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ABSTRACT. We propose a collocation method for solv-
ing integral equations which model image restoration from
out-of-focus images. Restoration of images from out-of-focus
images can be formulated as an integral equation of the
first kind, which is an ill-posed problem. We employ the
Tikhonov regularization to treat the ill-posedness and obtain
results of a well-posed second kind integral equation whose
integral operator is the square of the original operator. The
present of the square of the integral operator requires high
computational cost to solve the equation. To overcome this
difficulty, we convert the resulting second kind integral equa-
tion into an equivalent system of integral equations which
do not involve the square of the integral operator. A mul-
tiscale collocation method is then applied to solve the sys-
tem. A truncation strategy for the matrices appearing in
the resulting discrete linear system is proposed to design a
fast numerical solver for the system of integral equations. A
quadrature method is used to compute the entries of the re-
sulting matrices. We estimate the computational cost of the
numerical method and its approximate accuracy. Numerical
experiments are presented to demonstrate the performance of
the proposed method for image restoration.

1. Introduction. Discrete models are usually used in image pro-
cessing due to their convenience in implementation and their consis-
tence with the usual sampling method. However, since discrete models
result from piecewise constant approximation of the integral equation

2010 AMS Mathematics subject classification. Primary 65R20, 65R32.
Keywords and phrases. Image restoration, inverse problems.
This research was partially supported by the Guangdong Provincial Government

of China through the Computational Science Innovative Research Team program,
by the Natural Science Foundation of China under grant Nos. 11471013, 11571386,
91530117, and by the U.S. National Science Foundation under grant No. DMS-
1522332. The third author is a Professor Emeritus of Syracuse University. All
correspondence should be sent to the third author.

Received by the editors on August 1, 2015, and in revised form on November 10,
2015.
DOI:10.1216/JIE-2016-28-2-263 Copyright c⃝2016 Rocky Mountain Mathematics Consortium

263



264 Y. LIU, L. SHEN, Y. XU AND H. YANG

which describes the processing, this imposes a bottleneck model error
which cannot be compensated for by any image processing method.

To overcome the shortcoming of discrete models, we shall use the
continuous model directly instead of an existing discrete model in
image restoration. The idea of using a continuous model for image
restoration was first proposed in [16]. There are several advantages
of using the continuous integral equation as commented upon in [16].
First of all, continuous models are derived directly from physical laws,
and therefore, they are physically meaningful and more accurate to
represent the physical phenomena. Second, continuous models allow
us to discretize them by a numerical method with a higher order of
accuracy instead of piecewise constant approximation, and hence the
resulting model error can be significantly reduced in comparison to the
model error of the piecewise constant discretization, especially in the
image enlargement, since an approximate solution obtained from the
continuous model is defined at every point in the continuous image
domain, interpolation which is required for that obtained from the
discrete model is no longer needed. Hence, the continuous model is
particularly suitable for image enlargement.

Direct use of a continuous model in image restoration has certain
new challenges. In image processing, the related integral operators are
compact in appropriate Banach spaces since their kernels are normally
smooth. As a result, the solutions of the related first kind integral
equations do not continuously depend on given data. Hence, a small
perturbation in the given data may cause a large perturbation in the
solution of the integral equation. This requires us to use an appropri-
ate regularization method to convert the ill-posed integral equation to
a well-posed one. Such ill-posed integral equations of the first kind are
usually turned to a class of well-posed Fredholm integral equations of
the second kind by a regularization method. We shall use the Tikhonov
method [13] to regularize the first kind integral equation. However, the
resulting well-posed second kind integral equation involves the square
of the original self-adjoint integral operator, and it will cost much more
to compute the square of a Fredholm integral operator than to com-
pute the original operator. Following [3], we shall convert the second
kind integral equation which involves the square of the integral opera-
tor into an equivalent system of integral equations which do not involve
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the square of the integral operator. In this way, we avoid computing
the square of the integral operator.

There are two other two crucial issues that remain to be resolved.
Appropriate choice of the regularization parameter is crucial for the suc-
cess of the regularization method. An optimal regularization parameter
should give the best balance between the well-posedness and approxi-
mation accuracy. The choice strategies of such parameters have been
discussed by many researchers (for example, see [13, 17, 21, 24, 25]).
Another issue is that discretization of the resulting integral equations
of the second kind leads to algebraic systems with full coefficient ma-
trices, and efficient numerical methods are required to reduce the large
computational cost in the numerical solutions of the systems. The
representation of certain integral operators under a multiscale basis is
numerically sparse and thus matrix compression techniques can be used
to approximate the full matrix by a sparse matrix. The idea has been
used for solving well-posed integral equations, and the methodology of
this method was described in [7].

We develop a multiscale piecewise polynomial collocation method for
solving this equation and then use the multiscale analysis to develop
a matrix compression technique which leads to a fast solver for the
integral equations. The reason that we choose the collocation method
is its lower computational cost in generating the coefficient matrix of
the corresponding discrete equation in comparison with the Galerkin
method. As shown in [16], the Galerkin method approximates both the
range and domain of the integral operator by the same basis functions
and, thus, the entries of the resulting discrete matrix are integrals whose
integration dimensions double those of the original integral that defines
the operator. However, there is a challenging issue related to developing
the collocation method for solving the ill-posed integral equation since
a posteriori parameter choice strategies for the fast collocation method
demands certain estimates in the L∞(E) norm, which are not available.
This is one of our focuses of this paper. We shall give an estimate of
the L∞ norm bound of the regularized integral operator and develop
a posteriori parameter choice strategies for the collocation method.

We organize this paper in seven sections. In Section 2, we intro-
duce the integral equation of the first kind that governs the image
restoration from an out-of-focus image, consider its Tikhonov regular-
ized equation and convert the Tikhonov regularization equation into a
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system of integral equations which do not involve the square of the orig-
inal integral operator. We describe in Section 3 a multiscale collocation
method based on the multiwavelet of Micchelli and Xu [18, 19] and the
multiscale collocation functionals of Chen, Micchelli and Xu [4, 6] for
solving the corresponding regularized integral equation of the second
kind. We propose a matrix compression strategy in Section 4. In Sec-
tion 5, we introduce the numerical quadrature scheme to compute the
nonzero entries of the compressed coefficient matrix, which is designed
so that the quadrature error will not ruin the overall convergence order
and the number of functional evaluations used in computing all the
nonzero entries is linear with a logarithmic factor with respect to the
dimension of the approximate solution space. We propose in Section 6
a posteriori regularization parameter strategies and provide a complete
analysis of the convergence rate of the corresponding approximate solu-
tion obtained by using the parameter. Finally, in Section 7, we present
numerical examples to demonstrate the performance of the proposed
method for image restoration.

2. An integral equation model for image restoration. In this
section, we describe an integral equation model for image restoration.
In particular, we are interested in the integral equation which governs
the image restoration from an out-of-focus image.

The image restoration problem may be modeled by an integral
equation of the first kind. Specifically, we let Ω ⊂ R2 denote the image
domain, usually a rectangular region. We are given an observed image
f : Ω → R and wish to restore the original image υ : Ω → R from f .
The original image and the observed image are related via the integral
equation

(2.1) Gυ = f,

where G is the Fredholm integral operator defined in terms of a kernel
k by

(2.2) (Gυ)(x) :=
∫
Ω

k(x, x′)υ(x′) dx′, x ∈ Ω.

We call G the blurring operator. Mathematically, restoring the original
image from a blurred image f is equivalent to solving υ from the integral
equation (2.1).
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The choice of the kernel depends on the specific application context.
Examples of integral equation (2.1) with special kernel may be found
in [2, 14]. In this paper, we will focus on developing basic concepts of
using integral equations in the numerical process of image restoration
and, for this reason, we will use the out-of-focus image model as an
example. Let Ω := E × E with E := [0, 1]. An out-of-focus image is
usually modeled [11] with the kernel

(2.3) k(x, x′) =
1

2πσ2
exp

(
− (x− x′)2 + (y − y′)2

2σ2

)
,

where x := (x, y), x′ := (x′, y′) ∈ Ω and σ is the model parameter
characterizing the degree of accuracy and clearness of the image in the
system.

The two-dimensional integral equation (2.1) with the kernel (2.3)
may be written as a system of two univariate integral equations due to
the symmetry of the kernel. That is, equation (2.1) is equivalent to the
system

1√
2πσ

∫ 1

0

exp

(
− (y − y′)2

2σ2

)
u(x, y′) dy′ = f(x, y),(2.4)

1√
2πσ

∫ 1

0

exp

(
− (x− x′)2

2σ2

)
υ(x′, y′) dx′ = u(x, y′).(2.5)

For a given observed blurred image f , we may obtain the original
image by successively solving the above two one-dimensional integral
equations. We first solve equation (2.4) for u and then solve equation
(2.5) for v. For this reason, in the remaining part of this paper, we
shall focus on developing a collocation method for solving the one-
dimensional integral equation

(2.6) Kv = h,

where the integral operator K is defined for v ∈ X := L∞(E) by

(2.7) (Kv)(x) :=
∫
E

K(x, y)v(y) dy, x ∈ E,

with
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(2.8) K(x, y) :=
1√
2πσ

exp

(
− (x− y)2

2σ2

)
, x, y ∈ E,

and h ∈ X is a given function.

Integral equation (2.6) is ill-posed in the sense that its solution does
not continuously depend on the given data h due to the compactness of
the integral operatorK onX. Therefore, we need to use a regularization
method to find its approximate solution. In this paper, we will adapt
the Tikhonov regularization method. The Tikhonov regularization
solution vλ of (2.6) is obtained by solving the second kind integral
equation

(2.9) (λI +K∗K)vλ = K∗h,

where I denotes the identity operator on X, K∗ denotes the adjoint
operator of K and λ is a regularization parameter. Actually, due to
measurement errors, the observed data is a noisy one, hδ with

(2.10) ∥h− hδ∥∞ ≤ δ

for a noise level δ. We shall denote by vδλ the solution of equation (2.9)
with h being replaced by hδ, and we rewrite equation (2.9) as

(2.11) (λI +K∗K)vδλ = K∗hδ.

The operator λI + K∗K is strictly coercive, and thus, for any positive
number λ, it has a bounded inverse [16]. Being a convolution-type
operator, K is self-adjoint, that is, K∗ = K. Hence, equation (2.11)
may be rewritten as

(2.12) (λI +K2)vδλ = Khδ.

