sign-
changing, and, moreover, we are able to localize the range
of admissible values of the parameter λ. Finally, we also
provide a result that for each λ > 0 yields the existence of at
least one positive solution.

1. Introduction. In this paper, we consider the existence of at least
one positive solution of the perturbed Hammerstein integral equation
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(1.1)

y(t) = γ1(t)H1

(
φ1(y)

)
+ γ2(t)H2

(
φ2(y)

)
+ λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds.

In equation (1.1), the functions γi : [0, 1] → [0,+∞), for i = 1, 2, and
Hi : [0,+∞) → [0,+∞) are continuous maps, whereas the functionals
φi : C([0, 1]) → R, 1 ≤ i ≤ 2, are linear, and are realized as Stieltjes
integrals with (possibly) signed measures. We would like to point out
(see Section 3) that, although H1 and H2 could be nonlinear, they need
not be; in particular, they can be everywhere affine or linear away from
0. The main contribution of this work is that we allow for the case
where the kernel G : [0, 1]× [0, 1] → R is sign-changing, and, as one of
the key novelties within this program, we must develop a novel cone in
order to deduce the existence results presented herein. We will discuss
the construction of this new cone later in this section.

As described momentarily, in general, it is difficult to obtain the
existence of positive solutions in this setting, and so, one often settles
for the existence of a nontrivial, possibly sign-changing solution; see,
for example, the recent work by Infante and Pietramala [27]. However,
by extending some techniques introduced in [7, 14], we are able to
demonstrate the existence of a positive solution to problem (1.1), and
we do this without having to assume, say, that f is monotone in its
arguments or other stronger assumptions. And we will demonstrate, in
particular, that the method utilized here allows us to apply our results
in some cases in which other techniques fail to apply. Moreover, our
methods will also allow us to provide an easily computable localization
of the admissible range of the parameter λ appearing in equation (1.1).
We also provide a dual result, see Corollary 3.7, that applies no matter
the value of λ > 0, so long as we are willing to impose a condition on
the magnitude of the map (t, y) 7→ f(t, y) when its second argument is
“small.” Thus, we are able to obtain existence of positive solutions even
in the case where λ > 0 is large. Finally, the allowance of the nonlocal,
(possibly) nonlinear boundary conditions requires some special care
here, as we shall describe in the sequel, and, in fact, dealing with this
allowance is one of the key contributions of this article.

To demonstrate the applicability of the abstract integral equation
result obtained in this paper, we will illustrate the use of our theory
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by means of some examples. In particular, we shall show that, by
choosing the maps t 7→ γ1(t), γ2(t) in special ways, it follows that a
positive solution of problem (1.1) is in turn a positive solution of a
specific boundary value problem. For example, letting β1 < 0 and
0 < η < 1, we show that the boundary value problems

(1.2)

−y′′ = λf
(
t, y(t)

)
, 0 < t < 1

y′(0) = H2 (φ2(y))−H1 (φ1(y))

y(1) = β1y(η) + (1− β1η)H2

(
φ2(y)

)
− β1(1− η)H1

(
φ1(y)

)
and

(1.3)

−y′′ = λf
(
t, y(t)

)
, 0 < t < 1

y′(0) = 0

y(1) = β1y(η) + 2 (1− β1)H1

(
φ1(y)

)
+ 3 (1− β1)H2

(
φ2(y)

)
have positive solutions even though the Green’s function associated to
the linear boundary condition problem

(1.4)

−y′′ = λf
(
t, y(t)

)
, 0 < t < 1

y′(0) = 0

y(1) = β1y(η)

is sign-changing. Besides equations (1.2) and (1.3), we demonstrate
several other specific problems to which our results apply.

The main point of the specific examples is to demonstrate that, by
choosing γ1, γ2, and G in particular ways, we can obtain many differ-
ent collections of boundary value problems with nonlocal, (possibly)
nonlinear boundary conditions that admit positive solutions in spite
of sign-changing Green’s functions; keeping in mind that β1 < 0 and
that the map (t, y) 7→ f(t, y) is nonnegative, obviously, any solution
of equation (1.4) cannot both be nonnegative and nontrivial. Conse-
quently, by introducing the nonlocal elements, we are able to exploit
them to demonstrate that the problem must possess a positive solution,
not merely a nontrivial solution.

In addition to the ordinary differential equation setting, we can
also apply our results very easily to the setting of radially symmetric
solutions of elliptic partial differential equations. In particular, as a
specific example we consider later, see equation (3.26), a modification
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of the problem
(1.5)

−∆u(x) = λf
(
u(x)

)
, x ∈ Ω ⊆ Rn, |x| ∈ [r1, r2]

∂

∂r
u(x)

∣∣∣∣∣
x∈∂Br2

= 0

(
u (r1x)− β1u(ηx)

)∣∣∣
x∈∂B1

= 0,

where r1 < η < r2, in which we replace the second boundary condition,
which is linear nonlocal, with a nonlocal, (potentially) nonlinear ver-
sion. Recall that in the case of radially symmetric solutions the PDE
reduces, as is well known, to a particular ordinary differential equation
of second order. Thus, in addition to the ODEs setting, we shall give
a brief demonstration of how the abstract integral equation result may
also be transplanted to the elliptic PDEs setting, wherein our PDE
is equipped with some sort of radially symmetric nonlocal boundary
condition in the sense of equation (1.5) above. As we point out in Sec-
tion 3, these examples are motivated by some recent investigations of
Infante and Pietramala [27, Sections 6, 7].

In recent years many papers on Hammerstein integral equations have
appeared, see, for example, [3, 30, 35, 36, 37, 41, 45, 56, 61, 63, 64].
Part of the interest in such problems is the fact that they can be used as
a means to study the existence of solutions to boundary value problems,
and in the specific setting of problems that admit either vanishing or
sign-changing Green’s functions several works in recent years such as
[3, 17, 40, 42, 45, 47, 64] have appeared. In addition, nonlocal
boundary value problems have received considerable attention over the
past many years. Of particular note is the paper by Infante and Webb
[53], which provided a unified theory for studying such problems in
the case where the nonlocal elements were linear. Several subsequent
works by those authors [52, 54] as well as Webb [48, 50, 51] have
continued to extend and refine their theory. Many other authors have
also studied linear, nonlocal boundary conditions, such as Graef and
Webb [18], Infante, et al. [23, 24, 27, 28], Jankowski [29], Karakostas
and Tsamatos [32, 33], and Yang [59, 60, 61]. In addition, the study
of boundary value problems equipped with nonlinear conditions has
also been studied by several authors such as Anderson [1], Goodrich
[4, 5, 6, 7, 9], Infante, et al. [20, 21, 22, 25, 26], Karakostas [31]
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and Yang [57, 58]. Finally, the classical papers by Picone [44] and
Whyburn [55] are recommended for their historical value. So far as
we aware, however, and as discussed earlier in this section, the results
on problems that couple sign-changing Green’s function with nonlocal
boundary conditions are few.

With these contexts in mind, then, our contributions here are
twofold. First, while there have been recent works that deduce the
existence of positive solutions to a given ODE even in the case of
an associated sign-changing Green’s function, obtaining such results
appear generally to have required imposing more stringent hypotheses
on the nonlinearity f . For example, in [45], the authors obtained
just such a result in the case of a third-order differential equation.
To obtain their results, they supposed that the map (t, y) 7→ f(t, y) is
decreasing in t and increasing in y. Similarly, in [3, 64] the nonlinearity
is supposed to assume slightly restrictive growth hypotheses. Ma [42]
also produced some interesting existence and nonexistence results for
a boundary value problem with sign-changing Green’s function and
achieved this with minimal assumptions on the nonlinearity f ; however,
in that work, the parameter λ was not localized. By contrast, here, we
are able to fully localize the parameter λ and, furthermore, just require
a mild, asymptotic sublinearity condition at +∞ on the nonlinearity f ;
in fact, we are also able to achieve existence results for any λ > 0. We
are able to achieve this by means of suitably exploiting the nonlocal
elements appearing in equation (1.1). Moreover, because we treat a
general Hammerstein equation here and do not rely on very specific
properties of the kernel, our results apply to many boundary value
problems rather than just one particular problem.

A second and more substantial contribution is to demonstrate how
to incorporate the nonlocal elements while requiring minimal growth
conditions on the maps H1 and H2 appearing in equation (1.1). This
turns out to be a somewhat technical problem. In particular, we only
wish to assume asymptotic growth of the maps z 7→ H1(z), H2(z) at
+∞. However, this requires having some sort of lower control over
the map y 7→ φi(y). In particular, a sort of coercivity condition,
say φ1(y) ≥ C0∥y∥ and φ2(y) ≥ D0∥y∥ for suitable constants C0 and
D0 > 0, would suffice, for then, if we can control the size of ∥y∥, we
can thus control the size of φi(y) itself. Furthermore, in addition to
the coercivity being used to relax the growth conditions imposed on H1
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and H2, that the functionals possess some sort of coercivity also plays
an important role in demonstrating that the integral equation can have
a positive solution in spite of the sign-changing nature of the kernel;
see, for example, the proofs of Lemma 2.7 and of Theorem 3.1. Thus,
it is essential that we equip φ1 and φ2 with such properties.

