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ABSTRACT. In this paper we consider the direct scat-
tering problem of obliquely incident time-harmonic electro-
magnetic plane waves by an infinitely long dielectric cylin-
der. We assume that the cylinder and the outer medium
are homogeneous and isotropic. From the symmetry of the
problem, Maxwell’s equations are reduced to a system of
two 2D Helmholtz equations in the cylinder and two 2D
Helmholtz equations in the exterior domain where the fields
are coupled on the boundary. We prove uniqueness and
existence of this differential system by formulating an equiv-
alent system of integral equations using the direct method.
We transform this system into a Fredholm type system of
boundary integral equations in a Sobolev space setting. To
handle the hypersingular operators we take advantage of
Maue’s formula. Applying a collocation method we derive
an efficient numerical scheme and provide accurate numeri-
cal results using as test cases transmission problems corre-
sponding to analytic fields derived from fundamental solu-
tions.

1. Introduction. An interesting area of electromagnetism for its
applications and the arising theoretical problems is the scattering
process from obliquely incident time-harmonic plane waves by an
infinitely long cylinder. The basic waves in the propagation domain
satisfy Maxwell’s equations [1, 3, 16, 18] and, due to the symmetry of
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the problem, it is equivalent to finding two scalar fields satisfying a pair
of two-dimensional Helmholtz equations with different wavenumbers.
The complication appears in the boundary conditions. Even for
the case of a perfect conductor, tangential derivatives appear in the
boundary conditions which make the analysis more difficult. There
are many studies providing analytical or numerical solutions [2, 13,
19, 20, 21, 22, 24, 25]. The proposed methods are based on specific
geometries or well known numerical schemes without examining the
well-posedness of the corresponding boundary value problem.

Recently, Wang and Nakamura [23] used a more elegant theoretical
analysis to prove well-posedness of the problem based on the integral
equation approach. They proved theoretical and numerical results
for the case of the homogeneous impedance cylinder using integral
equations. For the theoretical analysis they used properties of the
Cauchy singular integrals and proved that the system derived is
of Fredholm type with index zero. For the numerical results they
applied a specific decomposition of the kernels and formulations using
Hilbert’s and Symm’s integral operators. Considering trigonometric
interpolation, they introduced an efficient numerical scheme.

The case for general dielectric cylinders is not considered yet;
however, the same authors, in a later work [17], investigated a more
complicated model also having a non-homogeneous part, in the sense
that the permittivity and the permeability of the exterior medium
are non-constants and smooth in a bounded domain surrounding the
cylinder. The main theoretical analysis providing uniqueness and
existence in non-homogeneous materials is much harder. For the well-
posedness they used the Lax-Phillips method [7].

In this work, we examine the case of the infinite dielectric cylinder
illuminated by a transverse magnetic polarized electromagnetic plane
wave, known as oblique incidence. More precisely, in the second
section starting from Maxwell’s equations we initially describe the
derivation of the mathematical model for the scattering process from
obliquely incident time-harmonic plane waves for the case of infinite
inhomogeneous cylinder. We assume that transmission conditions
hold on the boundary. The boundary conditions involve normal and
tangential derivatives of the fields.
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In Section 3, we formulate the direct problem in differential form.
We derive the Helmholtz equations and the exact form of the bound-
ary conditions in the case of homogeneous cylinder. We prove that
the problem is uniquely solvable using Green’s formulas and Rellich’s
lemma. Considering the direct method, initially applied in transmis-
sion problems in [5, 8, 9], we formulate the problem into an equivalent
system of integral equations. We show that this system is of Fredholm
type in an appropriate Sobolev space setting. Due to uniqueness of
the boundary value problem, existence follows from the Fredholm al-
ternative. The system consists of compact, singular and hypersingular
operators. We consider Maue’s formula [14], as in the case of the
normal derivative of the double layer potential, to reduce the hyper-
singularity of the tangential derivative of the double layer potential.

In the last section we investigate numerically the problem by a
collocation method based on Kress’s method for the two-dimensional
integral equation with strongly singular operators [10]. We transform
the system of integral equations to a linear system by parametrizing
the operators and considering well-known quadrature rules. We derive
accurate numerical results for the four fields, interior and exterior,
and we numerically compute the far-field patterns of the two exterior
fields computed for a specific boundary value problem. Namely, we
consider boundary data corresponding to analytic fields derived from
point sources, where the interior and exterior fields have singularities
outside of their domain of consideration.

2. Formulation of the direct scattering problem for an
inhomogeneous cylinder. We consider the scattering problem of
an electromagnetic wave by a penetrable cylinder in R3. Let x =
(x, y, z) ∈ R3. Then we model the cylinder as Ωint = {x : (x, y) ∈
Ω, z ∈ R}0, where Ω is a bounded domain inR2 with smooth boundary
Γ. The cylinder Ωint is oriented parallel to the z-axis and Ω is its
horizontal cross section. We assume constant permittivity ε0 and
permeability µ0 for the exterior domain Ωext := R3\Ωint. The interior
domain Ωint is characterized by the electric constants µ(x) = µ(x, y)
and ε(x) = ε(x, y) for all (x, y) ∈ Ω, z ∈ R.

We define for x ∈ Ωext, t ∈ R, the magnetic field Hext(x, t) and

electric field Eext(x, t) and, equivalently, the interior fields Hint(x, t)
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and Eint(x, t) for x ∈ Ωint, t ∈ R. Then, these fields satisfy the
Maxwell’s equations

(2.1)

∇×Eext + µ0
∂Hext

∂t
= 0, x ∈ Ωext,

∇×Hext − ε0
∂Eext

∂t
= 0, x ∈ Ωext,

∇×Eint + µ
∂Hint

∂t
= 0, x ∈ Ωint,

∇×Hint − ε∂E
int

∂t
= 0, x ∈ Ωint.

On the boundary Γ, we consider transmission conditions

n̂×Eint = n̂×Eext, n̂×Hint = n̂×Hext, x ∈ Γ,

where n̂ is the outward normal vector, directed into Ωext.

In order to take advantage of the symmetry of the specific medium,
we probe the cylinder with an incident transverse magnetic (TM)
polarized electromagnetic plane wave, the so-called oblique incidence
in the literature. An arbitrary time-harmonic incident electromagnetic
plane wave has the form:

Einc(x, t; d̂, p̂) =
1

k2
0

√
ε0
∇×∇×(p̂ eik0x·d̂)e−iωt,

Hinc(x, t; d̂, p̂) =
1

ik0
√
µ0
∇×(p̂ eik0x·d̂)e−iωt,

where ω > 0 is the frequency, k0 = ω
√
µ0ε0 is the wave number in

the exterior domain, p̂ is the polarization vector and d̂ the vector

describing the incident direction, satisfying d̂ ⊥ p̂.