Note that the integral operator K2 has the kernel

K(x, y) :=

∫
E

K(x, z)K(z, y) dz, x, y ∈ E.

Clearly, from the above expression of the kernel of the integral operator
K2, evaluation of (K2vδλ)(x) requires computing a double integral,
which is computationally expensive.

We shall develop an efficient collocation method for solving equation
(2.12). A difficulty in the numerical solution of this equation is
the involvement of the integral operator K2 in the equation. The
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collocation method applied directly to solving equation (2.12) leads
to a linear system whose coefficient matrix has the entries involving
(K2vδλ)(x) for x ∈ E. Since it is computationally expensive to compute
(K2vδλ)(x) for x ∈ E, avoiding evaluating the double integrals is highly
desirable. To this end, following an idea used in [3], we observe that
equation (2.12) is equivalent to the following equation

(2.13) K(Kvδλ − hδ) + λvδλ = 0.

By letting
√
λxδλ := Kvδλ − hδ, we write equation (2.13) as a system of

equations

(2.14)

{
Kxδλ +

√
λvδλ = 0,

Kvδλ −
√
λxδλ = hδ.

Instead of solving equation (2.12) directly, we shall solve the system
(2.14). The collocation method applied to system (2.14) leads to
a linear system whose coefficient matrix has the entries involving
(Kvδλ)(x) for x ∈ E. Hence, the coefficient matrix of the linear system
of the integral equation system involves only single integrals. Efficient
methods can be developed for the integral equation system (2.14).

3. Multiscale collocation methods. This section is devoted to
describing a multiscale collocation method for solving the integral
equation system (2.14). The discretization of system (2.14) leads to
a linear system having a dense coefficient matrix. We shall adapt the
multiscale analysis presented in [4, 6, 7, 18, 19] and the references
cited therein to develop an efficient multiscale collocation method for
solving system (2.14).

The multiscale analysis suitable for developing collocation methods
for solving system (2.14) provides a multiscale basis of a subspace V
(which contains the continuous function space C(E)) of X and a set of
multiscale collocation functionals. The multiscale basis will be used to
approximate the solution of system (2.14), and the set of functionals
will be used to set up the collocation method.

We describe below the basis and the set of functionals. Specifically,
we shall choose the solution space of the integral equation to be a space
of piecewise polynomials on multiscale partitions. Following [18, 19],
we construct a multiscale basis for the piecewise polynomial space. Let
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N denote the set of all positive integers and N0 := N ∪{0}. For n ∈ N ,
we let Zn := {0, 1, . . . , n− 1} and Zn

µ := Zµ×· · ·×Zµ (n times). For a
fixed positive integer µ with µ > 1, we define a set Φ := {φϵ : ϵ ∈ Zµ}
of contractive mappings on E by

φϵ(t) :=
ϵ+ t

µ
, t ∈ E, ϵ ∈ Zµ.

Clearly, we have that

E =
∪

ϵ∈Zµ

φϵ(E).

The contractive mappings φϵ will be used to form a sequence of multi-
scale partitions of E on which the multiscale basis and the correspond-
ing collocation functionals will be defined. Specifically, associated with
these mappings, we define linear operators Tϵ : X → X for v ∈ X by

(Tϵv)(·) := µ1/2(v ◦ φ−1
ϵ )(t)χφε(E)(t), t ∈ E,

where χJ is the characteristic function of set J ⊂ E. We let X0 :=
∏

k

be the space of all polynomials of degree ≤ k − 1. With the given
subspaceX0 and linear operators Tϵ, we generate recursively a sequence
of multiscale piecewise polynomial spaces Xn by

Xn :=
⊕
ϵ∈Zµ

Tϵ(Xn−1), n ∈ N.

Note that Xn is a space of piecewise polynomials of degree k − 1 and
Xn ⊂ Xn+1. We let Wn+1 denote the orthogonal complement of Xn

in Xn+1, that is, Xn+1 = Xn ⊕⊥ Wn+1. With the convention that
W0 = X0, we have that Xn =W0⊕⊥W1⊕⊥ · · ·⊕⊥Wn, and the spaces
Wj , j ∈ Zn+1, form a multiscale analysis of the space Xn. Moreover,
when W1 is available, we have for n ∈ N that

(3.1) Wn+1 = ⊕ϵ∈ZµTϵ(Wn).

For j ∈ N , we let w(j) := dimWj , and it is easy to verify that
w(1) = r := (µ − 1)k and w(i) = µi−1r. We may choose the k
orthonormal polynomials {w0j : j ∈ Zk} on E as a basis of X0 and
construct an orthonormal basis {w1j : j ∈ Zw(1)} of W1 via the Gram-
Schmidt process.

The multiscale basis {wij : j ∈ Zw(i)} ofWi can then be constructed
from that of Wi−1 by applying the operators Tϵ. The basis functions
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wij may be expressed in terms of consecutive applications of operators
Tϵ to basis functions of W1. To see this, note that each j ∈ Zµi

can be uniquely written as j = µi−1s0 + · · · + µsi−2 + si−1 for
some s = [s0, s1, . . . , si−1] ∈ Zi

µ. Hence, we write j = µ(s). For

s = [s0, s1, . . . , si−2] ∈ Zi−1
µ , we let Ts := Ts0 ◦ Ts1 ◦ · · · ◦ Tsi−2 .

Then, for j ∈ Zw(i), j = µ(s)r + ℓ with i > 1, s ∈ Zi−1
µ and

ℓ ∈ Zr, we have that wij = Tsw1ℓ. By defining the index set
Un := {(i, j) : i ∈ Zn+1, j ∈ Zw(i)}, we conclude that {wij : (i, j) ∈ Un}
forms a multiscale orthonormal basis for Xn.

We now identify the support of wij . For each i ∈ N with i > 1 and,
for s ∈ Zi−1

µ , we let Φs := φs0 ◦φs1 ◦· · ·◦φsi−2 and define Eis := Φs(E).
Clearly, we have that ∪

s∈Zi−1
µ

Ei,s = E

and

meas (Ei,s ∩ Ei,s′) = 0 for s ̸= s.

Moreover, letting Sij := Ei,s, for i > 1 and j = µ(s)r+ℓ with s ∈ Zi−1
µ ,

l ∈ Zr, we define E0,j := E, j ∈ Zk and E1,j := E, j ∈ Zr. Clearly,
the support of wij is contained in Sij .

Next, we turn to describing the sequence of the multiscale collocation
functionals. Corresponding to each basis function wij , we have a
collocation functional ℓij , which is a sum of point evaluation functions
at a fixed number of points in Sij . Specifically, following [4], we choose
a finite set G0 := {ti : j ∈ Zk} of distinct points in E, which is refinable
relative to the mappings Φ in the sense that

Φ(G0) :=
∪

ϵ∈Zµ

φϵ(G0) ⊃ G0.

We let G1 := Φ(G0) and V1 := G1 \G0 = {tk+j : j ∈ Zr}. For j ∈ Zk,
we define ℓ0j := δtj . For j′ ∈ Zr and q := k + r, we find the vector
[cjs : s ∈ Zq] such that ℓ1j′ :=

∑
s∈Zq

cjsδts , j ∈ Zr, satisfies the

equations ⟨ℓ1j′ , w0j⟩ = 0, for j ∈ Zk, and ⟨ℓ1j′ , w1j⟩ = δj′j , for j ∈ Zr.
To generate the multiscale collocation functionals, we introduce for
any s ∈ Zµ a linear operator Ls : X∗ → X∗ defined by the equation
⟨Lsℓ, v⟩ = ⟨ℓ, v ◦ φs⟩, v ∈ X, ℓ ∈ X∗, where X∗ denotes the dual
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space of X. Moreover, for s := [s0, s1, . . . , si−1] ∈ Zi
µ, we define the

composition operator as Ls := Ls0 ◦ · · · ◦Lsi−1 . For i > 1, j = µ(s)r+ l

with s ∈ Zi−1
µ , l ∈ Zr, we define ℓij := Lsℓ1l and observe that

⟨ℓij , v⟩ = ⟨ℓ1l, v ◦ φs⟩ =
∑
s∈Zq

clsv(φs(ts)).

Clearly, the “support” Ŝij of ℓij is also contained in Sij .

We next summarize several useful properties of the basis functions
and the collocation functionals that we constructed above. To this
end, we let Pn denote the projection from X onto Xn defined by the
requirement that

(3.2) ⟨ℓij ,Pnx⟩ = ⟨ℓij , x⟩, (i, j) ∈ Un.

We shall use c to denote a universal constant which can be distinct at
different occurrences in the remaining sections.

Proposition 3.1. The following properties hold :

(i) For any n ∈ N0, ⟨ℓi′j′ , wij⟩ = δii′δjj′ , (i, j), (i
′, j′) ∈ Un, i ≤ i′.

(ii) For p ∈
∏

k, ⟨ℓij , p⟩ = 0, ⟨wij , p⟩ = 0, (i, j) ∈ Un.
(iii) There exists a positive constant θ0 such that, for all (i, j) ∈ Un,

∥ℓij}+ ∥wij∥∞ ≤ θ0 holds.
(iv) If dimXi = s(i) and max{meas (Ei,s) : s ∈ Zi−1

µ } = di, then

s(i) ∼ µi, w(i) ∼ µi and di ∼ µ−i.
(v) The operators Pn are well defined and converge pointwise to the

identity operator I ∈ X as n → ∞, that is, for each x ∈ X,
limn→∞ ∥Pnx− x∥ = 0 holds.

(vi) There exists a positive constant c such that, for all u ∈ W k,∞,
dist (u,Xn) ≤ cµ−kn∥u∥k,∞.

(vii) There exist positive constants θ1 and θ2 such that, for all n ∈ N0

and v ∈ Xn having the form v =
∑

(i,j)∈Un
vijwij, the following

inequality holds

θ1∥v∥∞ ≤ ∥v∥∞ ≤ θ2(n+ 1)∥Env∥∞,

where v := [vij : (i, j) ∈ Un]
T s.