We have essentially utilized this technique in various ways in several
recent papers; see, for example, [7], where this idea was introduced,
as well as [8, 11, 12, 13, 14]. In those papers, however, the Green’s
function was nonnegative and did not vanish on the interior of its do-
main, which allowed us to utilize a well known Harnack-like inequality
of the form min

t∈[a,b]
y(t) ≥ γ∥y∥ for some γ ∈ (0, 1) and 0 < a < b < 1.

Due to the availability of this inequality, we then obtain the desired
coercivity of φi by means of suitable decomposition of the functional
φi; again, see, for example, [7].

In this work, however, and by considerable contrast, we find that
an approach that relies on the existence of a suitable Harnack-like
inequality would be severely limited in application. Since in this paper
the Green’s function (or kernel) can both vanish and change sign, one
minimally would have to suppose the existence of 0 < a < b < 1 such
that

min
t∈[a,b]

G(t, s) > 0, for each s ∈ [0, 1].

Consequently, insofar as the abstract integral equation (1.1) is con-
cerned, we could not treat problems in which this condition were to
fail, e.g., if the kernel (t, s) 7→ G(t, s) were, say, to vanish along the
diagonal t = s. And, in turn, this would severely limit the sorts of
problems we could treat. In addition, the types of nonlocal boundary
conditions that we could treat would also be potentially limited.

In consideration of the preceding limitations of an approach relying
on suitable Harnack inequalities, it is highly mathematically desirable
that we adapt the methods we have previously introduced. So, in order
to accomplish this, we have to construct a new cone that is a type of
amalgamation of several well-known cones utilized in the literature.
In particular, here we use the cone, a version of which we introduced
recently in [15, 16],
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(1.6) K :=

{
y ∈ C([0, 1]) : y(t) ≥ 0,

φ1(y) ≥
(

inf
s∈S0

1

G(s)

∫ 1

0

G(t, s) dα1(t)

)
∥y∥,

φ2(y) ≥
(

inf
s∈S0

1

G(s)

∫ 1

0

G(t, s) dα2(t)

)
∥y∥
}
.

Note that, in equation (1.6), the set S0 ⊆ [0, 1] one of full measure

on which, by assumption, the ratio of
∫ 1

0
G(t, s) dαi(t) to G(s) exists,

where G(s) := supt∈[0,1] |G(t, s)|. Furthermore, the integrator t 7→ αi(t)

is associated to the functional y 7→ φi(y), for i = 1, 2. See Section 2 for
more details.

Essentially, the idea behind the construction in (1.6) is to introduce
a controlled blow-up by means of the map s 7→ (G(s))−1 so that if for
some i ∈ {1, 2} we obtain

inf
s∈S0

∫ 1

0

G(t, s) dαi(t) = 0,

which can, in fact, occur in our examples, we instead consider

inf
s∈S0

1

G(s)

∫ 1

0

G(t, s) dαi(t),

where s 7→ (G(s))−1 provides just enough blow-up to cause the infimum
to be a positive, finite number, see Examples 3.9 and 3.11, for instance.
This then yields the desired coercivity condition, which, in this case
and in great contrast to [8, 11, 12, 13, 14], is incorporated directly
into the cone itself. It should also be mentioned, in closing, that, by
introducing and utilizing this novel cone, we are able to avoid having to
select some interval (a, b) b (0, 1) such that a Harnack-like inequality
can be applied. In fact, such an interval never arises in any of our
calculations. Thus, in addition to the benefits already detailed, this
new cone also simplifies the treatment of the nonlocal elements since,
in some sense, we identify here an internal constant that produces
the desired coercivity rather than an external constant that must be
derived and deduced from other inequalities thus leading to potentially
cumbersome and non-optimal calculations.
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All in all, we believe that the introduction of a new cone is an
interesting aspect of this study. It may be that the cone introduced
in equation (1.6) is useful in other contexts involving nonlocal terms
in perturbed Hammerstein integral equations and their application to
boundary value problems.

2. Preliminary lemmata and notation. We begin by stating
some of the structural and regularity assumptions that we make re-
garding problem (1.1). The first four assumptions concern regularity
and growth on the constituent parts of (1.1). We note that, here and
throughout this work, we denote by ∥ · ∥ the usual supremum norm on
the space C([0, 1]).

(H1) The functionals φ1(y) and φ2(y) have the form

φ1(y) :=

∫
[0,1]

y(t) dα1(t), φ2(y) :=

∫
[0,1]

y(t) dα2(t),

where α1, α2 : [0, 1] → R satisfy α1, α2 ∈ BV ([0, 1]). Moreover, we
denote by C1, D1 > 0 some finite constants such that

|φ1(y)| ≤ C1∥y∥ and |φ2(y)| ≤ D1∥y∥,

for each y ∈ C([0, 1]).
(H2) The functions H1, H2 : [0,+∞) → [0,+∞) are continuous, and

there exist A1, A2 ∈ (0,+∞) such that

+∞ > lim
z→+∞

H1(z)

z
> A1 and +∞ > lim

z→+∞

H2(z)

z
> A2,

where it is assumed that these limits exist. In addition, the functions γ1,
γ2 : [0, 1] → [0,+∞) are continuous and thus satisfy ∥γ1∥, ∥γ2∥ < +∞.

(H3) The function f : [0, 1]× [0,+∞) → [0,+∞) is continuous and
satisfies

lim
y→+∞

f(t, y)

y
= 0, uniformly for t ∈ [0, 1].

(H4) The function G : [0, 1]× [0, 1] → R satisfies:

(1) G ∈ L1([0, 1]× [0, 1]);

(2) for each τ ∈ [0, 1] it holds that

lim
t→τ

|G(t, s)−G(τ, s)| = 0, almost everywhere s ∈ [0, 1];
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and

(3) supt∈[0,1] |G(t, s)| < +∞ for each s ∈ [0, 1].

Remark 2.1. As was briefly mentioned in Section 1, we wish to point
out straightaway that condition (H2) allows for the nonlinear elements
appearing in equation (1.1) to be linear or affine. In particular, as
the results of Section 3 demonstrate, the functions H1 and H2 may be
linear on neighborhoods that do not intersect 0, and on neighborhoods
that do intersect 0, they may be affine. Thus, while our theory admits a
nonlinear perturbation of the Hammerstein equation, it is not required
that the perturbation be nonlinear. The importance of this is primarily
that, in the application of our result to boundary value problems, the
boundary conditions can be linear or affine in the manner described in
the previous paragraph. The examples provided in Section 3 should
explicate these points.

We next define an operator, fixed points of which will determine
solutions to problem (1.1). To this end, let T : K → K be the operator
defined by

(2.1)

(Ty)(t) := γ1(t)H1

(
φ1(y)

)
+ γ2(t)H2

(
φ2(y)

)
+ λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds.

The main interest in operator (2.1) is that a fixed point of the operator
will be a solution of the Hammerstein equation (1.1). This will
also allow us to relate solutions of equation (1.1) to solutions of
various boundary value problems. In Lemma 2.7 in the sequel, we
will demonstrate that, under appropriate hypotheses, T (K) ⊆ K so
that the operator T is well defined on the set K.

Notation 2.2. For use in the sequel, we now make some notational
conventions. These will be used throughout the remainder of the paper.
• Define the map G : [0, 1] → [0,+∞) by

G(s) := sup
t∈[0,1]

∣∣G(t, s)
∣∣.

Obviously, for each fixed s ∈ [0, 1], it holds that G(t, s) ≤ G(s), for all
t ∈ [0, 1], and that 0 ≤ G(s) < +∞.
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• Given functions a, A : X ⊆ R → R, we define the numbers amX ,
aMX , Am

X , and AM
X to be, respectively,

amX : = inf
t∈X

a(t), Am
X := inf

t∈X
A(t)

and

aMX := sup
t∈X

a(t), AM
X := sup

t∈X
A(t).

If the function name is subscripted, as in a1, then we shall write am1,X
or aM1,X , as the case may be, instead.

• Given a function f : [0, 1] × [0,+∞) → [0,+∞) and a set
X ⊆ [0,+∞), define fm

X and fM
X by, respectively,

fm
X := inf

(t,y)∈[0,1]×X
f(t, y) and fM

X := sup
(t,y)∈[0,1]×X

f(t, y).

• Given a function b : X ⊆ R → R, we denote by b± : X → [0,+∞)
the functions defined by

b−(t) := max{−b(t), 0} and b+(t) := max{b(t), 0}.