In the following, due to the linearity of the problem, we suppress
the time-dependence and we consider the fields only as functions of
the space variable x. In order to describe the incident fields for
the specific TM polarization, we define by θ the incident angle with

respect to the negative z axis and by φ the polar angle of d̂ (in

spherical coordinates). Then d̂ = (sin θ cosφ, sin θ sinφ,− cos θ) and
p̂ = (cos θ cosφ, cos θ sinφ, sin θ), assuming that θ ∈ (0, π/2)∪(π/2, π).
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Hence, we obtain

Einc(x; d̂, p̂) =
1
√
ε0
d̂× p̂× d̂ eik0x·d̂ =

1
√
ε0
p̂ eik0x·d̂,

Hinc(x; d̂, p̂) =
1
√
µ0
d̂× p̂ eik0x·d̂ =

1
√
µ0

(sinφ,− cosφ, 0) eik0x·d̂.

Taking into account the cylindrical symmetry of the medium and
the z-independence of the electric coefficients, we express the incident
fields as separable functions of (x, y) and z. Thus, we define β =

k0 cos θ and κ0 =
√
k2

0 − β2 = k0 sin θ, and it follows that the incident
fields can be decomposed to

(2.2)
Einc(x; d̂, p̂) = einc(x, y) e−iβz,

Hinc(x; d̂, p̂) = hinc(x, y) e−iβz,

where

einc(x, y) =
1
√
ε0
p̂ eiκ0(x cosφ+y sinφ),

hinc(x, y) =
1
√
µ0

(sinφ,− cosφ, 0) eiκ0(x cosφ+y sinφ).

Now, we are in a position to transform equations (2.1) into a system
of equations only for the z-component of the electric and magnetic
fields. Firstly, we see that for the specific illumination of the form
(2.2), using separation of variables, the scattered fields also take the
form:

Esc(x; d̂, p̂) = esc(x, y) e−iβz, x ∈ Ωext,

Hsc(x; d̂, p̂) = hsc(x, y) e−iβz, x ∈ Ωext,

where esc = (esc1 , e
sc
2 , e

sc
3 ) and hsc = (hsc1 , h

sc
2 , h

sc
3 ). Then, the exterior

fields are given by

Eext(x; d̂, p̂) =
(
esc(x, y) + einc(x, y)

)
e−iβz

= eext(x, y) e−iβz, x ∈ Ωext,

Hext(x; d̂, p̂) =
(
hsc(x, y) + hinc(x, y)

)
e−iβz

= eext(x, y) e−iβz, x ∈ Ωext.
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Equivalently, the interior fields are represented by

Eint(x; d̂, p̂) = eint(x, y) e−iβz, x ∈ Ωint,

Hint(x; d̂, p̂) = hint(x, y) e−iβz, x ∈ Ωint,

where eint = (eint
1 , eint

2 , eint
3 ) and hint = (hint

1 , hint
2 , hint

3 ).

For any field of the form

E(x; d̂, p̂) = e(x, y) e−iβz, x ∈ R3,

H(x; d̂, p̂) = h(x, y) e−iβz, x ∈ R3,

we consider the Maxwell’s equations in R3 for arbitrary ε, µ and
k2 = µεω2 − β2 (we remark here the space dependence of ε, µ). Then,
following [17], we obtain the relations

(2.3)

e1(x, y) = − 1

k2

(
iβ
∂e3

∂x
(x, y)− iµω∂h3

∂y
(x, y)

)
,

e2(x, y) = − 1

k2

(
iβ
∂e3

∂y
(x, y) + iµω

∂h3

∂x
(x, y)

)
,

h1(x, y) = − 1

k2

(
iβ
∂h3

∂x
(x, y) + iεω

∂e3

∂y
(x, y)

)
,

h2(x, y) = − 1

k2

(
iβ
∂h3

∂y
(x, y)− iεω ∂e3

∂x
(x, y)

)
.

Substituting (2.3) in (2.1), we have that the pair (e3, h3) satisfies
the equations

k2

εω
∇ ·
(
εω

k2
∇e3

)
+
k2

εω
J ∇

(
β

k2

)
· ∇h3 + k2e3 = 0,

k2

µω
∇ ·
(
µω

k2
∇h3

)
− k2

µω
J ∇

(
β

k2

)
· ∇e3 + k2h3 = 0,

where

J =

(
0 1
−1 0

)
.

The interior and exterior domains are characterized by different
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wavenumbers, given by

k2(x) =

{
k2

int(x) := µ(x, y) ε(x, y)ω2 − β2, x ∈ Ωint,
k2

ext(x) := µ0ε0ω
2 − β2 = κ2

0, x ∈ Ωext.

In this section, for completeness in the formulation of the direct
problem, we keep the space dependence of kint. Later, we consider
only the case of constant parameters. Here, we have to assume that
µ(x)ε(x) > ε0µ0 cos θ in order to have infx k

2
int(x) > 0. Thus, the

fields eext
3 (x, y) and hext

3 (x, y) satisfy

(2.4) ∆eext
3 + κ2

0 e
ext
3 = 0, ∆hext

3 + κ2
0 h

ext
3 = 0, x ∈ Ωext,

and the interior fields
(2.5)
k2

int(x)

ε(x)
∇ ·
(

ε(x)

k2
int(x)

∇eint
3

)
+
k2

int(x)

ε(x)ω
J∇

(
β

k2
int(x)

)
· ∇hint

3 + k2
int(x) eint

3 = 0, x ∈ Ωint,

k2
int(x)

µ(x)
∇ ·
(

µ(x)

k2
int(x)

∇hint
3

)
− k2

int(x)

µ(x)ω
J∇

(
β

k2
int(x)

)
· ∇eint

3 + k2
int(x)hint

3 = 0, x ∈ Ωint.

Now, we are going to derive the exact form of the boundary
conditions. We introduce the notation: et = x̂ e1 + ŷ e2, ht =
x̂h1 + ŷ h2 and ∇t = x̂(∂/∂x) + ŷ(∂/∂y), where x̂, ŷ denote the
unit vectors in R2. Let (n̂, τ̂ , ẑ) be a local coordinate system, where
n̂ = (n1, n2) is the outward normal vector and τ̂ = (−n2, n1) the
outward tangent vector on Γ. Then, from (2.3), we obtain

(2.6)
τ̂ · et = − 1

k2
(iµωn̂ · ∇th3 + iβτ̂ · ∇te3) ,

τ̂ · ht = − 1

k2
(−iεωn̂ · ∇te3 + iβτ̂ · ∇th3) ,

using that τ̂ · (ẑ ×∇t·) = n̂ · ∇t · .
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We observe, setting zero to the z-component of n̂, τ̂ in R3, that

n̂×E = −e3τ̂ + (n1e2 − n2e1) ẑ,

n̂×H = −h3τ̂ + (n1h2 − n2h1) ẑ.