The proof of these properties may be found in [7].
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We now describe the multiscale collocation method for solving sys-
tem (2.14) of integral equations. For n ∈ N , let Kn := PnK|Xn

.
The multiscale collocation method for system (2.14) seeks vectors

vδ
λ,n := [vλ,nij : (i, j) ∈ Un]

T and xδ
λ,n := [xλ,nij : (i, j) ∈ Un]

T such
that

vδλ,n :=
∑

(i,j)∈Un

vλ,nij wij

and

xδλ,n :=
∑

(i,j)∈Un

xλ,nij wij

are the solution of

(3.3)

{
Knx

δ
λ,n +

√
λvδλ,n = 0,

Knv
δ
λ,n −

√
λxδλ,n = Pnh

δ.

By introducing

En := [⟨ℓi′j′ , wij⟩ : (i, j), (i′, j′) ∈ Un],

Kn := [⟨ℓi′j′ ,Kwij⟩ : (i, j), (i′, j′) ∈ Un]

and

hδ
n = ⟨ℓi′j′ , hδ⟩ : (i′, j′) ∈ Un],

equation (3.3) has the matrix form

(3.4)

[
Kn, −

√
λEn√

λEn, Kn

] [
vδ
λ,n

xδ
λ,n

]
=

[
hδ
n

0

]
.

Upon solving system (3.4), we obtain an approximate solution of the
system (2.14). To close this section, we compare the solution of
system (2.14) as an approximation of the reconstructed image with
that of the discrete model. When the basis functions are chosen as
the piecewise constant approximation, the solution of system (2.14) is
in fact the same as the solution of the discrete model. An advantage
of using the continuous model is that it allows us to use piecewise
polynomial approximations of a higher order. They will give us more
accurate approximations of the reconstructed image. Higher order
piecewise polynomial approximation is particularly suitable for image
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enlargement, since the basis functions chosen are defined on the entire
image domain. Image enlargement for an image generated from a
discrete model requires certain interpolation, which normally gives
poor quality. For numerical comparison, the reader is referred to [16].
However, the use of a high order piecewise polynomial approximation
will lead to higher computational complexity. This is a main issue that
we shall address in the next section.

4. Generation of the compressed matrix. In this section, we
propose a matrix compression strategy for the coefficient matrix of the
linear system (3.4) and develop a quadrature scheme for computing the
remaining nonzero entries of the resulting compressed matrix.

We first consider compressing the coefficient matrix of the linear
system (3.4), which is formed by two matrices En and Kn. Note that,
according to property (i) in Proposition 3.1, matrix En is a block upper
triangular matrix with the identity matrices in the diagonal blocks,
which is already sparse. However, matrix Kn is a dense matrix with
each of its entries an integral involving the Gaussian kernel. Although
the Gaussian kernel is smooth, when its variance is small, the kernel
behaves like a singular function, and computing integrals involving the
kernel needs special care. Generating such a matrix requires much
computational cost when the size of the matrix is large. In order to
reduce the computational cost and yet retain the order of accuracy
of the approximate solution, we propose to truncate the matrix Kn

according to the properties of the Gaussian kernel.

We denote by Ki′j′,ij the entries of matrix Kn, that is, Ki′j′,ij :=
⟨ℓi′j′,Kwij⟩. We partition Kn as a block matrix

Kn = [Ki′i : i, i
′ ∈ Zn+1],

where
Ki′i := [Ki′j′,ij : j

′ ∈ Zω(i′), j ∈ Zω(i)].

We use dist (Y,Z) := min{|y−z| : y ∈ Y, z ∈ Z} to denote the distance
between two compact sets Y and Z of R. For each i, i′ ∈ Zn+1, we

choose a truncation parameter δi′i and introduce the matrix K̂i′i :=
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[K̂i′j′,ij : j
′ ∈ Zω(i′), j ∈ Zω(i)], where

(4.1) K̂i′j′,ij :=

{
Ki′j′,ij if dist (Si′j′ , Sij) ≤ σδi′i,

0 otherwise.

We then define the compressed matrix K̂n by letting K̂n := [K̂i′i :

i′, i ∈ Zn+1] and replace the matrix K̂n in (3.4) by K̂n. This gives rise
to the compressed linear system

(4.2)

[
K̂n −

√
λEn√

λEn K̂n

] [
v̂δ
n,λ

x̂δ
n,λ

]
=

[
hδ
n

0

]
.

We solve the linear system (4.2) for vectors v̂δ
n,λ and x̂δn,λ, which provide

an approximation of vδ
n,λ and xδ

n,λ, respectively.

In the truncation scheme described above, there is a parameter δi′i
which may depend on i, i′ needing to be determined. We choose it in a
way similar to the Galerkin method described in [16]. Specifically, we
let

g(x) :=
1√
2π

exp

(
− x2

2

)
, x ∈ R

denote the normalized Gaussian function, and define

(4.3) G2k(t) :=

∫ ∞

t

|g(2k)(ξ)| dξ, t ∈ [0,∞).

For two given numbers α and α′, we let

(4.4) ϵi′i := aηµ−η(−n+α(n−i)+α′(n−i′))σ2k,

where η := 2k1. If ϵi′i < G2k(0), we choose δi′i such that

(4.5) G2k(δi′i) = ϵi′i,

and otherwise, we choose

(4.6) δi′i := 0.

The nonlinear equation (4.5) may be solved numerically with the
method described in [16].

We next estimate the number of nonzero entries in matrix K̂n. For
a matrix K, we denote by N (K) the number of nonzero entries in K.
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Theorem 4.1. If α and α′ are real numbers not larger than one, and
the truncation parameters δi′i are chosen as in (4.5) and (4.6), then
there exists a positive constant c such that, for all σ > 0,

N(K̂n) ≤ cs(n) logτ s(n),

where τ = 1, except for α = α′ = 1, in which case τ = 2.

Proof. We first estimate the number N (K̂i′i). For fixed i, i
′ and j′,

if K̂i′i ̸= 0, then we have that dist (Si′j′ , Sij) ≤ σδi′i. This ensures that

Sij ⊆ S(i, i′) := {x : x ∈ R, |x− x0| ≤ di + di′ + σδi′i},

where x0 is an arbitrary point in the set Si′j′ . Let Ni,i′j′ denote the
number of the sets contained in S(i, i′). Using Proposition 3.1 (iv), we
conclude that there exists a positive constant c such that

(4.7) Ni,i′j′ ≤
meas (S(i, i′))

min{meas (Sij) : Sij ⊆ S(i, i)}
≤ cµi(di + di′ + σδi′i).

See [20] for more details. Note that the number of functions wij

having support contained in Sij is bounded by r := ω(1). Appealing to
Proposition 3.1 (iv), we conclude that there exists a positive constant
c such that
(4.8)

N (K̂i′i) ≤ r
∑

j′∈Zω(i′)

Ni,i′j′ ≤ cµi+i′(di + di′ + σδi′i), i, i′ ∈ Zn+1.

It remains to estimate N (K̂n). It follows from (4.8) that

(4.9) N (K̂n) ≤ c(N1 +N2),

where

N1 :=
∑

i∈Zn+1

∑
i′∈Zn+1

µi+i′(di + di′),

N2 :=
∑

i∈Zn+1

∑
i′∈Zn+1

µi+i′σδi′i.

Since di ∼ µ−i and di′ ∼ µ−i′ , we obtain that

(4.10) N1 ≤ c(n+ 1)µn.
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We next estimate N2. Noting that limξ→∞ |g2k(ξ)ξ2k| ≤ c, which
implies that

c

|ξ|2k
≥ |g(2k)(ξ)|.

Integrating both sides of the above inequality over [δi′i,∞) yields∫ ∞

δi′i

c

|ξ|2k
dξ ≥

∫ ∞

δi′i

|g(2k)(ξ)| dξ.

If δi′i ̸= 0, computing the integral on the left-hand side and using (4.5),
we have that

c

2k − 1
δ
−(2k−1)
i′i ≥ a−ηµ−η(−n+α(n−i)+α′(n−i′))σ2k,

which ensures that

(4.11) σδi′i ≤ ca
1

σ1/2k−1
µ−n + α(n− i) + α′(n− i′).

Using (4.11), we have that

N2 ≤ ca
1

σ1/2k−1
µn

∑
i∈Zn+1

µ(α−1)(n−i)
∑

i′∈Zn+1

µ(α′−1)(n−i′) = cµnnτ ,

which, together with (4.9) and (4.10) proves the desired result of this
theorem. �

We next turn to discussing computation of the nonzero entries of

the matrix K̂n. These entries are integrals whose integrands involve
products of the Gaussian kernel and piecewise polynomials. When
the variance of the Gaussian kernel is small, the kernel behaves like
a singular function, although it is smooth. Hence, the integration of

these functions requires special treatment. The nonzero entries K̂i′j′,ij

of matrix K̂n needing to be computed have the form

K̂i′j′,ij =
∑

x∈Ŝi′j′

cx

∫
Sij

hij(x, y) dy,

where hij(x, y) := K(x, y)wij(y). Recalling that the Gaussian kernel K
is not an elementary function, the above integrals cannot be computed
exactly. As a result, we have to resort to numerical methods for

evaluating K̂i′j′,ij . We shall develop a numerical quadrature scheme
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for computing the integrals

I(hij) :=

∫
Sij

hij(x, y) dy,

so that the quadrature error will not ruin the overall convergence order
of the resulting approximate solution. To this end, following similar
ideas proposed in [8, 15, 16], we shall use an appropriate partition of
Sij and apply the Gauss-Legendre quadrature formula to the integrals
on subintervals.

Let ϵ > 0 be a given fixed number, and let m be a positive integer.
We choose β to satisfy that

(4.12) 1− β < σβ1+1/2ϵ.

Let t0 := 0 and tι := βm−ι for ι ∈ Zm+1 \ {0}, and choose a
sequence of nonnegative integers kι := [ϵℓ] + 1 for ι ∈ Zm, where
[x] is the largest integer less than or equal to x. For a point x, we
pick two collections of nodes πr

t := {trι := x + tι : ι ∈ Zm+1 \ {0}}
and πl

t := {tlι := x − tι : ι ∈ Zm+1 \ {0}}. Let π(hij) be a set

π(hij) := {xℓ : ℓ − 1 ∈ Zm′−1} such that hij ∈ C(k−1)(E \ π(hij))
and [q′, q′′] := supp (hij). We arrange the elements of the set

(π(hij) ∪ πr
t ∪ πl

t ∪ {q′, q′′}) ∩ supp (hij)

in the increasing order and write them as a new sequence

q′ = q0 < q1 < · · · < qm′′ = q′′,

where m′′ ≤ 2m +m′ + 1. We define the partition
∏
(hij) := {Qα :=

[qα, qα+1) : α ∈ Zm′′}. For each interval [qα, qα+1], there exists an
ι ∈ Zm such that [qα, qα+1] ⊆ [trι , t

r
ι+1] or [qα, qα+1] ⊆ [tlι+1, t

l
ι].