Thus, b− and b+ represent, respectively, the negative and positive parts
of the function b, and, importantly, these functions are nonnegative
maps.

• We denote by Γ0 the number

(2.2) Γ0 := min
t∈[0,1]

(
γ1(t) + γ2(t)

)
.

With this notation in mind, we list some additional conditions that
we impose; these conditions ensure that the cone theoretic argument
can be carried out successfully. The first, condition (H5), will be very
important in defining the cone we use in this work, as shall be described
in the sequel. On the other hand, the third condition, (H7), helps to
define the range of admissible values for the parameter λ appearing
in problem (1.1). Finally, conditions (H6) and (H8) are essentially
technical and ensure that the cone theoretic argument we provide is
accurate.
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(H5) Assume that, for each i = 1, 2, the map

s 7−→ 1

G(s)

∫ 1

0

G(t, s) dαi(t)

is defined for s ∈ S0, where |S0| = 1, i.e., S0 has full measure, and the
constants defined by

C0 := inf
s∈S0

1

G(s)

∫ 1

0

G(t, s) dα1(t)

and

D0 := inf
s∈S0

1

G(s)

∫ 1

0

G(t, s) dα2(t)

are well defined and, in addition, satisfy both +∞ > C0 > 0 and
+∞ > D0 > 0.

(H6) The number Γ0 defined in equation (2.2) satisfies

Γ0 > 0.

(H7) Let ρ1 be the number defined by
(2.3)

ρ1 := inf

{
ρ0 ∈ (0,+∞) :

H1(z)

z
> A1,

H2(z)

z
> A2,

f(t, y)

y
< 1 for all t ∈ [0, 1], whenever y, z ∈ [ρ0,+∞)

}
,

and then put

(2.4) ρ∗1 := max

{
1,

ρ1
min {C0, D0}

}
.

Assume that the quantity

λ0 := min

{
Γ0 min

{
Hm

1,[0,C1ρ∗
1 ]
, Hm

2,[0,D1ρ∗
1 ]

}
×
(
fM
[0,ρ∗

1 ]
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

,

(
Γ0 min {A1C0, A2D0} − ε

)(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

,
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ε

(
fM
[0,ρ1]

sup
t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1}
(2.5)

is well defined and satisfies λ0 > 0, where ε > 0 is a fixed number
satisfying

Γ0 min {A1C0, A2D0} − ε > 0,

which, by means of conditions (H5) and (H6), is well defined.

(H8) The following holds

(2.6) φ1 (γi) ≥ C0∥γi∥ and φ2 (γi) ≥ D0∥γi∥,

for each i = 1, 2.

Remark 2.3. We note that the definitions of the constants C0 and D0

are not entirely dissimilar in their purpose from the ratio β
M utilized

in Graef, et al. [17, page 178]; see also Goodrich [10, Lemma 2.11].
It should also be noted, as the proofs in Section 3 will reveal, that,
in the definition of ρ1, we could impose, for any η > 0, the condition
f(t, y)/y < η, for all t ∈ [0, 1], not just for η = 1.

Remark 2.4. The number ε, which appears in condition (H7), could
be replaced, of course, by a specific number. However, to state the
result more generally we elect to let ε be arbitrary, as in (H7).

Remark 2.5. As the examples toward the end of Section 3 demon-
strate, the number λ0 is easily computed, and so, the result is not
merely “abstract” and nonapplicable. Furthermore, as the examples
also demonstrate, each of the conditions is easy to check.

As alluded to in Section 1, we must use a modified cone in this paper,
relative to the approach taken in, for example, [7, 14]. In particular,
and as noted in equation (1.6), here we introduce and use the cone

K :=
{
y ∈ C([0, 1]) : y(t) ≥ 0, φ1(y) ≥ C0∥y∥, φ2(y) ≥ D0∥y∥

}
.

Note that K is both nonempty and nontrivial since, by assumption,
we have that γ1, γ2 ∈ K, which follows from conditions (H2) and
(H8) above. We note that the definition of this cone is essentially an
amalgamation of cones introduced and utilized by Goodrich [7], Graef,
et al. [17], Infante and Webb [53], Ma and Zhang [43] and Webb [49].
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It is easy to demonstrate that K is actually a cone, and so, we omit the
proof of this fact.

Remark 2.6. If the quantities

(2.7) inf
s∈[0,1]

∫ 1

0

G(t, s) dαi(t), i = 1, 2,

do not vanish, then, technically, we do not require the factor 1/G(s)
in the definitions of C0 and D0 in (H5). However, there is no harm in
including this factor. As explained in Section 1 the reason for including
this factor is to allow for a controlled blow-up to offset the vanishing
of the quantity in equation ((2.7)).

We begin by showing that T : K → K. Normally, such a verification
is essentially trivial. Here, one must be much more careful due to
the fact that the kernel G is allowed to change sign as well due to
the inclusion of the coercivity-type conditions in the cone and the
definitions of C0 and D0, and so, the verification follows that T (K) ⊆ K
is more delicate than normal.

Lemma 2.7. Let the operator T be defined as in equation (2.1), and
assume that conditions (H1)–(H8) hold. Furthermore, let λ0 be as in
equation (2.5). Then, whenever λ ∈ (0, λ0), it holds that T (K) ⊆ K.

Proof. We first demonstrate that (Ty)(t) ≥ 0 whenever y ∈ K and
t ∈ [0, 1]. In order to accomplish this we shall consider cases which
depend upon the size of ∥y∥. For this purpose, fix ρ1 ∈ (0,+∞) as in
condition (H7) above. Select y ∈ K, and let it be henceforth be fixed
but arbitrary.

The case in which ∥y∥ ≥ ρ∗1 is considered first; one may recall the
definition of ρ∗1 from equation (2.4). We first observe, keeping in mind
that (t, y) 7→ f(t, y) and (t, s) 7→ G−(t, s) are nonnegative maps, that,
if f(t, y) ≤ M0 for almost every (t, y) ∈ E × [0, R0], where E ⊆ [0, 1]
is some measurable set, and if 0 ≤ y(s) ≤ R0 for almost every s ∈ E,
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then

(2.8)

∫
E

G(t, s)f
(
s, y(s)

)
ds =

∫
E

(
G+(t, s)−G−(t, s)

)
f
(
s, y(s)

)
ds

≥ −
∫
E

G−(t, s)f
(
s, y(s)

)
ds

≥ −M0

∫
E

G−(t, s) ds

≥ −M0 sup
t∈[0,1]

∫
E

G−(t, s) ds.

We will use an estimate like equation (2.8) in the sequel.

Now, by hypothesis, we have that Γ0 min{A1C0, A2D0} > 0. From
condition (H7), there exists a number ε > 0 such that

Γ0 min {A1C0, A2D0} − ε > 0.

Furthermore, it holds that Hi(φi(y)) ≥ Aiφi(y), for since ∥y∥ ≥ ρ∗1, we
calculate

φ1(y) ≥ C0∥y∥ ≥ C0ρ
∗
1 ≥ ρ1 and φ2(y) ≥ D0∥y∥ ≥ D0ρ

∗
1 ≥ ρ1.

Thus, in light of these observations and the fact that

(2.9) λ <
ε

fM
[0,ρ1]

(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

,

we may write, keeping equations (2.8) and (2.9) in mind,

(Ty)(t)=γ1(t)H1

(
φ1(y)

)
+γ2(t)H2

(
φ2(y)

)
+λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

(2.10)

≥ A1γ1(t)φ1(y) +A2γ2(t)φ2(y) + λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

≥ A1C0∥y∥γ1(t) +A2D0∥y∥γ2(t) + λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

≥ min{A1C0, A2D0}∥y∥
(
γ1(t)+γ2(t)

)
−λ

∫ 1

0

G−(t, s)f
(
s, y(s)

)
ds

≥ Γ0 min{A1C0, A2D0}∥y∥−λ

∫
{s:y(s)≥ρ1}

G−(t, s)f
(
s, y(s)

)
ds
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− λ

∫
{s:y(s)<ρ1}

G−(t, s)f
(
s, y(s)

)
ds

≥ Γ0 min {A1C0, A2D0} ∥y∥ − λ

∫
{s:y(s)≥ρ1}

G−(t, s)y(s) ds

− λ

∫
{s:y(s)<ρ1}

G−(t, s)fM
[0,ρ1]

ds

≥ Γ0 min {A1C0, A2D0} ∥y∥ − λ∥y∥
∫ 1

0

G−(t, s) ds

− λfM
[0,ρ1]

∫ 1

0

G−(t, s) ds

≥ Γ0 min {A1C0, A2D0} ∥y∥ − λ∥y∥ sup
t∈[0,1]

∫ 1

0

G−(t, s) ds

− λfM
[0,ρ1]

sup
t∈[0,1]

∫ 1

0

G−(t, s) ds

= Γ0 min {A1C0, A2, D0} ∥y∥ − λ∥y∥ sup
t∈[0,1]