Then, from (2.3) and (2.6), we derive

n̂×Eext = −eext
3 τ̂ + τ̂ · eext

t ẑ,

n̂×Hext = −hext
3 τ̂ + τ̂ · hext

t ẑ,

for the exterior fields, where eext
t := x̂ eext

1 + ŷ eext
2 , hext

t := x̂hext
1 +

ŷ hext
2 and

n̂×Eint = −eint
3 τ̂ + τ̂ · eint

t ẑ,

n̂×Hint = −hint
3 τ̂ + τ̂ · hint

t ẑ.

for the interior fields, where eint
t := x̂ eint1 +ŷ eint

2 , hint
t := x̂hint

1 +ŷ hint
2 .

Here, we observe that the tangential forms of the fields can be
written in terms of τ̂ and ẑ, two linear independent vectors. Thus,
the boundary condition

n̂×Eint = n̂×Eext, x ∈ Γ,

is equivalent to the system

eint
3 = eext

3 , τ̂ · eint
t = τ̂ · eext

t , x ∈ Γ,

and equivalently for the magnetic fields

hint
3 = hext

3 , τ̂ · hint
t = τ̂ · hext

t , x ∈ Γ.

We define
∂

∂n
= n̂ · ∇t,

∂

∂τ
= τ̂ · ∇t,

and we rewrite the above boundary conditions as
(2.7)

eint
3 = eext

3 , x ∈ Γ,

µ(x)

k2
int(x)

ω
∂hint

3

∂n
+

β

k2
int(x)

∂eint
3

∂τ
=
µ0

κ2
0

ω
∂hext

3

∂n
+

β

κ2
0

∂eext
3

∂τ
, x ∈ Γ,
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and
(2.8)

hint
3 = hext

3 , x ∈ Γ,

ε(x)

k2
int(x)

ω
∂eint

3

∂n
− β

k2
int(x)

∂hint
3

∂τ
=
ε0
κ2

0

ω
∂eext

3

∂n
− β

κ2
0

∂hext
3

∂τ
, x ∈ Γ.

To ensure that the scattered fields are outgoing, the components
must satisfy in addition the radiation conditions in R2:

(2.9)

lim
r→∞

√
r

(
∂esc

3

∂r
− iκ0e

sc
3

)
= 0,

lim
r→∞

√
r

(
∂hsc

3

∂r
− iκ0h

sc
3

)
= 0,

where r = |(x, y)| uniformly over all directions.

Thus, the direct transmission problem for oblique incident wave, is
to find the fields hint

3 , hsc
3 , eint

3 and esc
3 which satisfy equations (2.4)

and (2.5), the transmission conditions (2.7) and (2.8) and the radiation
conditions (2.9).

We remark here that, since we consider TM polarized wave, see
equation (2.2), the incident fields for x ∈ Ωext are simplified to

(2.10) einc
3 (x, y) =

1
√
ε0

sin θ eiκ0(x cosφ+y sinφ), hinc
3 (x, y) = 0.

3. The direct problem for a homogeneous cylinder using the
integral equation method. From now on, x ∈ R2. In this section,
we consider the simplified version where µ(x) = µ1 and ε(x) = ε1 are
constant in the interior domain. To simplify the following analysis, we
set Ω1 = Ω ⊂ R2, Ω0 = R2 \ Ω and

u0(x) = esc
3 (x), v0(x) = hsc

3 (x), x ∈ Ω0,

u1(x) = eint
3 (x), v1(x) = hint

3 (x), x ∈ Ω1.

In the following, j = 0, 1 counts for the exterior (x ∈ Ω0) and interior
domains (x ∈ Ω1), respectively. Then, the direct scattering problem,
presented in the previous section, is modified to

(3.1) ∆uj + κ2
j uj = 0, ∆vj + κ2

j vj = 0, x ∈ Ωj ,
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for j = 0, 1 where κ2
1 = µ1ε1ω

2 − β2, with boundary conditions

u1 = u0 + einc
3 , x ∈ Γ,(3.2a)

µ̃1ω
∂v1

∂n
+ β1

∂u1

∂τ
= µ̃0ω

∂v0

∂n
+ β0

∂u0

∂τ
+ β0

∂einc
3

∂τ
, x ∈ Γ,(3.2b)

v1 = v0, x ∈ Γ,(3.2c)

ε̃1ω
∂u1

∂n
− β1

∂v1

∂τ
= ε̃0ω

∂u0

∂n
+ ε̃0ω

∂einc
3

∂n
− β0

∂v0

∂τ
, x ∈ Γ,(3.2d)

where µ̃j = µj/κ
2
j , ε̃j = εj/κ

2
j , βj = β/κ2

j , and the radiation conditions

(3.3)

lim
r→∞

√
r

(
∂u0

∂r
− iκ0u0

)
= 0,

lim
r→∞

√
r

(
∂v0

∂r
− iκ0v0

)
= 0.

Theorem 3.1. If κ2
1 is not an interior Dirichlet eigenvalue, then the

problem (3.1)–(3.3) has at most one solution.

Proof. It is sufficient to show that, if u0, v0, u1, v1 solve the
homogeneous problem (3.1)–(3.3), that is, for einc

3 = 0, then u0 =
v0 = 0 in Ω0 and u1 = v1 = 0 in Ω1. Let Sr be a disk with
radius r, boundary Γr, centered at the origin and containing Ω1. We
set Ωr = Sr \ Ω1, see Figure 1.

The boundary conditions of the homogeneous problem read

(3.4)

u1 = u0, x ∈ Γ,

µ̃1
∂v1

∂n
− µ̃0

∂v0

∂n
= −β1

ω

∂u1

∂τ
+
β0

ω

∂u0

∂τ
, x ∈ Γ,

v1 = v0, x ∈ Γ,

ε̃1
∂u1

∂n
− ε̃0

∂u0

∂n
=
β1

ω

∂v1

∂τ
− β0

ω

∂v0

∂τ
, x ∈ Γ.
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Ω1

Ωr

Ω0

Γ Γr

Figure 1. The set Ωr.

We apply Green’s first identity in Ω1 and considering (3.1) we obtain

(3.5)

ε̃1

∫
Γ

u1
∂u1

∂n
ds = ε̃1

∫
Ω1

(
|∇u1|2 + u1∆u1

)
dx,

= ε̃1

∫
Ω1

(
|∇u1|2 − κ2

1|u1|2
)
dx,

µ̃1

∫
Γ

v1
∂v1

∂n
ds = µ̃1

∫
Ω1

(
|∇v1|2 + v1∆v1

)
dx

= µ̃1

∫
Ω1

(
|∇v1|2 − κ2

1|v1|2
)
dx.