We approximate the integral I(hij) by computing the integral on
each interval [qα, qα+1] using the Gauss-Legendre quadrature having
precision of order 2kι − 1.

The integral of hij on [qα, qα+1] is computed approximately. Let gkι

denote the Legendre polynomial of degree kι on E, let {τℓ : ℓ ∈ Zkℓ
}

denote its kι zeros with the order 0 < τ0 < · · · < τkι−1 < 1, and
let τ ℓα := qα + (qα+1 − qα)ℓ, ℓ ∈ Zkι . We then construct a piecewise
polynomial Sα(hij) of order kι, which interpolates hij at points τ ℓα,
ℓ ∈ Zkι on [qα, qα+1] and is equal to zero outside [qα, qα+1]. We use
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∑
α∈Zm′′ I(Sα(hij)) to approximate I(hij) and use

K̃i′j′,ij :=
∑

x∈Ŝi′j′

cx
∑

α∈Zm′′

I(Sα(hij))

to approximate the nonzero entry K̂i′j′,ij . We replace the nonzero

entries K̂i′j′,ij of K̂i′i by K̃i′j′,ij and denote by K̃i′i the resulting matrix

block, and we use these blocks to form the matrix K̃n. In system (4.2),

we replace the matrix K̂n by K̃n to obtain the approximate system

(4.13)

[
K̃n −

√
λEn√

λEn K̃n

] [
ṽδ
n,λ

x̃δ
n,λ

]
=

[
hδ
n

0

]
,

where ṽδ
λ,n := [ṽλ,δij : (i, j) ∈ Un] and x̃δ

λ,n := [x̃λ,δij : (i, j) ∈ Un].

Defining ṽδλ,n :=
∑

(i,j)∈Un
ṽλ,δij wij and x̃δλ,n :=

∑
(i,j)∈Un

x̃λ,δij wij , we

observe that ṽδλ,n, x̃
δ
λ,n ∈ Xn, and they are an approximate solution of

system (2.14).

To close this section, we present an estimate of the computational

complexity for generating the matrix K̃n in terms of the total num-
ber Mn of functional evaluations used in computing all nonzero en-
tries of the matrix. We denote by Mi′i the number of functional

evaluations in computing the nonzero entries of block K̃i′i. Thus,
Mn =

∑
i′i∈Zn+1

Mi′i.

Theorem 4.2. If δi′i is chosen according to (4.5) and (4.6) with α ≤ 1
and α′ ≤ 1, then there exists a positive constant c such that, for all σ
and n ∈ ZN ,

Mn ≤ cs(n) log3 s(n).

Proof. For i′, i ∈ Zn+1, we let Mi′j′,i denote the number of
functional evaluations used in computing the j′th row of the block

K̃i′i. Recalling that the number of rows in the block is w(i′), we have
that

(4.14) Mi′i = w(i′)Mi′j′,i.

To estimate Mi′j′,i, we let M(h) denote the number of functional
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evaluations used in computing I(S(h)). We then have that

(4.15) Mi′j′,i =
∑

j∈Zi′j′,i

M(hij).

Associated with the geometric partition described earlier in this section,
there is a unique Li′i ∈ Zm′′ such that

tLi′i−1 ≤ min{σδi′i + di + di′}

and

tLi′i ≥ min{σδi′i + di + di′}.

By using the fact that kι = [ϵι] + 1, we have that∑
j∈Zi′j′,i

M(hij) ≤
∑

ι∈ZL
i′i

∑
[qα,qα+1]⊂([trι ,t

r
ι+1]∪[tlι,t

l
ι+1])

kι

≤ (2µi(di + di′ + σδi′i) + 2Li′i)(ϵLi′i + 1).

We can see that m′′ ≤ cn for a constant c, independent of i and i′.
Thus, we obtain that

Mi′j′,i ≤ c1µ
in(di + di′ + σδi′i) + c2n

2.

By using (4.11), we further have that

Mi′i ≤ c1nµ
i+i′(µ−n+α(n−i)+α′(n−i′) + µ−i + µ−i′) + c2µ

i′n2.

This leads to the estimate

Mn ≤ c1n
∑

i′∈Zn+1

∑
i∈Zn+1

µi′+i(µ−n+α(n−i)+α′(n−i′)+µ−i+µ−i′)+c3µ
nn3

≤ c1µ
nnτ+1+ cµnn3,

where τ = 1, except for α = α′ = 1, in which case τ = 2. �

5. Convergence analysis. In this section, we establish a conver-
gence result for the approximate solution ṽδλ,n obtained from the nu-
merical method developed in the previous section. We let ṽ denote
the solution of equation (2.6), that is, ṽ = K†h, where K† denotes the
Moore-Penrose generalized inverse of K. By the triangle inequality, we
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have that

(5.1) ∥v̂ − ṽδλ,n∥∞ ≤ ∥ṽ − vλ∥∞ + ∥vλ − ṽδλ,n∥∞,

where vλ is the Tikhonov regularization solution of equation (2.6). We
shall estimate the two terms on the right hand side of (5.1). To estimate
the first term of equation (5.1), we impose the following

(H) v̂ ∈ R((KK)νK) with 0 < ν ≤ 1, that is, there exists an
ω ∈ L∞(E) such that v̂ = (KK)νKω.

According to [12], we have the following lemma.

Lemma 5.1. If hypothesis (H) holds, then

(5.2) ∥v̂ − vλ∥∞ ≤ c(ν)∥ω∥∞λν , as λ→ 0,

where c(ν) is the constant defined by

(5.3) c(ν) :=

{
(sin νπ)/(ν(1− ν)π) if 0 < ν < 1,

1 ν = 1.

We next estimate the second term on the right hand side of (5.1). For
this purpose, we write the equivalent operator form of system (4.13).

To this end, we let K̃n denote the operator from Xn to Xn such that

its matrix representation under the basis ωij , (i, j) ∈ Un, is E−1
n K̃n.

Associated with the operator K̃n, the system (4.13) has the following
operator form

(5.4)

{
K̃nx̃

δ
λ,n +

√
λṽδλ,n = 0,

K̃nṽ
δ
λ,n −

√
λṽδλ,n = Pnh

δ.

By eliminating the variable x̃δλ,n, we obtain the operator equation of

the function ṽδλ,n,

(5.5) (λI + K̃)ṽδλ,n = K̃nPnh
δ.

To estimate ∥vλ − ṽδλ,n∥∞, we study the error ∥K2 −K2
n∥∞, where the

operator norm is defined on the space Xn. By the triangle inequality,
we have that

(5.6) ∥K2 − K̃2
n∥∞ ≤ ∥K2 −K2

n∥∞ + ∥K2
n − K̂2

n∥∞ + ∥K̂2
n − K̃2

n∥∞.
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We shall estimate the three errors that appear on the right hand side
of (5.6).

By the definition of the operator norm on Banach spaces, we have
that

∥K∥∞ = sup
x∈X

∥Kx∥∞
∥x∥∞

≥ sup
x∈Xn

∥Kx∥∞
∥x∥∞

= ∥K|Xn∥∞.

Recalling that ∥K∥∞ is bounded, K|Xn∥∞ is bounded as well. It follows
from properties (v) and (vi) in Proposition 3.1 that a positive constant
c exists such that, for all n ∈ N ,

∥K2 −K2
n∥∞ ≤ ∥(I − Pn)K|Xn∥∞∥K|Xn∥∞(5.7)

+ ∥PnK|Xn∥∞∥(I − Pn)K|Xn∥∞ ≤ cµkn.

In order to estimate the second item on the right hand of (5.6), we next
analyze the convergence of the truncation algorithm.

Our first goal is to obtain estimates for the entries of matrix Kn. To
this end, we state the following lemma.

Lemma 5.2. There exists a positive constant c such that, for all n ∈ N ,
all indices (i, j), (i′, j′) ∈ Un and all parameters σ > 0,

|Ki′j′,ij | ≤ c(didi′)
kσ−(2k+1)

∑
x∈Ŝi′j′

∫
Sij

∣∣∣∣g(2k)(x− y

σ

)∣∣∣∣dy.
Proof. The proof of this lemma is essentially the same as that of

[20, Lemma 3.1]. Thus, we do not present the details here. �

With Lemma 5.2, we have the following lemma.

Lemma 5.3. If ϵi′i and δi′i are chosen according to (4.4) and (4.5),
respectively, then there exists a positive constant c such that, for all
σ > 0,

∥Ki′i − K̂i′i∥∞ ≤ c(didi′)
kϵi′i/σ

2k.
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Proof. Define the set Zi′ij′ := {j : j ∈ ω(i) and dist (Sij , Si′j′) >
σδi′i}. Note that

∥Ki′i − K̂i′i∥∞ = max
j′∈ω(i′)

∑
j∈Zi′ij′

|Ki′j′,ij |.

According to Lemma 5.2, we observe that

∥Ki′i − K̂i′i∥∞ ≤ c(did
′
i)

kσ−(2k+1)

(5.8)

× max
j′∈ω(i′)

∑
j∈Zi′ij′

∑
x∈Ŝi′j′

∫
Sij

∣∣∣∣g(2k)( (x− y)

σ

)∣∣∣∣dy.
Using a change of variable, t = (x− y)/σ in the integral appearing on
the right hand side of inequality (5.8), we conclude that

(5.9) ∥Ki′i −Ki′i∥∞ ≤ crσ−2k(did
′
i)

k
∑

x∈Ŝi′j′

∫ ∞

δi′i

|g(2k)(t)|dy,

where r is the same constant that appears in Section 3. Since there are

finite points in Ŝi′j′ , by employing the definition of δi′i, we obtain the
desired estimate. �

Noting that the matrix representation of operator Kn relative to

basis Wn is given by E−1
n Kn and K̂n is the truncated matrix of Kn,

we let Kn denote the operator from Xn into itself having the matrix
representation E−1

n Kn relative to the basis Wn. Using this notation,
we present the next lemma. For v ∈ L∞(E), we set

Pnv :=
∑

(i,j)∈Un

vijwij ,

where the quantities vij are the linear functionals of v, which we defined
in Section 3.