∫ 1

0

G−(t, s) ds− ε

=

(
Γ0 min {A1C0, A2D0} − λ sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)
∥y∥ − ε,

for any t ∈ [0, 1]. Since, by the choice of λ specified in the statement
of this lemma, it also holds that

λ <
(
Γ0 min {A1C0, A2D0} − ε

)(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

,

we obtain from equation (2.10) that

(Ty)(t) ≥
(
Γ0 min {A1C0, A2D0} − λ sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)
∥y∥ − ε

≥ ε
(
∥y∥ − 1

)
≥ ε (ρ∗1 − 1) ≥ 0,

where we also use the assumption that ρ∗1 ≥ 1. Thus, we conclude that
(Ty)(t) ≥ 0, for each t ∈ [0, 1], whenever ∥y∥ ≥ ρ∗1.
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On the other hand, in the case of ∥y∥ < ρ∗1, we write

(Ty)(t) = γ1(t)H1

(
φ1(y)

)
+γ2(t)H2

(
φ2(y)

)
+λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

(2.11)

≥ γ1(t)H
m
1,[0,C1ρ∗

1 ]
+ γ2(t)H

m
2,[0,D1ρ∗

1 ]
+ λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

≥ Γ0 min
{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D1ρ∗
1 ]

}
+ λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds

≥ Γ0 min
{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D1ρ∗
1 ]

}
− λ

∫ 1

0

G−(t, s)f
(
s, y(s)

)
ds

≥ Γ0 min
{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D1ρ∗
1 ]

}
− λ

∫ 1

0

G−(t, s)fM
[0,ρ∗

1 ]
ds

≥ Γ0 min
{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D1ρ∗
1 ]

}
−λfM

[0,ρ∗
1 ]

sup
t∈[0,1]

∫ 1

0

G−(t, s) ds,

for each t ∈ [0, 1], where, to obtain the lower bound in equation (2.11),
we have used the facts that

0 ≤ φ1(y) ≤ C1∥y∥ ≤ C1ρ
∗
1

and that, similarly, 0 ≤ φ2(y) ≤ D1ρ
∗
1. Then, using the fact that λ

satisfies

λ <
Γ0 min{Hm

1,[0,C1ρ∗
1 ]
, Hm

2,[0,D1ρ∗
1 ]
}

fM
[0,ρ∗

1 ]

(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

,

we deduce from equation (2.11) that (Ty)(t) ≥ 0, for each t ∈ [0, 1],
whenever ∥y∥ < ρ∗1. Since these two cases are exhaustive and, by the
arbitrariness of y, we deduce that (Ty)(t) ≥ 0, for each t ∈ [0, 1],
whenever y ∈ K.

We next argue that φ1(Ty) ≥ C0∥Ty∥ for each y ∈ K. To this end,
begin by noting that

∥Ty∥ ≤ ∥γ1∥H1

(
φ1(y)

)
+ ∥γ2∥H2

(
φ2(y)

)
(2.12)

+ λ sup
t∈[0,1]

∫ 1

0

∣∣G(t, s)
∣∣f(s, y(s)) ds

≤ ∥γ1∥H1

(
φ1(y)

)
+ ∥γ2∥H2

(
φ2(y)

)
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+ λ

∫ 1

0

sup
t∈[0,1]

∣∣G(t, s)
∣∣f(s, y(s)) ds

= ∥γ1∥H1

(
φ1(y)

)
+ ∥γ2∥H2

(
φ2(y)

)
+ λ

∫ 1

0

G(s)f
(
s, y(s)

)
ds.

Moreover, we compute

φ1(Ty) = H1

(
φ1(y)

) ∫ 1

0

γ1(t) dα1(t) +H2

(
φ2(y)

) ∫ 1

0

γ2(t) dα1(t)

(2.13)

+ λ

∫ 1

0

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds dα1(t)

≥ C0H1

(
φ1(y)

)
∥γ1∥+ C0H2

(
φ2(y)

)
∥γ2∥

+ λ

∫ 1

0

[ ∫ 1

0

G(t, s) dα1(t)

]
f
(
s, y(s)

)
ds,

where we have used the fact that γ1, γ2 ∈ K, by assumption. Using

the assumption that the map s 7→ 1/G(s)
∫ 1

0
G(t, s) dαi(t) is defined for

s ∈ S0, for each i = 1, 2, observe that

λ

∫ 1

0

[ ∫ 1

0

G(t, s) dα1(t)

]
f
(
s, y(s)

)
ds(2.14)

= λ

∫
S0

[
1

G(s)

∫ 1

0

G(t, s) dα1(t)

]
G(s)f

(
s, y(s)

)
ds

≥ λ

∫
S0

(
inf
s∈S0

1

G(s)

∫ 1

0

G(t, s) dα1(t)

)
G(s)f

(
s, y(s)

)
ds

= C0λ

∫ 1

0

G(s)f
(
s, y(s)

)
ds,

where we have used the fact that both S0 and [0, 1] are sets of equal and
full measure. Consequently, putting (2.12)–(2.14) together we estimate

φ1(Ty) ≥ C0H1

(
φ1(y)

)
∥γ1∥+ C0H2

(
φ2(y)

)
∥γ2∥

+ λ

∫ 1

0

[ ∫ 1

0

G(t, s) dα1(t)

]
f
(
s, y(s)

)
ds
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≥ C0

[
H1

(
φ1(y)

)
∥γ1∥+H2

(
φ2(y)

)
∥γ2∥

+ λ

∫ 1

0

G(s)f
(
s, y(s)

)
ds

]
≥ C0∥Ty∥,

which confirms that, whenever y ∈ K, it follows that φ1(Ty) ≥ C0∥Ty∥.
Finally, an essentially symmetric argument demonstrates that, when-

ever y ∈ K, it follows that φ2(Ty) ≥ D0∥Ty∥. Indeed, we merely
observe that

φ2(Ty) = H1

(
φ1(y)

) ∫ 1

0

γ1(t) dα2(t) +H2

(
φ2(y)

) ∫ 1

0

γ2(t) dα2(t)

+ λ

∫ 1

0

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds dα2(t)

≥ D0H1

(
φ1(y)

)
∥γ1∥+D0H2

(
φ2(y)

)
∥γ2∥

+ λ

∫
S0

(
inf
s∈S0

1

G(s)

∫ 1

0

G(t, s) dα2(t)

)
G(s)f

(
s, y(s)

)
ds

≥ D0∥Ty∥.

This completes the proof that T (K) ⊆ K. �

Next, we state and prove a technical lemma that will be used in the
proof of Theorem 3.1. Essentially this lemma was stated and proved
(in a slightly simpler version) in [14, Lemma 3.2]; see also, Wang [46,
Lemma 2.8].

Lemma 2.8. Let f : [0, 1] × R → [0,+∞) satisfy condition (H3).
Define the map F : [0,+∞) → [0,+∞) by

F(ρ) := max
(t,y)∈[0,1]×[0,ρ]

f(t, y).

Then, it holds that

(2.15) lim
ρ→+∞

F(ρ)

ρ
= 0.

Proof. For contradiction, suppose that equation (2.15) fails. Then
there is a sequence {tn, yn, ρn}∞n=1 ⊆ [0, 1] × [0,+∞) × [0,+∞), with
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ρn → +∞, together with a number η > 0 such that

F (ρn)

ρn
=

1

ρn
· max
(t,y)∈[0,1]×[0,ρn]

f(t, y) =
1

ρn
f (tn, yn) ≥ η > 0,

for each n ∈ N.
Now, we consider two cases. If f is bounded, then the result is

immediate. On the other hand, if f is not bounded, then yn → +∞.
But then, recalling that the limit is uniform with respect to t, we obtain

f (tn, yn)

yn
≥ f (tn, yn)

ρn
≥ η > 0,

which contradicts condition (H3) since {yn}∞n=1 is a sequence satisfying
yn → +∞. Therefore, equality (2.15) holds, as desired. �

We conclude by stating the fixed point result, which we utilize. This
may be found in [62, subsection 7.9]; see also [19].

Definition 2.9 ([62, Definition 7.32.b]). Let X and Y be Banach
spaces over R. Suppose that X has an order cone K and that T : K → K
is an operator. Then the operator T ′(+∞) ∈ L(X ,Y), where L(X ,Y)
is the collection of all linear transformations between X and Y, is called
the positive Fréchet derivative of T at +∞ along the cone K if and only
if

∥Tx− T ′(+∞)x∥
∥x∥

−→ 0 as ∥x∥ → +∞ for x ∈ K.

Lemma 2.10 ([62, Corollary 7.34]). Suppose that

(i) T : K ⊆ X → K is a compact operator on the Banach space X
with order cone K; and

(ii) T ′(+∞) : K → K exists as a positive Fréchet derivative of T at
+∞ along the cone K, and if µ is an eigenvalue for T ′(+∞), then
|µ| < 1.