Similarly, Green’s first identity in Ωr, together with equations (3.4)
and (3.5) gives

ε̃0

∫
Γr

u0
∂u0

∂n
ds = ε̃0

∫
Ωr

(
|∇u0|2 + u0∆u0

)
dx

+ ε̃0

∫
Γ

u0
∂u0

∂n
ds

= ε̃0

∫
Ωr

(
|∇u0|2 − κ2

0|u0|2
)
dx

+

∫
Γ

u0

(
ε̃1
∂u1

∂n
− β1

ω

∂v1

∂τ
+
β0

ω

∂v0

∂τ

)
ds
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= ε̃0

∫
Ωr

(
|∇u0|2 − κ2

0|u0|2
)
dx

+ ε̃1

∫
Ω1

(
|∇u1|2 − κ2

1|u1|2
)
dx

− β1

ω

∫
Γ

u1
∂v1

∂τ
ds+

β0

ω

∫
Γ

u0
∂v0

∂τ
ds

and

µ̃0

∫
Γr

v0
∂v0

∂n
ds = µ̃0

∫
Ωr

(
|∇v0|2 + v0∆v0

)
dx

+ µ̃0

∫
Γ

v0
∂v0

∂n
ds

= µ̃0

∫
Ωr

(
|∇v0|2 − κ2

0|v0|2
)
dx

+

∫
Γ

v0

(
µ̃1
∂v1

∂n
− β0

ω

∂u0

∂τ
+
β1

ω

∂u1

∂τ

)
ds

= µ̃0

∫
Ωr

(
|∇v0|2 − κ2

0|v0|2
)
dx

+ µ̃1

∫
Ω0

(
|∇v1|2 − κ2

1|v1|2
)
dx− β0

ω

∫
Γ

v0
∂u0

∂τ
ds

+
β1

ω

∫
Γ

v1
∂u1

∂τ
ds.

We add the above two equations and, noting that

−
∫

Γ

u1
∂v1

∂τ
ds =

∫
Γ

v1
∂u1

∂τ
ds,

∫
Γ

u0
∂v0

∂τ
ds = −

∫
Γ

v0
∂u0

∂τ
ds,

we obtain

=
(
ε̃0

∫
Γr

u0
∂u0

∂n
ds+ µ̃0

∫
Γr

v0
∂v0

∂n
ds

)
= 0,

or, equivalently, using the radiation conditions (see [23, equation
(2.12)])

lim
r→∞

∫
Γr

(
ε0|u0|2 + ε̃0

∣∣∣∣∂u0

∂n

∣∣∣∣2 + µ0|v0|2 + µ̃0

∣∣∣∣∂v0

∂n

∣∣∣∣2) ds = 0.
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Thus,

lim
r→∞

∫
Γr

|u0|2ds = lim
r→∞

∫
Γr

|v0|2ds = 0,

and by Rellich’s lemma it follows that u0 = v0 = 0 in Ω0. Hence,
u0 = v0 = 0 in Γ and u1 = v1 = 0 in Γ from the boundary conditions.
Then, u1 = v1 = 0 in Ω1 follows from the unique solvability of the
interior Dirichlet problem, given the assumption of the theorem. �

We define the fundamental solution of the Helmholtz equation in
R

2:

(3.6) Φj(x,y) =
i

4
H

(1)
0 (κj |x− y|), x,y ∈ Ωj , x 6= y,

where H
(1)
0 is the Hankel function of the first kind and zero order.

For a continuous density f , we introduce the single- and double-layer
potentials defined by

(3.7)

(Sjf)(x) =

∫
Γ

Φj(x,y)f(y) ds(y), x ∈ Ωj ,

(Djf)(x) =

∫
Γ

∂Φj
∂n(y)

(x,y)f(y) ds(y), x ∈ Ωj ,

and their derivatives, normal and tangential as x → Γ, using the
standard jump relations, see for example [3, 6]

∂

∂n
(Sjf)(x) =

∫
Γ

∂Φj
∂n(x)

(x,y)f(y) ds(y)∓ 1

2
f(x)

(3.8)

:= (NSjf)(x)∓ 1

2
f(x), x ∈ Γ,

∂

∂n
(Djf)(x) =

∫
Γ

∂2Φj
∂n(x)∂n(y)

(x,y)f(y) ds(y)

:= (NDjf)(x), x ∈ Γ,

∂

∂τ
(Sjf)(x) =

∫
Γ

∂Φj
∂τ(x)

(x,y)f(y) ds(y)

:= (TSjf)(x), x ∈ Γ,
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∂

∂τ
(Djf)(x) =

∫
Γ

∂2Φj
∂τ(x)∂n(y)

(x,y)f(y) ds(y)± 1

2

∂f

∂τ
(x)

:= (TDjf)(x)± 1

2

∂f

∂τ
(x), x ∈ Γ,

where the upper (lower) sign indicates the limits obtained by approach-
ing the boundary Γ from Ω0 (Ω1). This means when j = 0, (j = 1).
For the last equation, we assume f to be continuously differentiable.
We presented the jump relations for continuous densities only for sim-
plicity, since in the following proof we use a Sobolev space setting.

Here, we have to mention the continuity of the single-layer poten-
tials in R2 and the discontinuity of the double-layer potentials (± 1

2f).
All the integrals are well defined and particularly the potentials Sj ,
Dj and NSj have weakly singular kernels (logarithmic singularity),
the potentials TSj have Cauchy type singularity (of order 1/|x − y|)
and the potentials NDj , TDj are hypersingular (of order 1/|x− y|2).

Theorem 3.2. If κ2
1 is not an interior Dirichlet eigenvalue and κ2

0 is
not an interior Dirichlet and Neumann eigenvalue, then the problem
(3.1)–(3.3) has a unique solution.

Proof. We apply the direct method, see for instance [9], to trans-
form the problem into a system of integral equations. We consider
Green’s second theorem in the interior domain

(3.9)

−u1(x) =

∫
Γ

∂Φ1

∂n(y)
(x,y)u1(y) ds(y)

−
∫

Γ

Φ1(x,y)
∂u1

∂n(y)
(y) ds(y),

= (D1u1)(x)− (S1∂ηu1)(x), x ∈ Ω1,

similarly

−v1(x) = (D1v1)(x)− (S1∂ηv1)(x), x ∈ Ω1,

and in the exterior domain

(3.10)
u0(x) = (D0u0)(x)− (S0∂ηu0)(x), x ∈ Ω0,

v0(x) = (D0v0)(x)− (S0∂ηv0)(x), x ∈ Ω0.
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Letting x→ Γ, in the above formulas and taking the normal and the
tangential derivatives on Γ, we obtain(

NSj ± 1
2I
)
∂ηuj = NDjuj ,

(
NSj ± 1

2I
)
∂ηvj = NDjvj ,(3.11a) (

Dj ∓ 1
2I
)
uj = Sj∂ηuj ,

(
Dj ∓ 1

2I
)
vj = Sj∂ηvj ,(3.11b)

TDjuj − TSj∂ηuj = ± 1
2∂τuj , TDjvj − TSj∂ηvj = ± 1

2∂τvj .

(3.11c)

Combining the relations in (3.11b) for j = 0 with the boundary
conditions (3.2d) and (3.2b), respectively, we have(
D0−

1

2
I

)
u0 =

ε̃1
ε̃0
S0∂ηu1 −

β1

ε̃0ω
S0∂τv1

+
β0

ε̃0ω
S0∂τv0 − S0∂ηe

inc
3 ,(3.12)(

D0−
1

2
I

)
v0 =

µ̃1

µ̃0
S0∂ηv1+

β1

µ̃0ω
S0∂τu1−

β0

µ̃0ω
S0∂τu0−

β0

µ̃0ω
S0∂τe

inc
3 .