Lemma 5.4. If α and α′ are real numbers, parameters ϵi′i are chosen
as

ϵi′i := a−ηµ−η(−n+α(n−i)+α′(n−i′))σ2k, i, i′ ∈ Zn+1
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for some constant a > 0 and η := 2k − 1. Then there exists a positive
constant c such that, for v ∈W k,∞(E),

(5.10) ∥(Kn − K̂n)Pnv∥∞ ≤ cµ′µ−kn∥v∥k,∞.

Furthermore,

(5.11) ∥Kn − K̂n∥∞ ≤ cµ′µ−kn,

where, for given real numbers α1, β1 and n ∈ N0,

µ[α1, β1;n] :=
∑

i∈Zn+1

µα1i
∑

i′∈Zn+1

µβ1i
′
,

and
µ′ := (n+ 1)µ[2k − ηα, k − ηα′;n]µn.

Proof. For v := [vij : (i, j) ∈ Un], we let h := E−1
n (KnK̂n)v and

write h = [hij : (i, j) ∈ Un]. We then have that

(Kn − K̂n)Pnv =
∑

(i,j)∈Un

hijwij .

By Proposition 3.1 (vii), we conclude that

(5.12) ∥(Kn − K̂n)Pnv∥∞ ≤ θ1(n+ 1)∥(Kn − K̂n)v∥∞.

We next estimate ∥(Kn − K̂n)v∥∞. To this end, we introduce the
matrix ∆n := [∆i′j′,ij : (i′, j′), (i, j) ∈ Un] whose entries are given by

∆i′j′,ij := νµk(n−i)+n(Ki′j′,ij − K̂i′j′,ij), where ν := 1/µ[2k − αη, k −
α′η;n]. Defining vector v′ := [v′ij : (i, j) ∈ Uij ], with components

v′ij := µikvij , (i, j) ∈ Un, we have that

(5.13) ∥(Kn − K̂n)v∥∞ ≤ ν−1µ−kn−n∥∆n∥∞∥v′∥∞.

We next estimate ∥∆n∥∞. By the definition of matrix ∆i′j′,ij , we have
that ∑

(i,j)∈Un

|∆i′j′,ij | ≤ ν
∑

i∈Zn+1

µk(n−i)+n∥Ki′i − K̂i′i∥∞.

According to Lemma 5.3, there exists a positive constant c such that

(5.14)
∑

(i,j)∈Un

|∆i′j′,ij | ≤ cν
∑

i∈Zn+1

µk(n−i)+n−k(i+i′)ϵi′i/σ
2k.
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Furthermore, using the choice of ϵi′i in inequality (5.14) yields that∑
(i,j)∈Un

|∆i′j′,ij | ≤ cνα−η
∑

i∈Zn+1

µ(2k−ηα)(n−i)µ(k−ηα′)(n−i′).

Since∑
i∈Zn+1

µ(2k−ηα)(n−i)µ(k−ηα′)(n−i′) ≤
∑

i∈Zn+1

µ(2k−ηα)i
∑

i∈Zn+1

µ(k−ηα′)i′

= µ[2k − αη, k − α′η;n],

by the definition of ν, we finally have that

(5.15) ∥∆n∥∞ = max
(i′,j′)∈Un

∑
(i,j)∈Un

|∆i′j′,ij | ≤ c.

Moreover, by [7, Lemma 7.3.1], there also exists a constant c for all
v ∈W k,∞,

(5.16) ∥v′∥ ≤ c∥v∥k,∞.

Combining inequalities (5.12)–(5.16) yields the inequality (5.10).

For the second inequality (5.11), by using the definition of the
operator norm in Banach spaces and estimate (5.10), we have that

∥Kn − K̂n∥∞ = sup
v∈Xn

∥(Kn − K̂n)Pnv∥∞
∥v∥∞

(5.17)

≤ sup
v∈Wk,∞

∥(Kn − K̂n)Pnv∥∞
∥v∥k,∞

≤ cµ′µ−kn.

In the next lemma, we translate the second estimate in Lemma 5.4 to

an estimate of ∥K2
n − K̂2

n∥∞. �

Lemma 5.5. Suppose that α and α′ satisfy the conditions

(5.18) 2k − ηα = 1, k − ηα′ < 1 and (2k − ηα) + (k − ηα′) < 1.

If ϵi′i and δi′i are chosen according to equations (4.4) and (4.5), respec-
tively, and η = 2k− 1, then there exists a positive constant c such that,
for all n ≥ 2 and σ > 0,

(5.19) ∥K2
n − K̂2

n∥∞ ≤ cnµ−kn.
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Proof. According to the triangle inequality and inequality (5.11) in
Lemma 5.4, we have that

∥K2
n − K̂2

n∥∞ ≤ ∥Kn∥∞∥Kn − K̂n∥∞ + ∥|Kn − K̂n∥∞∥K̂n∥∞
≤ cµ′µ−kn.

Moreover, since µ[α, β; ](n+1)µ−en ∼ n while α = e, β < e, α+β < e,
by the way we choose α, α′, we have that µ′ ∼ n. Substituting
this quantity into the above estimate gives the desired result of this
lemma. �

Next we turn to estimating the third term ∥K̂2
n − K̃2

n∥∞. This error
is caused by the numerical integration used in computing the nonzero
entries of the truncated coefficient matrix of the linear system. To this
end, for (i, j), (i′, j′) ∈ Un, we let
(5.20)

Em(hi′j′,ij) :=
∑

x∈Ŝi′j′

cx
∑

α∈Zm′′

∣∣∣∣ ∫
Qα

Sα(hij)(x, y)− hij(x, y) dy

∣∣∣∣,
which is the error of the approximation ofKi′j′,ij . The following lemma
gives an estimate of the error Em(hi′j′,ij).

Lemma 5.6. If ϵ > 0 is a given fixed number and m is a positive
integer, then there exists a positive constant c such that, for all m,σ,
for all (i′, j′), (i, j) ∈ Un, for all β satisfying (4.12), and for all
0 < σ < 1/2,

Em(hi′j′,ij) ≤ cµk(i−1)βm.

Proof. We estimate Em(hi′j′,ij) by splitting it into two sums. For
ι ∈ Zm, we introduce two index sets

Γr
ι := {α ∈ Zm′′ : Qα ∈ Π(hij), Qα ⊆ [trι , t

r
ι+1]}

and

Γl
ι := {α ∈ Zm′′ : Qα ∈ Π(hij), Qα ⊆ [tlι+1, t

l
ι]}.
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Associated with these two index sets, we set

Er
m,kι

(hi′j′,ij) :=
∑

x∈Ŝi′j′

cx
∑
α∈Γr

ι

∣∣∣∣ ∫
Qα

Sα(hij)(x, y)− hij(x, y) dy

∣∣∣∣
(5.21)

and

El
m,kι

(hi′j′,ij) :=
∑

x∈Ŝi′j′

cx
∑
α∈Γl

ι

∣∣∣∣ ∫
Qα

Sα(hij)(x, y)− hij(x, y) dy

∣∣∣∣.
(5.22)

Clearly, we have that

(5.23) Em(hi′j′,ij) =
∑
ι∈Zm

Er
m,kι

(hi′j′,ij) +
∑
ι∈Zm

El
m,kι

(hi′j′,ij).

We next estimate Er
m,kι

(hi′j′,ij). Using the standard quadrature
formula, we obtain that

(5.24) Er
m,kι

(hi′j′,ij) =
∑

x∈Ŝi′j′

cx
∑
α∈Γr

ι

1

(2kι)!
|D2kι

y hij(x, ξα)|

∣∣∣∣ ∫
Qα

(y − τ0α)
2 · · · (y − τkι−1

α )2dy

∣∣∣∣,
where ξα ∈ (qα, qα+1). We begin with estimating the quantity
1/(2kι)!|D2kι

y hij(x, ξα)|. Since hij(x, y) = K(x, y)ωij(y), by the Leib-
nitz formula for the kιth derivative of a product of two functions, we
observe that
(5.25)

1

(2kι)!
|D2kι

y hij(x, ξα)| ≤
1

(2kι)!

k0∑
p=0

(
2kι
p

)
|D(2kι−p)

y K(x, ξα)||ωp
ij(ξα)|,

where k0 := min{2kι, k}. Furthermore, since

K(x, y) = σ−1g

(
x− y

σ

)
,
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by using the property of the Gauss function, we find that

(5.26)
1

(2kι)!

(
2kι
p

)
|D(2kι−p)

y K(x, ξα)| ≤ c|η|−1σ−(2kι−p),

where

(5.27) |η| = |ξα − x| ≥ tι.

For details of the proof of the above inequality, see the proof of [16,

Theorem 6.1]. To estimate ω
(p)
ij (ξα), we introduce the constant

(5.28) ∆ := max
p∈Zk0
l∈Zr

sup{|ω(p)
1l (t)| : t ∈ E}.

According to the definition of ωij , we have for all t ∈ E that

(5.29) |ω(p)
ij (t)| = |µp(i−1)ωp

1j(φ
−1
s (t))| ≤ ∆µp(i−1).

Combining equations (5.24)–(5.29) and the inequality that

(5.30)

k0∑
p=0

σ−(2kι−p) ≤ σ−2kι

1− σ
,

we obtain that

(5.31) Er
m,kι

(hi′j′,ij)

≤
∑

x∈Ŝi′j′

cx
∑
α∈Γr

ι

cσ−2kι

1− σ
(trι+1 − trι )

2kι(qα+1 − qα)|η|−1∆µk(i−1).

By the construction of the collocation functionals, positive constants
c1 and c2 exist such that

card (Ŝi′j′) ≤ c1

and

(5.32) max{max{|cx| : x ∈ Ŝi′j′} : (i′, j′) ∈ Un} ≤ c2.