Then the operator T has a fixed point in the cone K.

Remark 2.11. Due to the hypotheses in force the operator T in
equation (2.1) can be shown to be completely continuous, see for
example, [53]. Since it is a routine argument, we omit it in the proof
of Theorem 3.1 in the sequel.
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3. Main results. We begin by stating the existence theorem for the
perturbed Hammerstein equation (1.1), and we subsequently provide a
number of corollaries that follow rather directly from the main existence
theorem. After this, and as preliminarily discussed in Section 1, we
shall provide a few specific examples and applications of the abstract
result embodied by Theorem 3.1 and its corollaries. The proof of
the existence theorem is similar in spirit to [14, Theorem 3.3], but
with a significantly improved conclusion since the hypotheses here are
much simpler and the range of application much greater. Furthermore,
while in Theorem 3.1 we restrict the range of λ insofar as λ must be
small for the existence result to hold, we provide a corollary, namely
Corollary 3.7, that, in fact, allows any value of λ ∈ (0,+∞) as an
admissible value of the parameter.

Theorem 3.1. Suppose that conditions (H1)–(H8) hold. Moreover, let

λ0 be defined as in equation (2.5). Let Ã1 and Ã2 be the finite, positive
values of two limits, respectively, in condition (H2). Finally, assume
both that

(3.1) Ã1C1∥γ1∥+ Ã2D1∥γ2∥ < 1,

and that there exists a number t0 ∈ [0, 1] such that

(3.2)

∫ 1

0

G (t0, s) f(s, 0) ds > 0.

Then, for each λ ∈ (0, λ0), problem (1.1) has at least one positive
solution.

Proof. Define the map L : K → K by

(Ly)(t) := Ã1γ1(t)φ1(y) + Ã2γ2(t)φ2(y),

and observe that L is linear in y. We shall first demonstrate that L is, in
fact, the Fréchet derivative of T at +∞ along the cone K. In particular,
we demonstrate that, for each ε > 0, there is a ρε > 0 sufficiently large
such that, whenever ∥y∥ ≥ ρε, it holds that |(Ty)(t)− (Ly)(t)| ≤ ε∥y∥,
for each t ∈ [0, 1]. Recall that we have already demonstrated that
T (K) ⊆ K as a consequence of Lemma 2.7.
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To this end, first observe that we can write

(3.3)

∣∣(Ty)(t)− (Ly)(t)
∣∣

∥y∥
≤

γ1(t)|H1

(
φ1(y)

)
− Ã1φ1(y)|

∥y∥

+
γ2(t)|H2

(
φ2(y)

)
− Ã2φ2(y)|

∥y∥

+
1

∥y∥
λ

∫ 1

0

∣∣G(t, s)
∣∣f(s, y(s)) ds

=: I1 + I2 + I3,

where Ii, for 1 ≤ i ≤ 3, are defined in the obvious way. Henceforth,
let λ ∈ (0, λ0) be fixed but otherwise arbitrary. Furthermore, let
η > 0 be fixed but otherwise arbitrary. Then, there is a ρη > 0

such that, whenever z ≥ ρη ,it holds that |H1(z) − Ã1z| ≤ ηz

and |H2(z) − Ã2z| ≤ ηz. Consequently, whenever y ∈ K satisfies
∥y∥ ≥ ρη/min{C0, D0}, it holds that∣∣∣H1

(
φ1(y)

)
− Ã1φ1(y)

∣∣∣ < ηφ1(y) ≤ ηC1∥y∥(3.4)

and that ∣∣∣H2

(
φ2(y)

)
− Ã2φ2(y)

∣∣∣ < ηφ2(y) ≤ ηD1∥y∥,(3.5)

where we use the fact that φ1(y) ≥ C0∥y∥ ≥ ρη, and similarly with
respect to φ2. By choosing ρη even larger, if necessary, and then
henceforth fixing ρη > 0, we may also obtain both that

(3.6)
f(t, y)

y
< η,

whenever t ∈ [0, 1] and y ≥ ρη, and that

(3.7)
F(ρη)

ρη
< η,

where the latter inequality invokes Lemma 2.8.

Consequently, from equations (3.4) and (3.5), it follows that when-
ever y ∈ K with ∥y∥ ≥ ρη/min{C0, D0}, we may estimate

I1 ≤
(
max
t∈[0,1]

γ1(t)

)
ηC1(3.8)
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and that

I2 ≤
(
max
t∈[0,1]

γ2(t)

)
ηD1.(3.9)

On the other hand, and again using that ∥y∥ ≥ ρη/min{C0, D0}, we
may write

I3 =
1

∥y∥

(
λ

∫
{s:y(s)<ρη}

∣∣G(t, s)
∣∣f(s, y(s)) ds

(3.10)

+ λ

∫
{s:y(s)≥ρη}

∣∣G(t, s)
∣∣f(s, y(s)) ds)

≤ 1

∥y∥

(
λ max

(τ,σ)∈[0,1]×[0,ρη]
f(τ, σ)

∫ 1

0

∣∣G(t, s)
∣∣ ds

+ λη∥y∥
∫ 1

0

∣∣G(t, s)
∣∣ ds)

≤ λ

(
max(τ,σ)∈[0,1]×[0,ρη] f(τ, σ)

∥y∥
+ η

)∫ 1

0

∣∣G(t, s)
∣∣ ds

≤ λ

(
max(τ,σ)∈[0,1]×[0,ρη] f(τ, σ)

∥y∥
+ η

)(
sup

t∈[0,1]

∫ 1

0

∣∣G(t, s)
∣∣ ds)

= λ

(
F(ρη)

∥y∥
+ η

)(
sup

t∈[0,1]

∫ 1

0

∣∣G(t, s)
∣∣ ds)

≤ λ

(
F(ρη)

(ρη/min{C0, D0})
+ η

)(
sup

t∈[0,1]

∫ 1

0

∣∣G(t, s)
∣∣ ds)

≤ 2ηλmax
{
1,min{C0, D0}

}(
sup

t∈[0,1]

∫ 1

0

∣∣G(t, s)
∣∣ ds),

where we have utilized estimates (3.6) and (3.7). Thus, we deduce that

(3.11) I3 ≤ 2ηλmax
{
1,min{C0, D0}

}(
sup

t∈[0,1]

∫ 1

0

∣∣G(t, s)
∣∣ ds).

Finally, putting together estimates (3.3) and (3.8)–(3.11), we arrive
at
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(3.12)

∣∣(Ty)(t)− (Ly)(t)
∣∣

∥y∥
≤ η

[(
max
t∈[0,1]

γ1(t)

)
C1 +

(
max
t∈[0,1]

γ2(t)

)
D1

+ 2λmax
{
1,min{C0, D0}

}(
sup

t∈[0,1]

∫ 1

0

∣∣G(t, s)
∣∣ ds)] := ηC̃,

for each t ∈ [0, 1]. But, since C̃ := C̃(γ1, γ2, C0, C1, D0, D1, G, λ) < +∞
is a constant dependent only upon initial data (recall that λ is fixed
and itself depends only upon initial data), it follows that the ratio on
the left-hand side of equation (3.12) may be made as small as desired,
for all t ∈ [0, 1], by requiring that ∥y∥ be sufficiently large. And, by
the arbitrariness of η > 0, this proves the desired claim that L is the
Fréchet derivative of T at +∞ along the cone K. This completes the
first part of the proof.

We next argue that the map L has no eigenvalue greater than or
equal to unity. To prove this claim, suppose for contradiction that
there exist an eigenvalue µ ≥ 1 and an associated eigenvector y ∈ K
for the operator L so that ∥y∥ ̸= 0. Then, (Ly)(t) = µy(t), for each
t ∈ [0, 1]. Let t0 ∈ [0, 1] be a point at which y(t0) = ∥y∥. Then we
compute

0 < ∥y∥ = y(t0) ≤ µy(t0)

= Ã1γ1(t0)φ1(y) + Ã2γ2(t0)φ2(y)

≤ Ã1C1∥γ1∥∥y∥+ Ã2D1∥γ2∥∥y∥,

from which it follows that

(3.13) Ã1C1∥γ1∥+ Ã2D1∥γ2∥ ≥ 1.

But, since inequality (3.13) violates assumption (3.1), we have a contra-
diction, and so, we conclude that the operator L cannot have an eigen-
value of magnitude unity or greater. All in all, then, by Lemma 2.10,
we conclude the existence of y0 ∈ K such that Ty0 = y0. Thus, problem
(1.1) has at least one solution.