We define

(3.13) Kj :=
(
NSj ± 1

2I
)−1

NDj , Lj := 2(TDj − TSjKj).

The operator K0 is well defined since the integral equation (3.11a) for
j = 0 corresponds to the solution of the interior Neumann problem
and we assumed κ2

0 not to be an interior eigenvalue. Similarly, K1 is
well defined if κ2

1 is not an interior Dirichlet eigenvalue.

Then, the system of equations (3.12), using (3.11), is transformed
to (

D0 −
1

2
I

)
u0 −

ε̃1
ε̃0
S0K1u1 −

β1

ε̃0ω
S0L1v1 −

β0

ε̃0ω
S0L0v0

= −S0∂ηe
inc
3 ,(

D0 −
1

2
I

)
v0 −

µ̃1

µ̃0
S0K1v1 +

β1

µ̃0ω
S0L1u1 +

β0

µ̃0ω
S0L0u0

= − β0

µ̃0ω
S0∂τe

inc
3 .
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We consider now equations (3.2a) and (3.2c), to obtain(
D0 −

1

2
I

)
u0 −

ε̃1
ε̃0
S0K1u0 −

β1

ε̃0ω
S0L1v0 −

β0

ε̃0ω
S0L0v0

= −S0∂ηe
inc
3 +

ε̃1
ε̃0
S0K1e

inc
3 ,(

D0 −
1

2
I

)
v0 −

µ̃1

µ̃0
S0K1v0 +

β1

µ̃0ω
S0L1u0 +

β0

µ̃0ω
S0L0u0

= − β0

µ̃0ω
S0∂τe

inc
3 −

β1

µ̃0ω
S0L1e

inc
3 .

The above system in compact form reads

(3.14) (D + K)u = b,

where

D =

(
D0 − 1/2I 0

0 D0 − 1/2I

)
,

K =

(
−(ε̃1/ε̃0)S0K1 −(1/ε̃0ω)S0(β1L1 + β0L0)

(1/µ̃0ω)S0(β1L1 + β0L0) −(µ̃1/µ̃0)S0K1

)
,

u =

(
u0|Γ
v0|Γ

)
,

b =

(
−S0∂η + (ε̃1/ε̃0)S0K1

−(1/µ̃0ω)S0(β0∂τ + β1L1)

)
einc

3 .

We assume that Γ is of class C2,α, 0 < α ≤ 1. We know that
D0 : H−1/2(Γ) → H−1/2(Γ) is compact; thus, (D0 − 1/2I)−1 :
H−1/2(Γ) → H−1/2(Γ) is bounded, if κ2

0 is not an interior Dirichlet
eigenvalue. Then, D : (H−1/2(Γ))2 → (H−1/2(Γ))2 is bounded and
(3.14) is transformed to

(3.15) (I + D−1K)u = D−1b.

First, we show that K is compact. We recall that

S0K1 = S0

(
NS1 − 1

2I
)−1

ND1,

S0(β1L1+β0L0) = 2S0

(
β1TD1+β0TD0−β0TS0

(
NS0 + 1

2I
)−1

ND0

)
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− 2β1S0TS1

(
NS1 − 1

2I
)−1

ND1,

and the following properties, see [4, 5], S0 : H−1/2(Γ) → H−1/2(Γ)
is compact, NDj , TDj : H1/2(Γ) → H−1/2(Γ) are bounded, TSj :

H−1/2(Γ)→ H−1/2(Γ) are bounded and (NSj ± 1
2I)−1 : H−1/2(Γ)→

H−1/2(Γ) are bounded due to compactness of NSj : H−1/2(Γ) →
H−1/2(Γ). Then, the operators

S0K1, S0(β1L1 + β0L0) : H1/2(Γ) −→ H−1/2(Γ),

are compact. Hence, K : (H1/2(Γ))2 → (H−1/2(Γ))2 is also compact
resulting in the compactness of D−1K : (H1/2(Γ))2 → (H−1/2(Γ))2.

Next we prove the uniqueness of solutions of equation (3.15). Solv-
ability follows from the Fredholm alternative theorem. Let (φ0, ψ0)T

be the solution of the homogeneous form of (3.15). Then, the poten-
tials

u0,0(x) = (D0φ0)(x)− (S0∂ηφ0)(x), x ∈ Ω0,

v0,0(x) = (D0ψ0)(x)− (S0∂ηψ0)(x), x ∈ Ω0,

and
u1,1(x) = −(D1φ1)(x) + (S1∂ηφ1)(x), x ∈ Ω1,

v1,1(x) = −(D1ψ1)(x) + (S1∂ηψ1)(x), x ∈ Ω1,

solve the homogeneous form of the problem (3.1)–(3.3). From Theo-
rem 3.1, we have that u0,0 = v0,0 = 0 in Ω0 and u1,1 = v1,1 = 0 in Ω1

where the densities φ1, ψ1 depend on the solution of the homogeneous
case.

We construct

u0,1(x) = (D0φ0)(x)− (S0∂ηφ0)(x), x ∈ Ω1,

v0,1(x) = (D0ψ0)(x)− (S0∂ηψ0)(x), x ∈ Ω1,

and
u1,0(x) = −(D1φ1)(x) + (S1∂ηφ1)(x), x ∈ Ω0,

v1,0(x) = −(D1ψ1)(x) + (S1∂ηψ1)(x), x ∈ Ω0.

Considering the jump relations, at the boundary Γ we obtain

(3.16)
u0,0 − u0,1 = φ0, u1,1 − u1,0 = φ1,

v0,0 − v0,1 = ψ0, v1,1 − v1,0 = ψ1.
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Since u0,0 = u1,1 = v0,0 = v1,1 = 0, φ0 = φ1 and ψ0 = ψ1, on Γ, we
find

u0,1 = u1,0, v0,1 = v1,0, x ∈ Γ.

Similarly, we can rewrite the other two boundary conditions of (3.4)
for those fields taking the differences of the normal and tangential
derivatives as x→ Γ. Thus, we see that u0,1, v0,1, u1,0 and v1,0 solve
the homogeneous problem, but with κ1 and κ0 interchanged and from
Theorem 3.1, we also get u0,1 = v0,1 = 0, on Γ and hence φ0 = ψ0 = 0
from (3.16). �

In order to handle the hypersingularity of the operators TDj we
work in a similar way as Mitzner [15] derived the Maue’s formula [14]
of the hypersingular operator NDj , namely

(3.17) (NDjf)(x) =

(
TSj

∂f

∂τ

)
(x) + κ2

j n̂(x) · (Sj n̂f)(x), x ∈ Γ.