Using (5.32) and the formula∑
α∈Γr

ι

(qα+1 − qα) = trι+1 − trι
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in (5.31) yields the estimate
(5.33)∑
ι∈Zm

Er
m,kι

(hi′j′,ij)≤cc1c2∆µk(i−1)
∑
ι∈Zm

σ2kι

1−σ
(trι+1−trι )2kι (trι+1−trι )|η|−1.

For ι ̸= 0, from the definition of trι and inequality (5.27), we get that

(5.34) (trι+1 − trι )
2kι |η|−1 ≤ (trι+1 − trι )

2kι t−1
ι ≤

(
1

β
− 1

)2kι

t2kι−1

and

(5.35) (trι+1 − trι ) =

(
1

β
− 1

)
βm−ι.

By the choice of β in (4.12) and the definition of kι, we obtain that
(5.36)(

1

β
− 1

)2kι

β−ισ−2kι =

(
1− β

σβ1+ι/2kι

)2kι

≤
(

1− β

σβ1+1/2ϵ

)2kι

≤ 1.

Moreover, when ι ≥ [1/2ϵ] + 1, 2kι − 1 ≥ 1, we have that

∑
ι∈Zm

(tι)
2kι−1 ≤

[1/2ϵ]∑
ι=0

(tι)
2kι−1 +

m−1∑
ι=[1/2ϵ]+1

(tι)
2kι−1(5.37)

≤
[
1

2ϵ

]
+

m−1∑
ι=0

(tι)

≤
[
1

2ϵ

]
+

β

1− β
.

Combining (5.23)–(5.37), the fact that σ < 1/2 and the choice (4.12)
of β, we get that

(5.38) Em(hi′j′,ij) ≤ c

([
1

2ϵ

]
+ 1

)
µk(i−1)βm,

which leads to the desired estimate of this lemma. �

The error bound in the next lemma gives an estimate of ∥K̂i′i −
K̃i′i∥∞.
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Lemma 5.7. If ϵ > 0 is a given fixed number and m is a positive
integer, then there exists a positive constant c such that, for all i, i′ ∈
Zn+1, for all n ∈ N and, for all 0 < σ < 1/2,

∥K̂i′i − K̃i′i∥∞ ≤ cµiµk(i−1)βm.

Proof. Define Zi′ij′ := {j ∈ w(i) : dist (Sij , Si′j′) ≤ δi′iσ}. By
Lemma 5.6, we have, for all (i′, j′) ∈ Zn+1 that

∥K̂i′i − K̃i′i∥∞ = max
j′∈ω(i′)

∑
j∈Zi′ij′

Em(hi′j′,ij) ≤ cµiµk(i−1)βm. �

We next choose the integer m used in the numerical quadrature
according to the levels i and i′ so that the resulting approximation
solution ṽδλ,n preserves the nearly optimal convergence order. To this

end, we use mi′i to denote the integer m for different i, i′s.

Lemma 5.8. Let ϵ > 0 be a given fixed number. If β is chosen
according to inequality (4.12), α and α′ are chosen to satisfy inequality
(5.18), and mi′i are chosen to satisfy

mi′i ≥
logµ

log β
(−k(i− 1)− (i+ i′)k − i− η(n+ (n− i)α+ (n− i′)α′)),

then there exists a positive constant c such that, for all n ≥ 2 and for
all 0 < σ < 1/2,

(5.39) ∥K̂2
n − K̃2

n∥∞ ≤ cnµkn.

Proof. By using the triangle inequality, we have that

(5.40) ∥K̂2
n − K̃2

n∥∞ ≤ (∥K̂n∥∞ + ∥K̃n∥∞)∥K̂n − K̃n∥∞.

It suffices to estimate ∥K̂n − K̃n∥∞ and to prove the boundedness of

∥K̃n∥∞.

By Lemma 5.7 with the choice of β and mi′i, we obtain that

∥K̂i′i − K̃i′i∥∞ ≤ cµ−k(i+i′)µ−η(−n+(n−i)α+(n−i′)α′).

Using a similar approach as used in the proof of Lemma 5.4, we may
translate the above estimate of the matrices to the operators

(5.41) ∥K̂n − K̃n∥∞ ≤ cµ′µ−kn.
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Moreover, since

∥K̃n∥∞ ≤ ∥K̂n∥∞ + ∥K̂n − K̃n∥∞,

and ∥K̂n∥∞ is bounded, estimate (5.41) leads to the boundedness of

∥K̃n∥∞. This, combined with inequalities (5.40) and (5.41) yields the
desired result of this lemma. �

Lemma 5.9. If ϵi′i and δi′i are chosen according to (4.4) and (4.5),
respectively, η = 2k − 1, and mi′i, α and α′ are chosen as described in
Lemma 5.5, then there exists a positive constant c0 such that, for all
n ≥ 2 and 0 < σ < 1/2,

(5.42) ∥K2 − K̃2
n∥∞ ≤ c0nµ

−kn.

Proof. Estimate (5.42) is obtained directly by combining inequalities
(5.7), (5.19) and (5.39). �

We now return to the study of the regularization solution. To this
end, we define

M := sup
0≤x≤1

(∫ 1

0

|K(x, y)|2dy
)1/2

.

According to [12, 13], for each λ > 0, the operator (λI + K2) is
invertible from X to X, and satisfies

(5.43) ∥(λI +K2)−1∥∞ ≤
√
λ+M/2

λ3/2
.

With this result and Lemma 5.9, we derive the following proposition
which is crucial in the error estimate of ∥vλ − ṽδλ,n∥∞.

Proposition 5.10. For each λ > 0, if n ∈ N is chosen to satisfy

(5.44) nµ−kn ≤ 1

2c0

λ3/2√
λ+M/2

,

then λI + K̃2
n : X → X is invertible and

(5.45) ∥(λI + K̃2
n)

−1∥∞ ≤ 2

√
λ+M/2

λ3/2
.
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Proof. We use the identity

λI + K̃2
n = (λI +K2)[I + (λI +K2)−1(K2

n − K̃2)].

Using the estimate in Lemma 5.9 for ∥K2
n − K̃2∥∞, ∥(λI + K2)−1∥∞

and the assumption on the choice of n, we obtain that

(5.46) ∥(λI +K2)−1∥∞∥(K2
n − K̃2)∥∞ ≤ 1

2
.

This implies that I+(λI+K2)−1(K2−K̃2
n) is invertible. Hence, λI+K̃2

n

is invertible as an operator from Xn to Xn, and

(λI + K̃2
n)

−1 = [I + (λI +K2)−1(K2
n − K̃2)]−1(λI +K2)−1.

This, together with estimate (5.46), implies that

∥(λI+K̃2
n)

−1∥∞ ≤ ∥(λI +K2)−1∥∞
1− ∥(λI +K2)−1∥∞

∥K2
n−K̃2∥∞ ≤ 2(

√
λ+M/2)

λ3/2
,

proving the desired result. �

From (5.44), we see that the choice of n depends on λ. For this
reason, we shall use the notation ṽδλ,n(λ) for ṽδλ,n to indicate its

dependence on λ. We next give an estimate of the error ∥vλ−ṽδλ,n(λ)∥∞.

Lemma 5.11. If n is chosen to satisfy (5.44), then there exists a
positive constant c such that, for all λ > 0 and all n ≥ 2,
(5.47)

∥vλ − ṽδλ,n(λ)∥∞ ≤ c

(
δ

λ
+ nµ−kn

√
λ+M/2

λ3/2
+ δnµ−kn

√
λ+M/2

λ3/2

)
.

Proof. By ṽλ,n(λ), we denote the solution of equation (5.5) with hδ

replaced by h. Using the triangle inequality, we have that

(5.48) ∥vλ − ṽδλ,n(λ)∥∞ ≤ ∥vλ − ṽλ,n(λ)∥∞ + ∥ṽλ,n(λ)− ṽδλ,n(λ)∥∞.

We estimate the two terms on the right hand side of (5.48) separately.
For the first term, we have that

vλ − ṽλ,n(λ) = (λI +K2)−1Kh− (λI + K̃2
n)

−1K̃nPnh,
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which can be rewritten as

vλ − ṽλ,n(λ) = [(λI +K2)−1 − (λI + K̃2
n)

−1]Kh

+ (λI + K̃2
n)

−1[K̃n(I − Pn)h+ (K − K̃n)h].

By employing the relation h = Kv and introducing

v1 := (λI + K̃2
n)

−1(K̃2
n −K2)(λI +K2)−1K2v,

v2 := (λI + K̃2
n)

−1K̃n(I − Pn)Kv,

and

v3 := (λI + K̃2
n)

−1(K − K̃n)Kv,

we have that

(5.49) vλ − ṽλ,n(λ) = v1 + v2 + v3.

By hypothesis (H), v̂ ∈ R(K), and thus, we write v̂ = Ku for some
u ∈ X. Since, for any positive number λ, the operator λI + K2 is
invertible and ∥(λI +K2)−1K2∥2 ≤ 1, it follows that

∥(λI +K2)−1K2v̂∥∞ ≤ ∥K(λI +K2)−1K2u∥∞
≤ ∥K∥L2(E)→X∥u∥2.

(A similar development may be found in the proof of [9, Lemma 3.4].)
Hence, there exists a positive constant c such that, for all λ > 0,

∥(λI +K2)−1K2v̂∥∞ ≤ c.

This estimate, together with equations (5.42) and (5.45), ensures that

(5.50) ∥v1∥∞ ≤ cnµ−kn

√
λ+M/2

λ3/2
.

Likewise, combining equation (5.45) with Proposition 3.1 (v) and (vi),
we conclude that:

∥v2∥∞ ≤ ∥(λI + K̃2
n)

−1∥∞∥K̃n∥∞∥(I − Pn)K∥∞∥v∥∞(5.51)

≤ cµ−kn

√
λ+M/2

λ3/2
.
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To estimate v3, it suffices to estimate ∥K − K̃n∥∞. By the triangle
inequality, we have that

(5.52) ∥K − K̃n∥∞ ≤ ∥K −Kn∥∞ + ∥Kn − K̂n∥∞ + ∥K̂n − K̃n∥∞.

According to property [9, Proposition 2.3 (2)], we obtain that

(5.53) ∥Kn − K̂n∥∞ ≤ cnµ−kn.

Moreover, by inequality (5.11) in Lemma 5.4, we have that

(5.54) ∥Kn − K̃n∥∞ ≤ cnµ−kn.