Finally, we demonstrate that the fixed point y0 so obtained is
nontrivial and thus is a positive solution. To this end, suppose, for
contradiction, that y0 ≡ 0. Then, for the point t0 ∈ [0, 1] as given in
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the statement of the theorem, we compute

0 = y0(t0) = (T0)(t0)

(3.14)

= γ1(t0)H1

(
φ1(0)

)
+ γ2(t0)H2

(
φ2(0)

)
+ λ

∫ 1

0

G(t0, s)f(s, 0) ds

= γ1(t0)H1(0) + γ2(t0)H2(0) + λ

∫ 1

0

G(t0, s)f(s, 0) ds

≥ λ

∫ 1

0

G(t0, s)f(s, 0) ds > 0,

where the final inequality follows from assumption (3.2) in the state-
ment of the theorem and the fact that H1(0), H2(0) ≥ 0, see Re-
mark 3.2. As equation (3.14) is a contradiction, we conclude that y0
cannot be identically zero, and so, the previously obtained fixed point
is nontrivial, as asserted. And this concludes the proof of the theo-
rem. �

Remark 3.2. As regards the application of Theorem 3.1, we note that,
by the definition of λ0 in (2.5) and the fact that we require λ0 > 0, it
follows that the condition

min

{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D∗
1ρ1]

}
> 0

must be satisfied. In particular, this means that H1(0), H2(0) ̸= 0.
Consequently, while H1 and H2 can be linear away from 0, they cannot
be linear on any neighborhood of 0. This may be compared with
Corollary 3.6.

Obviously, one can immediately obtain the following two corollaries
from Theorem 3.1. In particular, Corollary 3.3 replaces condition (3.2)
by a slightly different condition, whereas Corollary 3.4 points out that,
if at least one of γ1(t0) and γ2(t0) does not vanish, then the strict
inequality of condition (3.2) can be relaxed to a non-strict inequality,
which thus provides for a more general result.

Corollary 3.3. Suppose that conditions (H1)–(H8) hold. Fix λ ∈
(0, λ0), with λ0 as in equation (2.5), and assume both that equation (3.1)
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holds and that, in addition, there exists a number t0 ∈ [0, 1] such that

γ1(t0)H1(0) + γ2(t0)H2(0) + λ

∫ 1

0

G(t0, s)f(s, 0) ds > 0.

Then problem (1.1) has at least one positive solution.

Corollary 3.4. Suppose that conditions (H1)–(H8) hold. Assume both
that equation (3.1) holds and that, in addition, there exists a number
t0 ∈ [0, 1] such that :

(i) condition (3.2) holds but with the strict inequality replaced by non-
strict inequality ; and

(ii) for t0 of condition (3.2), it also holds that

max
{
γ1(t0), γ2(t0)

}
> 0.

Then, for each λ ∈ (0, λ0), problem (1.1) has at least one positive
solution, with λ0 as in (2.5).

It is also possible to obtain a third corollary by slightly altering
condition (3.2) in the statement of Theorem 3.1.

Corollary 3.5. Suppose that conditions (H1)–(H8) hold. Assume that
there exists a number t0 ∈ [0, 1] such that

(3.15) γ1(t0)H1(0) + γ2(t0)H2(0) + λ

∫ 1

0

G(t0, s)f(s, 0) ds < 0.

Finally, assume that (3.1) holds. Then, for each λ ∈ (0, λ0), prob-
lem (1.1) has at least one positive solution.

Proof. The first part of the proof, i.e., the demonstration that the
operator L is the Fréchet derivative of T at +∞ along the cone K,
remains unaltered. The proof that L has no eigenvalue greater than or
equal to unity does not change either. Finally, the proof that the fixed
point y0 ∈ K is not identically zero proceeds by simply noting, similar
to (3.14), that assumption (3.15) implies the estimate

0 = (T0)(t0) = γ1(t0)H1

(
φ1(0)

)
(3.16)

+ γ2(t0)H2

(
φ2(0)

)
+ λ

∫ 1

0

G(t0, s)f(s, 0) ds
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= γ1(t0)H1(0) + γ2(t0)H2(0) + λ

∫ 1

0

G(t0, s)f(s, 0) ds < 0,

and so we obtain that 0 < 0, which is a contradiction. Thus, y0 is not
identically zero, and this completes the proof. �

The next corollary demonstrates that if we are willing to make
stricter hypotheses regarding the maps γ1 and γ2, then it is possible,
in fact, to require only that one of the maps H1 and H2 is not linear
on neighborhoods intersecting zero. Consequently, in this case, it is
possible to have one of the two maps, H1 or H2, be purely linear. Thus,
in particular, under the conclusion of Corollary 3.6 it is allowable for
exactly one of H1 and H2 to have the form z 7→ ω0z, for some ω0 > 0,
for each z ∈ [0,+∞).

Corollary 3.6. Assume that inequality (3.1) holds. Let E0 ⊆ [0, 1] be
defined by

E0 :=
{
t ∈ [0, 1] : G(t, s) < 0, for some s ∈ [0, 1]

}
.

Suppose that

Γ̃0 := min
t∈E0

{
γ1(t), γ2(t)

}
> 0,

and let ε̃ > 0 be selected so that

Γ̃0 (A1C0 +A2D0)− ε̃ > 0

holds. Define λ∗∗
0 by

λ∗∗
0 := min

{
Γ̃0

(
Hm

1,[0,C1ρ∗
1]
+Hm

2,[0,D1ρ∗
1]

)
×
(
fM
[0,ρ∗

1 ]
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

,

(
Γ̃0 (A1C0 +A2D0)− ε̃

)(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

,

ε̃

(
fM
[0,ρ1]

sup
t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1}
,

where ρ1 and ρ∗1 are defined exactly as in condition (H7). If conditions
(H1)–(H5) and (H7)–(H8) hold, where in condition (H7), λ0 is replaced
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by λ∗∗
0 as above, then for each λ ∈ (0, λ∗∗

0 ), problem (1.1) has at least
one positive solution.

Proof. Omitted since the proof of Theorem 3.1 carries over with-
out change so that essentially the only change is the obvious one in
inequality (2.11). �

We present a final corollary of Theorem 3.1. This fifth corollary
demonstrates that if we are willing to make a stronger assumption
regarding the size of the quantity fM

[0,ρ∗
1 ]
, then we can obtain an

extension of Theorem 3.1 that is applicable no matter the value of
the parameter λ > 0; thus, our theory can be extended to the case
where λ is free. This is thus more directly related to [14, Theorem
3.3], see also, [2, Theorem 3.1].

Corollary 3.7. Assume that inequality (3.1) holds. Suppose that
conditions (H1)–(H6) and (H8) hold. Fix a number λ > 0, and suppose
that

min

{
fM
[0,ρ1]

, fM
[0,ρ∗

1 ]

}
≤ Γ0

λ

(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

×min

{
1

2
min {A1C0, A2D0} ,

min
{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D1ρ∗
1 ]

}}
,

where the number ρ∗1 is defined in the proof of this corollary. Then
problem (1.1) has at least one positive solution for the value of λ so
fixed.

Proof. Notice that in the proof of Theorem 3.1 the number λ is not
restricted, other than λ > 0 must hold. This is seen by observing that
in the final estimate, namely (3.12), the number λ is absorbed into the

constant C̃. Since this constant is entirely composed of initial data, we

may select η > 0 as small as we like to ensure that the product ηC̃ is
as small as we like. Furthermore, the parts of the proof regarding the
spectral radius of L and the nontriviality of the obtained fixed point of
T also go through without change.
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Thus, it only remains to argue that T (K) ⊆ K when we do not
require that λ < λ0 hold. We first note that the second part of the
proof, namely the proofs of the coercivity of the maps φ1 and φ2, go
through without change since estimates (2.12)–(2.14) do not require
that λ have any particular restriction on its magnitude.

On the other hand, to demonstrate that (Ty)(t) ≥ 0, for each
t ∈ [0, 1], whenever y ∈ K, we consider cases, as before. Define the
number ρ∗1 as in (2.4), except here put

(3.17) ρ1 := inf

{
ρ0 ∈ (0,+∞) :

H1(z)

z
> A1,

H2(z)

z
> A2,

f(t, y)

y
<

Γ0 min {A1C0, A2D0}
2λ

(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

for all t ∈ [0, 1], whenever y, z ∈ [ρ0,+∞)

}
.