This transformation reduces the hypersingularity to singularity of
Cauchy type (first term) and to a weak singularity (second term).

Theorem 3.3. Let f ∈ C1,α(Γ). The hypersingular operator TDj can
be transformed to

(3.18) (TDjf)(x) = −
(
NSj

∂f

∂τ

)
(x) + κ2

j τ̂ (x) · (Sj n̂f)(x), x ∈ Γ.

Proof. We recall equation (3.9). Applying Green’s first theorem to
v · ∇u1,v arbitrary constant vector, and Φ1, using that

∆Φ1(x,y) + κ2
1Φ1(x,y) = −δ(x− y),

yields

(3.19)

∫
Ω1

∇y(v · ∇yu1(y)) · ∇yΦ1(x,y) dy

− κ2
1

∫
Ω1

Φ1(x,y)v · ∇yu1(y) dy

= v · ∇xu1(x) +

∫
Γ

∂Φ1

∂n(y)
(x,y)v · ∇yu1(y) ds(y).
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The first integral can be transformed to∫
Ω1

∇(v · ∇u1) · ∇Φ1 dy

= −
∫

Ω1

(
κ2

1u1v +∇× (v×∇u1)
)
· ∇Φ1 dy

= −κ2
1v ·

∫
Ω1

u1∇Φ1 dy

− v ·
∫

Γ

(n̂×∇Φ1)×∇u1 ds(y).

Then, (3.19) reads

v ·
(
κ2

1

∫
Ω1

∇y(Φ1 u1)dy +

∫
Γ

(n̂×∇yΦ1)×∇yu1 ds(y)

+

∫
Γ

∂Φ1

∂ny
∇yu1 ds(y)

)
= −v · ∇xu1.

Using some vector identities and suppressing the inner products
with v (holds for any vector), we end up to

−∇xu1 =

∫
Γ

(
−∇yΦ1× (n̂y×∇yu1)+κ2

1Φ1u1n̂y+∇yΦ1
∂u1

∂ny

)
ds(y),

for x ∈ Ω1. We multiply this equation with n̂(x) (inner product) and
consider the limit as x approaches the boundary Γ from inside and the
corresponding jump relations. We obtain [15]
(3.20)

− 1

2

∂

∂n
u1

=

∫
Γ

(
(n̂x ×∇xΦ1) · (n̂y ×∇yu1) + κ2

1Φ1u1(n̂x · n̂y)
)
ds(y)

−
∫

Γ

∂Φ1

∂nx

∂u1

∂ny
ds(y), x ∈ Γ.

Now, equating the above equation and the normal derivative of (3.9)
as x→ Γ, we obtain (3.17) in R2.
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We take the tangential derivative of (3.9), and, considering the jump
relations, we get

− ∂

∂τ
u1(x) = (TD1u1)(x)− 1

2

∂u1

∂τ
(x)−

(
TS1

∂u1

∂n

)
(x), x ∈ Γ.

We replace n̂(x) by τ̂ (x) in (3.20) (considering the appropriate
jump relations) and restricting ourselves in R2, we have

−1

2

∂

∂τ
u1 =

∫
Γ

(
−(n̂x · ∇xΦ1)(τ̂y · ∇yu1) + κ2

1Φ1u1(τ̂x · n̂y)
)
ds(y)

−
∫

Γ

∂Φ1

∂τx

∂u1

∂ny
ds(y), x ∈ Γ.

Observing the last two equations, we obtain (3.18), the equivalent
of the Maue’s formula for the tangential derivative of the double-layer
potential which also reduces the hypersingularity of the potential. �

4. Numerical results. In this section, we present numerical exam-
ples by implementing the proposed method. We use quadrature rules
to integrate the singularities considering trigonometric interpolation.
Regarding the convergence and the error analysis of the quadrature
formulas, we refer the reader to [11] for the weakly singular operators
and to [10] for the hypersingular. We solve the system of integral
equations considering these rules by the Nyström method.

We assume the following parametrization for the boundary:

Γ = {z(t) = (z1(t), z2(t)) : t ∈ [0, 2π]},

where z : R → R
2 is a C2-smooth, 2π-periodic and counterclockwise

oriented parametrization. We assume, in addition, that z is injective
in [0, 2π), that is, z′(t) 6= 0 for all t ∈ [0, 2π].

Now, we transform the operators in (3.7) and their derivatives, see
(3.8), into their parametric forms

(Sjψ)(t) =

∫ 2π

0

MSj (t, s)ψ(s) ds,

(Djψ)(t) =

∫ 2π

0

MDj (t, s)ψ(s) ds,
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(NSjψ)(t) =

∫ 2π

0

MNSj (t, s)ψ(s) ds,

(TSjψ)(t) =

∫ 2π

0

MTSj (t, s)ψ(s) ds,

and the special forms

(NDjψ)(t) =
1

|z′(t)|

∫ 2π

0

[
1

4π
cot

(
s− t

2

)
∂ψ

∂s
(s)−MNDj (t, s)ψ(s)

]
ds

(4.2a)

+ κ2
j

∫ 2π

0

(n̂(t) · n̂(s))MSj (t, s)ψ(s) ds,

(TDjψ)(t) =
1

|z′(t)|

∫ 2π

0

MTDj (t, s)ψ(s) ds

(4.2b)

+ κ2
j

∫ 2π

0

(τ̂ (t) · n̂(s))MSj (t, s)ψ(s) ds,

for t ∈ [0, 2π], j = 0, 1 and ψ(t) = f(z(t)), n̂(t) = n̂(z(t)), τ̂ (t) =
τ̂ (z(t)), where

MSj (t, s) =
i

4
H

(1)
0 (κj |r(t, s)|)|z′(s)|,

(4.3)

MDj (t, s) =
iκj
4

n̂(s) · r(t, s)

|r(t, s)|
H

(1)
1 (κj |r(t, s)|)|z′(s)|,

MNSj (t, s) = − iκj
4

n̂(t) · r(t, s)

|r(t, s)|
H

(1)
1 (κj |r(t, s)|)|z′(s)|,

MTSj (t, s) = − iκj
4

τ̂ (t) · r(t, s)

|r(t, s)|
H

(1)
1 (κj |r(t, s)|)|z′(s)|,

MNDj (t, s) =
i

4
M(t, s)

[
κ2
jH

(1)
0 (κj |r(t, s)|)− 2κj

H
(1)
1 (κj |r(t, s)|)
|r(t, s)|

]
+
iκj
4

z′(t) · z′(s)
|r(t, s)|

H
(1)
1 (κj |r(t, s)|) +

1

8π
sin−2

(
t− s

2

)
,

MTDj (t, s) =
i

4
MJ(t, s)

[
κ2
jH

(1)
0 (κj |r(t, s)|)− 2κj

H
(1)
1 (κj |r(t, s)|)
|r(t, s)|

]
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+
iκj
4

J z′(t) · z′(s)
|r(t, s)|

H
(1)
1 (κj |r(t, s)|),

with r(t, s) = z(t)− z(s), and

M(t, s) =
(z′(t) · r(t, s))(z′(s) · r(t, s))

|r(t, s)|2
,

MJ(t, s) =
(J z′(t) · r(t, s))(z′(s) · r(t, s))

|r(t, s)|2
.