Substituting estimates (5.41), (5.53) and (5.54) into the right hand side
of (5.52) yields

(5.55) ∥K − K̃n∥∞ ≤ cnµkn.

This, with the definition of v3 leads to the estimate

∥v3∥∞ ≤ ∥(λI + K̃2
n)

−1∥∞∥K − K̃n∥∞∥Kv∥∞(5.56)

≤ cnµ−kn

√
λ+M/2

λ3/2
.

Combining (5.49) with estimates (5.50), (5.51) and (5.56) yields

(5.57) ∥vλ − ṽλ,n(λ)∥∞ ≤ cnµ−kn

√
λ+M/2

λ3/2
.

It remains to estimate the second term on the right-hand side of
inequality (5.48). Recalling

(λI + K̃2
n)(ṽλ,n − ṽδλ,n) = K̃nPn(h− hδ),

we rewrite it in the form

ṽλ,n(λ) − ṽδλ,n(λ) = (λI + K̃2)−1

· [KPn(h− hδ) + (K̃n −K)Pn(h− hδ) + (K2 − K̃2
n)(ṽλ,n(λ) − ṽδλ,n(λ))].

It follows from the second estimate of [9, Lemma 2.1] and hypothesis
(2.10) that

(5.58) ∥(λI +K2)−1KPn(h− hδ)∥∞ ≤M
δ

λ
.
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Proposition 5.10 and estimates (5.42) and (5.55) ensure that there
exists a positive constant c such that, for all n,

(5.59) ∥(λI+K2)−1(K̃n−K)Pn(h−hδ)∥∞ ≤ cnµ−kn

(√
λ+

M

2

)
δ

λ3/2

and
(5.60)

∥(λI +K2)−1(K2 − K̃2
n)(ṽλ,n(λ) − ṽδλ,n(λ))∥∞ ≤ 1

2
∥ṽλ,n(λ) − ṽδλ,n(λ)∥∞.

Combining the above three estimates (5.58), (5.59) and (5.60), we
conclude that

(5.61) ∥ṽλ,n(λ) − ṽδλ,n(λ)∥∞ ≤ c

(
δ

λ
+ δnµkn

√
λ+M/2

λ3/2

)
.

Finally, inequalities (5.57) and (5.61) together with (5.48) lead to
the desired result of this lemma. �

We are now ready to present the main result of this section, which
gives an estimate to the error ∥v̂ − ṽδλ,n(λ)∥∞.

Theorem 5.12. If n is chosen to satisfy (5.44) and hypothesis (H)
holds, then there exists a positive constant c2 such that, for all λ > 0
and all n ≥ 2,
(5.62)

∥v̂−ṽδλ,n(λ)∥∞ ≤ c1λ
ν+c2

(
δ

λ
+nµ−kn

√
λ+M/2

λ3/2
+δnµ−kn

√
λ+M/2

λ3/2

)
,

with c1 := c(ν)∥ω∥∞.

Proof. Estimate (5.62) is obtained by substituting (5.2) and (5.47)
into the right hand side of inequality (5.1).

Clearly, the error bound on the right hand side of (5.62) has two
parts: One (the last two terms on the right hand side of (5.62)) comes
from the projection of the solution to the approximate subspace and
the other (the first two terms) comes from the ill-posedness and the
presence of noise. �

We remark that the accuracy of the discrete model is given by the
estimate (5.62) with k = 1. The last two terms on the right hand side of
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(5.62) may be improved if we choose higher order piecewise polynomial
approximation.

6. Regularization parameter choice strategies. Solving system
(4.13) requires appropriately choosing the regularization parameter λ.
This section is devoted to the description of an a posteriori parameter
choice strategy. We shall adopt a general principle developed in [21]
with special consideration to our current context.

We now develop the a posteriori parameter choice strategy for the
multiscale collocation method. The main idea is to establish the
estimate

(6.1) ∥v̂ − ṽδλ,n(λ)∥∞ ≤ φ(λ) +
δ

ψ(λ)
,

from estimate (5.62) presented in Theorem 5.12 for two continuous
increasing functions φ and ψ, so that the general principle of [21] can
be applied. For this purpose, we develop a strategy of choosing the level
n of the multiscale approximation according to a given λ. Specifically,
for a given λ > 0, we choose n := n(λ) to satisfy condition (5.44)
and to make the second term on the right hand side of estimate (5.62)
bounded by a constant multiple of δ/λ. In other words, we choose n(λ)
to be the smallest positive integer satisfying the condition

(6.2) nµ−kn ≤ min

{ √
λ√

λ+M/2
,

δ
√
λ√

λ+M/2
,

1

2c0

λ3/2√
λ+M/2

}
,

where c0 is the constant appearing in (5.44). This leads to the next
theorem.

Theorem 6.1. If hypothesis (H) holds and, for a given λ > 0, n(λ)
is chosen to be the smallest positive integer that satisfies (6.2), then
estimate (6.1) holds with φ(λ) := c1λ

ν and ψ(λ) := λ/3c2.

Proof. The desired result is obtained by using the choice of n that
is the smallest integer satisfying (6.2) and substituting it into the right
hand side of estimate (5.62). �

With Theorem 6.1, we are able to apply the general principle
presented in [21] to choose the regularization parameter. We choose the
optimal parameter λopt so that the right hand side with φ(λ) := c1λ

ν
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and ψ(λ) := λ/3c2 of (6.1) is minimized. This is accomplished when
φ(λ) = δ/ψ(λ), which gives

λ = λopt = (φψ)−1(δ).

Estimate (6.1) with this choice of the parameter becomes

(6.3) ∥v̂ − ṽδλ,n(λ)∥∞ ≤ 2φ((φψ)−1(δ)).

Alternatively, since, for λ > 0, both φ and ψ are continuous increasing
functions, we observe from (6.1) that

λopt = max

{
λ : φ(λ) ≤ δ

ψ(λ)

}
,(6.4)

or

λopt = min

{
λ : φ(λ) ≥ δ

ψ(λ)

}
.

We now describe a method for finding an approximation of λopt,
specifically, we choose a positive integer N and let

∆N := {λi : 0 < λ0 < λ1 < · · · < λN},

be a set of N + 1 distinct positive numbers. The integer N and the
N + 1 distinct positive numbers will be specified later. We then define
a finite set

(6.5) M(∆N ) :=

{
λi : λi ∈ ∆N , φ(λi) ≤

δ

ψ(λi)

}
.

According to (6.4), we find an approximation of the regularization
parameter λopt by

λ∗ = max{λi : λi ∈M(∆N )}.

The method of choosing the regularization parameter λ∗ described
above requires knowing both functions φ and ψ. The function φ
involves the unknown smoothness order ν of the integral operator, while
ψ only involves a constant c2 which can be estimated. Hence, direct
use of the set M(∆N ) defined in (6.5) is not feasible. We now modify
the definition of the set M(∆N ) so that the method described above is
implementable. Note that, by the triangle inequality and Theorem 6.1,
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we observe for λi, λj ∈ ∆N that

∥ṽδλi,n(λi)
− ṽδλj ,n(λj)

∥∞ ≤ ∥v̂ − ṽδλi,n(λi)
∥∞ + ∥v̂ − ṽδλj ,n(λj)

∥∞

≤ φ(λi) +
δ

ψ(λi)
+ φ(λj) +

δ

ψ(λj)
.

In particular, if λi, λj ∈M(∆N ), then

∥ṽδλi,n(λi)
− ṽδλj ,n(λj)

∥∞ ≤ 2δ

ψ(λi)
+

2δ

ψ(λj)
.

Due to the monotonicity of ψ, for λi, λj ∈ M(∆N ) with λi ≥ λj , we
have that

∥ṽδλi,n(λi)
− ṽδλj ,n(λj)

∥∞ ≤ 4δ

ψ(λj)
.

The above discussion leads us to introduce the computable set

(6.6) M+(∆N )

:=
{
λi ∈ ∆N : ∥ṽδλi,n(λi)

− ṽδλj ,n(λj)
∥∞ ≤ 4δ

ψ(λj)
, j = 0, 1, . . . , i

}
to replace the set M(∆N ) in the method of choosing the parameter λ∗.
In fact, it can be seen from the derivation presented above that, for a
given positive integer N ,

M(∆N ) ⊆M+(∆N ).

As a result, we observe that

λ∗ ≤ λ+ := max{λi : λi ∈M+(∆N )},

and the number λ+ may be considered as an approximation of λ∗. This
conjecture is proved in the following lemma.

Lemma 6.2. Suppose that hypothesis (H) holds, M(∆N ) ̸= ∅, ∆N \
M(∆N ) ̸= ∅, and there exists a positive constant q for all λi ∈ ∆N ,
i = 1, 2, . . . , N ,

(6.7) ψ(λi) ≤ qψ(λi1).

If, for λ+, n(λ+) is chosen to be the smallest positive integer that
satisfies (6.2) with λ replaced by λ+, then

(6.8) ∥v̂ − ṽδλ+,n(λ+)
∥∞ ≤ 6qφ((φψ)−1(δ)).
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Proof. The desired result may be obtained by modifying the proof
of [21, Theorem 2.1] and using estimate (6.1). We skip the details of
the proof. �

According to Theorem 6.1 and Lemma 6.2, we propose the following
rule for choosing the a posteriori regularization parameter.

Rule 6.1. A selection strategy of the a posteriori regularization
parameter.

• Choose constants ρ > 0, q0 > 1 and a positive integer N
according to

ρδqN−1
0 ≤ 1 < ρδqN0 .

• Specify the finite set ∆N by

∆N := {λi := ρδqi0 : i ∈ ZN+1}.

• For each λi ∈ ∆N , choose n(λi) to be the smallest positive
integer that satisfies

n(λi)µ
−kn(λi) ≤ min

{ √
λi√

λi +M/2
,

δ
√
λi√

λi +M/2
,

1

2c0

λ3/2√
λi +M/2

}
.

• Find vδλi,n(λi)
by solving system (4.13).

• Choose

λ+=max
{
λj :λj ∈∆N ,∥ṽδλj ,n(λj)

− ṽδλi,n(λi)
∥∞≤ 12δc2

λi
, i=0, 1, . . . , j

}
.