With the modified selection of ρ1 above, it follows that, if ∥y∥ ≥ ρ∗1 ≥ 1,
then, similar to equation (2.10), we compute

(Ty)(t) ≥ Γ0 min{A1C0, A2D0}∥y∥−λ

∫
{s:y(s)≥ρ1}

G−(t, s)f
(
s, y(s)

)
ds

− λ

∫
{s:y(s)<ρ1}

G−(t, s)f
(
s, y(s)

)
ds

≥ Γ0 min {A1C0, A2D0} ∥y∥

− λ · Γ0 min {A1C0, A2D0}
2λ

(
sup

t∈[0,1]

G−(t, s) ds

)−1

×
(∫ 1

0

G−(t, s) ds

)
∥y∥ − λfM

[0,ρ1]
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

≥ 1

2
Γ0 min {A1C0, A2D0} ∥y∥ − λfM

[0,ρ1]
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

≥ 1

2
Γ0 min {A1C0, A2D0} − λfM

[0,ρ1]
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds ≥ 0,

for each t ∈ [0, 1] where, to obtain the final inequality, we utilize the
smallness condition imposed on fM

[0,ρ1]
in the statement of this corollary.
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Finally, if instead it holds that ∥y∥ < ρ∗1, then, similar to estimate
(2.11), we write

(Ty)(t) ≥ Γ0 min
{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D1ρ∗
1 ]

}
−λ

∫ 1

0

G−(t, s)f
(
s, y(s)

)
ds

≥ Γ0 min
{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D1ρ∗
1 ]

}
−λfM

[0,ρ∗
1 ]

sup
t∈[0,1]

∫ 1

0

G−(t, s) ds

≥ 0,

for each t ∈ [0, 1]. Thus, whether ∥y∥ ≥ ρ∗1 or ∥y∥ < ρ∗1 holds, it follows
that (Ty)(t) ≥ 0 for each t ∈ [0, 1], and so, we conclude that T (K) ⊆ K.
This completes the proof. �

Remark 3.8. A simple modification of the proof of Corollary 3.7 allows
us to replace the inequality in the statement of the corollary with the
following pair of inequalities:

fM
[0,ρ1]

≤ 1

2
Γ0 min {A1C0, A2D0}

(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

;

and

fM
[0,ρ∗

1 ]
≤ Γ0

λ
min

{
Hm

1,[0,C1ρ∗
1 ]
,Hm

2,[0,D1ρ∗
1 ]

}(
sup

t∈[0,1]

∫ 1

0

G−(t, s) ds

)−1

.

We conclude this paper with some applications to explicate the use
of Theorem 3.1. We begin with an application to an ordinary differ-
ential equation, equipped with boundary conditions that, without the
nonlocal terms, obviate the possibility of a positive solution. In the first
example, we compute all the constants carefully to illustrate that these
computations are practical and that the result is not simply “abstract.”
In the succeeding examples, we mostly omit the computations and focus
more on the relationship between an abstract solution of the perturbed
Hammerstein integral equation (1.1) and a particular boundary value
problem. As was mentioned in Section 1, these examples are motivated,
in part, by some of the examples given by Infante and Pietramala [27,
Sections 6, 7]. Finally, our third example, i.e., Example 3.12, illus-
trates how our theory can yield results for elliptic PDEs with nonlocal
boundary conditions in the context of radially symmetric solutions.
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Example 3.9. Consider the choice γ1(t) := 1 − t and γ2(t) := t. Let
G : [0, 1]× [0, 1] → R be the map defined by

(3.18)

G(t, s) :=


1
2 (1− s) + 1

2

(
1
2 − s

)
− (t− s), 0 ≤ s ≤ min

{
t, 1

2

}
1
2 (1− s) + 1

2

(
1
2 − s

)
, 0 ≤ t ≤ s ≤ 1

2
1
2 (1− s)− (t− s), 0 < 1

2 ≤ s ≤ t
1
2 (1− s), 0 ≤ max

{
t, 1

2

}
< s.

Then the perturbed Hammerstein integral equation (1.1) becomes
(3.19)

y(t) = (1− t)H1

(
φ1(y)

)
+ tH2

(
φ2(y)

)
+ λ

∫ 1

0

G(t, s)f
(
s, y(s)

)
ds,

and an elementary exercise, which we omit, demonstrates that if y is a
solution of the perturbed Hammerstein integral equation (3.19), then y
is also a solution of problem (1.2) in the special case where β1 = −1 and
η = 1/2, i.e., any solution of (3.19) solves the boundary value problem

−y′′ = λf
(
t, y(t)

)
, 0 < t < 1

y′(0) = H2

(
φ2(y)

)
−H1

(
φ1(y)

)
y(1) = −y

(
1

2

)
+

1

2
H1

(
φ1(y)

)
+

3

2
H2

(
φ2(y)

)
.

For definiteness and to demonstrate that all constants and conditions
in Theorem 3.1 can be explicitly checked and computed, let us define
the functionals φ1 and φ2 as follows.

φ1(y) :=
1

2
y

(
1

2

)
− 1

50
y

(
1

6

)
φ2(y) :=

3

4
y

(
1

2

)
− 1

50
y

(
1

5

)
.

Let us notice from the outset that, for this particular choice of the map
(t, s) 7→ G(t, s), it holds that

inf
s∈[0,1]

∫ 1

0

G(t, s) dαi(t) = 0,



HAMMERSTEIN EQUATIONS 539

for each i = 1, 2. This is due to the fact that

inf
s∈[1/2,1]

∫ 1

0

G(t, s) dα1(t) = inf
s∈[1/2,1]

6

25
(1− s) = 0.

and that

inf
s∈[1/2,1]

∫ 1

0

G(t, s) dα2(t) = inf
s∈[1/2,1]

73

200
(1− s) = 0.

Thus, the blow-up strategy outlined in Section 1 is necessary for this
problem. We would also like to point out that the functions α1 and α2,
which are the integrators, are defined by

α1(t) :=


0, t < 1

6

− 1
50 ,

1
6 ≤ t < 1

2
12
25 , t ≥ 1

2

and

α2(t) :=


0, t < 1

5

− 1
50 ,

1
5 ≤ t < 1

2
73
100 , t ≥ 1

2

.

So, for the Green’s function defined by (3.18), one can show that the
map s 7→ G(s) assumes the form

G(s) := sup
t∈[0,1]

∣∣G(t, s)
∣∣ = { 3

4 − s, s ≤ 1
2

1
2 (1− s), s > 1

2 .

Consequently, we compute

1

G(s)

∫ 1

0

G(t, s) dα1(t) =


17
150

(
3
4 − s

)−1
, 0 ≤ s ≤ 1

6(
1
50s+

11
100

) (
3
4 − s

)−1
, 1

6 < s ≤ 1
2

12
25 ,

1
2 < s < 1.

Note that S0 = [0, 1) so that, in particular, then we compute
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C0 := inf
s∈[0,1)

1

G(s)

∫ 1

0

G(t, s) dα1(t)

= min

{
34

225
,
34

175
,
12

25

}
=

34

225
> 0.

Similarly, we find that

1

G(s)

∫ 1

0

G(t, s) dα2(t) =


353
2000

(
3
4 − s

)−1
, 0 ≤ s ≤ 1

5(
1
50s+

69
400

) (
3
4 − s

)−1
, 1

5 < s ≤ 1
2

73
100 ,

1
2 < s < 1,

so that

D0 := inf
s∈[0,1)

1

G(s)

∫ 1

0

G(t, s) dα2(t)=min

{
353

1500
,
353

1100
,
73

100

}
=

353

1500
>0.

It can also easily be shown that

G−(t, s)

:=


−1

2 (1− s)− 1
2

(
1
2 − s

)
+ (t− s), 0 ≤ s ≤ t, s < 1

2 , t ≥
3
4

−1
2 (1− s) + (t− s), 1

2 ≤ s ≤ 1, 1
2 + 1

2s ≤ t ≤ 1

0, otherwise,

so that

sup
t∈[0,1]

∫ 1

0

G−(t, s) ds= sup
t∈[3/4,1]

∫ 1

0

G−(t, s) ds= max
t∈[3/4,1]

(
t2−t+

3

16

)
=

3

16
>0.

Finally, using the fact that ∥γ1∥ = ∥γ2∥ = 1 one can check that the
following inequalities hold.

φ1 (γ1) =
7

30
≥ 34

225
= C0∥γ1∥

φ1 (γ2) =
37

150
≥ 34

225
= C0∥γ2∥

φ2 (γ1) =
359

1000
≥ 353

1500
= D0∥γ1∥

φ2 (γ2) =
371

1000
≥ 353

1500
= D0∥γ2∥.

Consequently, condition (H8) is satisfied.
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So, with all of the preliminary computations performed, we can
explicitly demonstrate the form that the auxiliary conditions take in
this specific problem. Condition (3.1) takes the form:

(3.20)
13

25
Ã1 +

77

100
Ã2 < 1,

since here we may take C1 := 13/25 and D1 := 77/100. For definite-
ness, let us select H1, H2, and f as follows.

H1(z) :=

{
1
10z +

1
10 , z ≤ 1

1
5z, z > 1

H2(z) :=

{
1
45z +

2
45 , z ≤ 1

1
15z, z > 1

f(t, y) := 2t
√
y.

We may thus put A1 := 1/6 and A2 := 1/16; obviously, f is uniformly
sublinear at +∞. Since we see that Γ0 = 1, it follows that

Γ0 min {A1C0, A2D0} = min

{
1

6
· 34

225
,
1

16
· 353

1500

}
=

353

24000
.