Here, we have used the formulas H
(1)
1 (t) = −H(1)′

0 (t) and H
(1)′

1 (t) =

H
(1)
0 (t)− (1/t)H

(1)
1 (t). The form in equation (4.2a) is based on (3.17),

derived by Kress [10] and improved in [12]. The derivation of (4.2b)
is easier. Namely, we define ∂tJ := J z′∂z and

MTDj (t, s) :=
∂2

∂tJ∂s
MSj (t, s).

Then

−
(
NSj

∂f

∂τ

)
(z(t)) = −

∫ 2π

0

J z′(t)

|z′(t)|
∂

∂z(t)
MSj (t, s)

· z′(s)

|z′(s)|
∂ψ

∂z(s)
(s)|z′(s)| ds

= − 1

|z′(t)|

∫ 2π

0

∂

∂tJ
MSj (t, s)

∂

∂s
ψ(s) ds

=
1

|z′(t)|

∫ 2π

0

∂2

∂tJ∂s
MSj (t, s)ψ(s) ds,

and (4.2b) follows by simply adding the parametrized form of the
second term in the right-hand side of (3.18). The kernels in (4.3)
admit the decomposition

Mk(t, s) = Mk
1 (t, s) ln

(
4 sin2

(
t− s

2

))
+Mk

2 (t, s),

for k = Sj , Dj , NSj , NDj , TDj where Mk
1 and Mk

2 are analytic, due
to logarithmic singularity of the functions at t = s. The case of MTSj

has to be treated differently because of the Cauchy type singularity of
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the kernel as t = s. Thus, we split the kernel as

MTSj (t, s) = M
TSj

1 (t, s) ln

(
4 sin2

(
t− s

2

))
+

1

4π
cot

(
s− t

2

)
+M

TSj

2 (t, s).

The kernels Mk
1 are defined for t 6= s by, see [10]

M
Sj

1 (t, s) = − 1

4π
J0(κj |r(t, s)|)|z′(s)|,

M
Dj

1 (t, s) = − κj
4π

n̂(s) · r(t, s)

|r(t, s)|
J1(κj |r(t, s)|)|z′(s)|,

M
NSj

1 (t, s) =
κj
4π

n̂(t) · r(t, s)

|r(t, s)|
J1(κj |r(t, s)|)|z′(s)|,

M
TSj

1 (t, s) =
κj
4π

τ̂ (t) · r(t, s)

|r(t, s)|
J1(κj |r(t, s)|)|z′(s)|,

M
NDj

1 (t, s) = − 1

4π
M(t, s)

[
κ2
jJ0(κj |r(t, s)|)− 2κj

J1(κj |r(t, s)|)
|r(t, s)|

]
− κj

4π

z′(t) · z′(s)
|r(t, s)|

J1(κj |r(t, s)|),

M
TDj

1 (t, s) = − 1

4π
MJ(t, s)

[
κ2
jJ0(κj |r(t, s)|)− 2κj

J1(κj |r(t, s)|)
|r(t, s)|

]
− κj

4π

J z′(t) · z′(s)
|r(t, s)|

J1(κj |r(t, s)|),

with diagonal terms

M
Sj

1 (t, t) = − 1

4π
|z′(t)|, M

Dj

1 (t, t) = 0,

M
NSj

1 (t, t) = 0, M
TSj

1 (t, t) = 0,

M
NDj

1 (t, t) = −
κ2
j

8π
|z′(t)|2, M

TDj

1 (t, t) = 0,

where J0 and J1 are the Bessel functions of order zero and one,
respectively. The kernels Mk

2 , for t 6= s, are given by

Mk
2 (t, s) = Mk(t, s)−Mk

1 (t, s) ln

(
4 sin2

(
t− s

2

))
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and

M
TSj

2 (t, s) = MTSj (t, s)−MTSj

1 (t, s) ln

(
4 sin2

(
t− s

2

))
− 1

4π
cot

(
s− t

2

)
,

with diagonal terms

M
Sj

2 (t, t) =

[
i

4
− C

2π
− 1

2π
ln

(
κj
2
|z′(t)|

)]
|z′(t)|,

M
Dj

2 (t, t) =
1

4π

n̂(t) · z′′(t)
|z′(t)|

,

M
NSj

2 (t, t) =
1

4π

n̂(t) · z′′(t)
|z′(t)|

,

M
TSj

2 (t, t) = − 1

4π

τ̂ (t) · z′′(t)
|z′(t)|

,

M
NDj

2 (t, t) =

[
πi− 1− 2C − 2 ln

(
κj
2
|z′(t)|

)]
κ2
j

8π
|z′(t)|2 +

1

24π

+
(z′(t) · z′′(t))2

4π|z′(t)|4
− z′(t) · z′′′(t)

12π|z′(t)|2
− |z′′(t)|2

8π|z′(t)|2
,

M
TDj

2 (t, t) = − (z′(t) · z′′(t))(J z′(t) · z′′(t))
4π|z′(t)|4

+
J z′(t) · z′′′(t)

12π|z′(t)|2
,

where C is the Euler’s constant. For the last approximation, we used

the same arguments as in the case of M
NDj

2 .

Considering the equidistant points tj = jπ/n, j = 0, . . . , 2n − 1,
we use the trapezoidal rule to approximate the operators with smooth
kernel ∫ 2π

0

ψ(s) ds ≈ π

n

2n−1∑
j=0

ψ(tj),
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and the following quadrature rules for the singular kernels∫ 2π

0

ln

(
4 sin2

(
t− s

2

))
ψ(s) ds ≈

2n−1∑
j=0

R
(n)
j (t)ψ(tj),

1

4π

∫ 2π

0

cot

(
s− t

2

)
∂

∂s
ψ(s) ds ≈

2n−1∑
j=0

T
(n)
j (t)ψ(tj),

∫ 2π

0

cot

(
s− t

2

)
ψ(s) ds ≈

2n−1∑
j=0

S
(n)
j (t)ψ(tj),

with weights

R
(n)
j (t) = −2π

n

n−1∑
m=1

1

m
cos (m(t− tj))−

π

n2
cos(n(t− tj)),

T
(n)
j (t) = − 1

2n

n−1∑
m=1

m cos (m(t− tj))−
1

4
cos(n(t− tj)),

S
(n)
j (t) =

π

n

[
1− (−1)j cos(nt)

]
cot

(
tj − t

2

)
, t 6= tj .

Then, the system (3.14), or similarly (3.15), considering the above
parametric forms of the integral operators and the quadrature rules,
is transformed to a linear system by applying the Nyström method.

To illustrate the efficiency of our method, we consider two different
cases. In the first example, motivated by [23], we construct a model
where the scattered fields can be analytically computed and in the
second one we consider the scattering of obliquely incident waves.