In the next theorem, we present the convergence order of the ap-
proximate solution corresponding to the above choice of λ+.

Theorem 6.3. If hypothesis (H) holds and λ+ is chosen according
to Rule 6.1, then the convergence order of the approximate solution
ṽδλ+,n(λ+) is given by

∥v̂ − ṽδλ+,n(λ+)∥∞ = O(δν/ν+1), as δ → 0.

Proof. This theorem can be proved directly by using Lemma 6.2. It
suffices to verify the hypothesis of Lemma 6.2. Using the definition of
∆N , we conclude that ψ(λi) = q− 0ψ(λi−1). We observe that λN > 1.
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Thus, for sufficiently small δ, it is easy to see that

c1ρ
ν+1δν ≤ c2 and c1λNλ

ν
N > c2δ.

Hence, we observe that

φ(λ0) ≤
δ

ψ(λ0)
and φ(λN ) >

δ

ψ(λN )
.

From this, we conclude that λ0 ∈ M(∆N ) and λN /∈ M(∆N ). Thus,
M(∆N ) ̸= ∅ and ∆N \ M(∆N ) ̸= ∅. As a result, the hypothesis of
Lemma 6.2 is satisfied. Therefore,

∥v̂ − ṽδλ+,n(λ+)∥∞ ≤ 6q0φ((φψ(δ))
−1) = c3δ

ν/ν+1,

with c3 := 6q0c1(3c2/c1)
ν/ν+1. �

7. Numerical experiments. We present in this section numerical
examples to demonstrate the performance of the proposed multiscale
collocation method for solving the integral equation model for restora-
tion of out-of-focus images. Comparisons of the continuous model with
the discrete model in numerical performance were given in [16] for the
Galerkin method. It was shown there that the continuous model signif-
icantly outperforms the discrete model, especially in the case of image
enlargement. Readers interested in the comparisons are referred to [16]
for more information in this regard.

The numerical experiments to be presented in this section will
focus on testing the proposed collocation method and the choice of
regularization parameters. A blurred image is given in a matrix form.
Hence, we need to convert it to a bivariate function on a continuous
domain. According to [16], we assume that the image to be restored
is an intensity function v defined on the continuous domain E×E and
its pixel values are samples of this function, that is,

(7.1) v(x, y) :=
256∑

i,j=0

vijψi(x)ψj(y), x, y ∈ E,
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where
(7.2)

ψℓ(t) :=


(256t−(ℓ−1)), (ℓ−1)/256 < t ≤ ℓ/256,

((ℓ+1)−256t), ℓ/256<t≤(ℓ+1)/256,

0 otherwise, t ∈ E,

for ℓ = 0, 1, . . . , 256. Here we assume that the size of the image is
257× 257. Then the observed image h can by generated by (2.2) with
kernel k given by (2.3). Specifically, by using (7.1), we have that

(7.3) h(x, y) :=

256∑
i,j=0

vij

∫ 1

0

∫ 1

0

1

2πσ2

× exp

(
− (x− x′)2 + (y − y′)2

2σ2

)
ψi(x

′)ψj(y
′) dy′dx′, x, y ∈ E.

We shall use the proposed multiscale collocation method to obtain an
approximation of v from h.

We now describe the approximation spaces Xn and the correspond-
ing collocation functional spaces Ln. Specifically, for each positive in-
teger n, we choose Xn as the space of piecewise linear polynomials on
E with knots at j/2n, j = 1, 2, . . . , 2n1. Here dimXn = 2n+1, µ = 2
and r = 2, corresponding to the general case described in Section 3.
The space X0 has a basis

w00(x) := −3x+ 2, w01(x) := 3x− 1,

and W1 has a basis

ω10(x) :=


1− 9/2x ∈ [0, 1/2],

3/2x− 1 ∈ (1/2, 1],

0 otherwise,

(7.4)

ω11(x) :=


1/2− 3/2x ∈ [0, 1/2],

9/2x− 7/2 ∈ (1/2, 1],

0 otherwise.

(7.5)

The basis functions of the space Wi := span {wij : j ∈ Z2i} can be
generated recursively from W1 according to the construction described
in Section 3. The collocation functionals corresponding to Xn are
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constructed likewise. Specifically, we let ℓ00 := δ1/3, ℓ01 := δ2/3 and

ℓ10 := −3

2
δ1/3 +

1

2
δ2/3 + δ1/6, ℓ11 :=

1

2
δ1/3 −

3

2
δ2/3 + δ5/6.

The functionals ℓij can be generated recursively from ℓ10 and ℓ11 ac-
cording to the construction described in Section 3. The approximation
spaces and the corresponding collocation functionals have the proper-
ties presented in Proposition 3.1.

Applying the multiscale collocation method with the above basis
functions and collocation functionals to the system of integral equations
obtained from the Tikhonov regularization method, using the matrix
compression strategy and the numerical integration scheme introduced
in Section 4 yield the linear system (4.13). Since, in the context of image
restoration, the size of the matrix is large, the resulting linear system
is ill-conditioned. To overcome the ill-conditionedness, we introduce an
additional parameter λ2 and use the following system

(7.6)

[
K̃n + λ2En −

√
λ1En√

λ1En K̃n + λ2En

][
ṽδλ,n
x̃δλ,n

]
=

[
hδ
n

0

]
to replace system (4.13). The corresponding operator form of equation
(7.6) is

(λ1I + (λ2I + K̃n)(λ2I +Kn))ṽλ,n = (λ2I + K̃n)h
δ.

This requires us to carefully balance the two parameters λ1 and λ2 in
the preceding integral equation to avoid the ill-conditionedness of the
resulting matrix.

In our experiments, we shall test the proposed methods for the white
and black Resolution Chart images because, for these images, we do
not have to consider their boundary conditions. In our future projects,
we shall consider boundary conditions of the images and modify the
proposed methods accordingly. Specifically, two original images, the
white Resolution Chart and black Resolution Chart of size 257 × 257
shown, respectively, in Figure 1 (a) and Figure 2 (a) are used in our
experiments. The quality of restored images by our proposed method
is evaluated by the peak signal-to-noise ratio (PSNR).

The first experiment is for the noise-free case. We solve the corre-
sponding integral equation by using the proposed multilevel colloca-



SOLVING INTEGRAL EQUATION MODELS 303

tion method with the piecewise linear polynomial basis functions at
level n = 7. In this case, both parameters λ1 and λ2 are chosen so
that the method gives the best quality reconstructed image. For the
white Resolution Chart, its blurred image with the blurring kernel of
σ = 0.01 shown in Figure 1 (b) has the PSNR value 14.69 dB, and
the reconstructed image with (λ1, λ2) = (5e5, 0.00015) shown in Figure
1 (c) has the PSNR value 18.80 dB. For the black Resolution Chart,
its blurred image with the blurring kernel of σ = 0.01 shown in Figure
2 (b) has the PSNR value 14.94 dB, and the reconstructed image with
(λ1, λ2) = (1e− 6, 0.00015) shown in Figure 1 (c) has the PSNR value
18.99 dB. Specifically, see Tables 1 and 2.

(a) (b) (c)

Figure 1. (a) The original white image. (b) Samplings of the continuous
observed white image at a uniform grid (with σ = 0.01 in the blurring kernel).
(c) The reconstructed white image (with λ1 = 5e− 5, λ2 = 0.00015).

(a) (b) (c)

Figure 2. (a) The original black image. (b) Samplings of the con-
tinuous observed black image at a uniform grid (with σ = 0.01 in the
blurring kernel). (c) The reconstructed black image (with λ1 = 1e− 6,
λ2 = 0.00015).
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Table 1. The PNSR values (dB) for the noise free white ‘Resolution Chart’
image

Noise blurred image image reconstructed by proposed method

Free 14.69 18.80

Table 2. The PNSR values (dB) for the noise free black ‘Resolution Chart’
image

Noise blurred image image reconstructed by proposed method

Free 14.94 18.99

Table 3. The PSNR values (dB) of the images reconstructed with different
regularization parameter values from the noisy white ‘Resolution Chart’
image with noise bound δ < 0.001.

λ1 λ2 n images reconstructed

by proposed method

0.0003 0.0003 7 17.89

0.000648 0.0004 7 18.14

0.0009 0.0008 7 18.12

The second experiment is for the noisy case with noise bound
δ = 0.001. For the white image, by choosing λ1 = λ+ according to
Rule 6.1 with ρ := 0.008 and q0 := 3, we obtain n = 7, λ1 = 0.000648.
For the black figure, we choose ρ := 0.02 and q0 := 3.5 in Rule 6.1
and obtain the values n = 7 and λ1 = 0.000857. We then compare
the PSNR values of the images reconstructed by using our proposed
method with these parameter values to those with the other two differ-
ent parameter values. The numerical results are shown in Tables 3 and
4 and the corresponding reconstructed images are shown in Figures 3
and 4, respectively, for the white and black images. Clearly, from the
tables and figures we see that the numerical results and quality of the
images obtained with the parameters chosen according to Rule 6.1 are
comparable to those obtained in the first example, which are obtained
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(a) (b) (c)

Figure 3. Reconstructed white images for the noisy case (with σ = 0.01 in
the blurring kernel and noise bound δ = 0.001). (a) The reconstructed white
image with λ1 = 0.0003, λ2 = 0.0003. (b) The reconstructed white image
with λ1 = 0.000648, λ2 = 0.0004. (c) The reconstructed white image with
λ1 = 0.0009, λ2 = 0.0008.

(a) (b) (c)

Figure 4. The reconstructed black images for the noisy case (with σ = 0.01
in the blurring kernel and noise bound δ = 0.001). (a) The reconstructed
black image with λ1 = 0.00015, λ2 = 0.0003. (b) The reconstructed black
image with λ1 = 0.000857, λ2 = 0.0007. (c) The reconstructed white image
with λ1 = 0.0012, λ2 = 0.0009.

Table 4. The PSNR values (dB) of the images reconstructed with different
regularization parameter values from the noisy black ‘Resolution Chart’
image with noise bound δ < 0.001.

λ1 λ2 n images reconstructed

by proposed method

0.00015 0.0003 7 18.35

0.000857 0.0007 7 18.82

0.0012 0.0009 7 18.80
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by using the best possible parameters, and they are better than those
obtained with other choices of the parameters.
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