Thus, we may put, for example,

ε :=
352

24000
=

11

750
.

Since we calculate ρ1 = 4 so that ρ∗1 = 450/17 > 1, we obtain that

λ0 =
16

3
min

{min{Hm
1,[0,C1ρ∗

1 ]
,Hm

2,[0,D1ρ∗
1 ]
}

fM
[0,ρ∗

1 ]

,
1

24000
,

ε

fM
[0,4]

}

=
16

3
min

{
min{Hm

1,[0,234/17],H
m
2,[0,693/34]}

fM
[0,450/17]

,
1

24000
,

ε

fM
[0,4]

}
=

16

3
min

{
min{1/10, 2/45}

2
√
450/17

,
1

24000
,
11/750

4

}
=

16

3
min

{
1

45
√

450/17
,

1

24000
,

11

3000

}
=

1

4500
.

Condition (3.20) is also satisfied since

13

25
· 1
5
+

77

100
· 1

15
< 1.
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All in all, by means of Corollary 3.4 (since f(t, 0) ≡ 0), we conclude
that the problem

−y′′ = 2t
√
y, 0 < t < 1

y′(0) = H1

(
1

2
y

(
1

2

)
− 1

50
y

(
1

6

))
−H2

(
3

4
y

(
1

2

)
− 1

50
y

(
1

5

))
y(1) + y

(
1

2

)
=

1

2
H1

(
1

2
y

(
1

2

)
− 1

50
y

(
1

6

))
+

3

2
H2

(
3

4
y

(
1

2

)
− 1

50
y

(
1

5

))
has at least one positive solution whenever the parameter λ satisfies

λ ∈
(
0,

1

4500

)
.

Finally, due to the choice of the functionsH1 andH2 in this example,
the boundary condition both at t = 0 and at t = 1 can be realized in
a multipoint-form. For instance, if it holds that φ1(y), φ2(y) ∈ [0, 1],
then it follows that

y(1) = −19

20
y

(
1

2

)
− 1

1000
y

(
1

6

)
− 3

1500
y

(
1

5

)
+

7

60
.

The other cases proceed similarly.

Remark 3.10. Observe, as Example 3.9 demonstrates, that it need not
be the case that the maps z 7→ H1(z), H2(z) are actually nonlinear.
In fact, they may be affine on a neighborhood of 0 and linear on any
neighborhood that misses 0. Thus, our results demonstrate that the
nonlocal elements, even when affine or linear, may be used to obtain
existence of positive solutions in ways that have not been previously
observed.

Example 3.11. Consider the choices γ1(t) ≡ 2 and γ2(t) ≡ 3. In this
case, let us choose the kernel G : [0, 1]× [0, 1] → R defined by
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(3.21) G(t, s) :=


3
4 − t, 0 ≤ s ≤ min

{
1
2 , t
}

3
4 − s, t < s ≤ 1

2

1− t, 1
2 < s ≤ t

1− s, max
{

1
2 , t
}
< s ≤ 1.

It can be shown that

(3.22) G(s) := max
t∈[0,1]

∣∣G(t, s)
∣∣ = { 3

4 − s, 0 ≤ s ≤ 1
2

1− s, 1
2 < s ≤ 1.

Due to equation (3.21), it can be shown that any solution of the
perturbed Hammerstein integral equation (1.1) is a solution of the
boundary value problem

−y′′ = λf
(
t, y(t)

)
, 0 < t < 1(3.23)

y′(0) = 0(3.24)

y(1) =
1

4
y′
(
1

2

)
+ 2H1

(
φ1(y)

)
+ 3H2

(
φ2(y)

)
.(3.25)

Finally, let us now select φ1 and φ2 as follows.

φ1(y) :=
1

2
y

(
1

2

)
− 1

500
y

(
1

6

)
φ2(y) :=

3

4
y

(
1

2

)
− 1

500
y

(
1

5

)
.

As in Example 3.9, it is necessary here to use the “blow up” idea since

inf
s∈[0,1]

∫ 1

0

G(t, s) dαi(t) = 0,

for each i = 1, 2, as one can easily calculate.

Since we already demonstrated the calculation of the constants in
our theory in detail in Example 3.9, we will omit most of the details
here. Thus, it can be shown that

1

G(s)

∫ 1

0

G(t, s) dα1(t) =


743
6000

(
3
4 − s

)−1
, 0 ≤ s ≤ 1

6
4s+247

1500−2000s ,
1
6 < s ≤ 1

2
249
500 ,

1
2 < s < 1,
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so that S0 = [0, 1), and

C0 := inf
s∈[0,1)

1

G(s)

∫ 1

0

G(t, s) dα1(t) =
743

4500
> 0.

Similarly, one can show that

1

G(s)

∫ 1

0

G(t, s) dα2(t) =


233
1250

(
3
4 − s

)−1
, 0 ≤ s ≤ 1

5
s+93

375−500s ,
1
5 < s ≤ 1

2
187
250 ,

1
2 < s < 1,

so that

D0 := inf
s∈[0,1)

1

G(s)

∫ 1

0

G(t, s) dα2(t) =
466

1875
> 0.

We then discover that condition (H8) holds. Consequently, provided
that the functions H1, H2, and f satisfy the necessary structural and
growth conditions, we obtain that problem (3.23) has at least one
positive solution for λ ∈ (0, λ0) with λ0 > 0 sufficiently small. Since we
have already demonstrated in detail how to calculate the value of λ0 in
Example 3.9, we will not repeat a similar calculation for this example.

Example 3.12. As is well known, once one obtains existence-type
results for second-order boundary value problems, it is then easy to
transfer such results to the setting of radially symmetric solutions for
certain elliptic PDEs. In a recent paper by Infante and Pietramala
[27], the PDE

∆w + h
(
|x|
)
f(w) = 0, |x| ∈ [R1, R0]

∂w

∂r

∣∣∣∣∣
∂BR0

= 0

(
w (R1x)− β1w (Rηx)

)∣∣∣
x∈∂B1

= 0,

where R1 < Rη < R0 and x ∈ R2, was considered as an application
of their results; here, they took β1 < 0. They then demonstrated the
existence of a nontrivial but possibly sign-changing radially symmetric
solution of this PDE by means of the second-order ODE

w′′(t) + ϕ(t)h(r(t))f(w(t)) = 0, almost everywhere t ∈ [0, 1]
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w′(0) = 0

β1w(η) = w(1),

where

ϕ(t) =

(
R1−t

0 Rt
1 ln

(
R0

R1

))2

and

r(t) := R1−t
0 Rt

1 for t ∈ [0, 1].

Note that the derivation of the above ODE from the original elliptic
PDE can be found, among other places, in [27, 34, 38, 39].

So, motivated by the preceding example, we briefly demonstrate how
our theory allows us to deduce the existence of a positive solution to a
similar problem, namely, the problem

−∆u(x) = λg(u), |x| ∈ [1, e](3.26)

∂

∂r
u(x)

∣∣∣∣
x∈∂Be

= 0

(
u(x) + u

(
x
√
e
) )∣∣∣

x∈∂B1

= 4H1

(
1

2
u
(
x
√
e
)
− 1

50
u
(
xe5/6

))∣∣∣∣
x∈∂B1

+ 6H2

(
3

4
u
(
x
√
e
)
− 1

50
u
(
xe4/5

))∣∣∣∣
x∈∂B1

,

where x ∈ R2; note that, here, for convenience, we take h(r) ≡ 1. By
following the standard transformation described earlier, we obtain that
a radially symmetric solution of equation (3.26), i.e., a solution of the
form w = w(|x|), solves the boundary value problem:

w′′ + λe2(1−t)g
(
w(t)

)
= 0, t ∈ [0, 1]

(3.27)

w′(0) = 0

w(1) = −w

(
1

2

)
+ 4H1

(
1

2
w

(
1

2

)
− 1

50
w

(
1

6

))
+ 6H2

(
3

4
w

(
1

2

)
− 1

50
w

(
1

5

))
.
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Observe that problem (3.27) is precisely the situation considered in
Example 3.9, but in this case, with γ1(t) ≡ 2 and γ2(t) ≡ 3. It can
be shown that condition (H8) is satisfied in this case. Consequently,
so long as the functions H1, H2 and f(t, w) := e2(1−t)g(w) satisfy the
necessary conditions, we find that equation (3.27) and thus the PDE
given by equation (3.26) have at least one positive solution for all λ
sufficiently small. Moreover, if Corollary 3.7 may be applied (depending
upon the form of f), then for each λ > 0, the PDE has at least one
positive solution.

Finally, the same comments as before apply here, namely, that H1

and H2 need not be nonlinear. Thus, in particular, as in Example 3.9,
it is possible for the (radially symmetric) solution of equation (3.26),
and thus equation (3.27), to satisfy a multipoint-type condition in the
second boundary condition.
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