In both examples, the parametrization of the obstacle is given by

z(t) = (2 cos t+ 1.5 cos 2t− 1, 2.5 sin t), t ∈ [0, 2π].

4.1. Example with analytic solution. We consider four arbitrary
points z1, z2 ∈ Ω1 and z3, z4 ∈ Ω0, and we define the boundary
functions fk, k = 1, 2, 3, 4 by

f1 = H
(1)
0 (κ1|r3(x)|)−H(1)

0 (κ0|r1(x)|),
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f2 = −µ̃1ωκ1H
(1)
1 (κ1|r4(x)|) n̂(x) · r4(x)

|r4(x)|

− β1κ1H
(1)
1 (κ1|r3(x)|) τ̂ (x) · r3(x)

|r3(x)|

+ µ̃0ωκ0H
(1)
1 (κ0|r2(x)|) n̂(x) · r2(x)

|r2(x)|

+ β0κ0H
(1)
1 (κ0|r1(x)|) τ̂ (x) · r1(x)

|r1(x)|
,

f3 = H
(1)
0 (κ1|r4(x)|)−H(1)

0 (κ0|r2(x)|),

f4 = −ε̃1ωκ1H
(1)
1 (κ1|r3(x)|) n̂(x) · r3(x)

|r3(x)|

+ β1κ1H
(1)
1 (κ1|r4(x)|) τ̂ (x) · r4(x)

|r4(x)|

+ ε̃0ωκ0H
(1)
1 (κ0|r1(x)|) n̂(x) · r1(x)

|r1(x)|

− β0κ0H
(1)
1 (κ0|r2(x)|) τ̂ (x) · r2(x)

|r2(x)|
,

where rk(x) = x− zk. Then, the fields
(4.4)

u0(x) = H
(1)
0 (κ0|x− z1|), v0(x) = H

(1)
0 (κ0|x− z2|), x ∈ Ω0,

u1(x) = H
(1)
0 (κ1|x− z3|), v1(x) = H

(1)
0 (κ1|x− z4|), x ∈ Ω1,

solve the following problem

∆u0 + κ2
0 u0 = 0, ∆v0 + κ2

0 v0 = 0, x ∈ Ω0,

∆u1 + κ2
1 u1 = 0, ∆v1 + κ2

1 v1 = 0, x ∈ Ω1,

with boundary conditions

u1 = u0 + f1, x ∈ Γ,

µ̃1ω
∂v1

∂n
+ β1

∂u1

∂τ
= µ̃0ω

∂v0

∂n
+ β0

∂u0

∂τ
+ f2, x ∈ Γ,

v1 = v0 + f3, x ∈ Γ,

ε̃1ω
∂u1

∂n
− β1

∂v1

∂τ
= ε̃0ω

∂u0

∂n
− β0

∂v0

∂τ
+ f4, x ∈ Γ,
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Figure 2. The parametrization of the boundary Γ and the source points.

and the radiation conditions

lim
r→∞

√
r

(
∂u0

∂r
− iκ0u0

)
= 0, lim

r→∞

√
r

(
∂v0

∂r
− iκ0v0

)
= 0.

For this problem, we can again derive a system as (3.14), where
now b is replaced by

bf =

(
−(1/ε̃0ω)S0f4 + (ε̃1/ε̃0)S0K1f1 + (β1/ε̃0ω)S0L1f3

−(1/µ̃0ω)S0f2 + (µ̃1/µ̃0)S0K1f3 − (β1/µ̃)0ωS0L1f1

)
.

Given (4.4) and the asymptotic behavior of the Hankel function [4],
we know that the far field patterns of u0 and v0 are given by

(4.5)

u∞0 (x̂) =
−4ieiπ/4√

8πκ0
e−iκ0x̂·z1 , x̂ ∈ S,

v∞0 (x̂) =
−4ieiπ/4√

8πκ0
e−iκ0x̂·z2 , x̂ ∈ S,

where S is the unit ball. Numerically, the far field patterns are given
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Figure 3. The far field patterns: Reconstructed (blue open circles) and
exact (red solid line).

by

(4.6)

u∞0 (x̂) =
eiπ/4√
8πκ0

∫ 2π

0

e−iκ0x̂·z(s) [−iκ0(x̂ · n̂(s))ϕ0(s)

−(K0ϕ0)(s)] |z′(s)|] ds,

v∞0 (x̂) =
eiπ/4√
8πκ0

∫ 2π

0

e−iκ0x̂·z(s) [−iκ0(x̂ · n̂(s))ψ0(s)

−(K0ψ0)(s)] |z′(s)| ds,

where ϕ := (ϕ0, ψ0)T solves

(D + K)ϕ = bf .
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u∞0 v∞0
t

n 0 π/2 π 0 π/2 π

32 0.006470 0.009056 0.003944 0.004714 0.007460 0.001767

64 0.003157 0.004729 0.001820 0.002249 0.004288 0.000601

128 0.001581 0.002374 0.000908 0.001125 0.002161 0.000292

Table 1. Absolute errors of the far field patterns of u0 and v0 for different
orders n at discrete points t.

Here, we have used the representations (3.10) for the exterior fields
and the asymptotics of the Hankel function. The operator K0 is given
by (3.13).

We consider the points z1 = (0.5, 1) and z2 = (0, −0.5) in Ω1 and
the points z3 = (1, 2) and z4 = (0, −2.5) in Ω0, see Figure 2. We set
ω = 1 and n = 32. The exact values (4.5) and the reconstructed (4.6)
for (ε1, µ1) = (3, 2) and (ε0, µ0) = (1, 1) are presented in Figure 3.
The results are presented for θ = π/3. In Table 1, we provide the
absolute errors of the far field patterns for different values of n and t.

As a general comment, we could say that the reconstructions are ac-
curate and illustrate the feasibility of the proposed method. However,
the convergence is slower compared to the impedance cylinder case
[23]. The main reason is the complexity of the matrix K involving
the product of four operators: S0 TSj(NSj + 1/2I)−1NDj , j = 0, 1
resulting in an increase of the condition number. As θ → π/2, the
results improve considerably.

4.2. Example with oblique incidence. In this example, we con-
sider the usual obliquely incident (TM) polarized electromagnetic
plane wave, resulting in the forms (2.10). We keep the same values
for all parameters as in the previous example. We restrict the compu-
tations of the fields to the rectangular domain [−5, 5]2, and we con-
sider a two-dimensional uniform-space discretization, namely, xkj =
(−5 + kδ,−5 + jδ), where δ = 10/(2m − 1), for k, j = 0, . . . , 2m − 1.
We use m = 128.
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Figure 4. The norms of the electric fields u0 and u1 (left) and of the
magnetic fields v0 and v1 (right) for φ = π/2.
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Figure 5. The norms of the electric fields u0 and u1 (left) and of the
magnetic fields v0 and v1 (right) for φ = π/9.

The values of the norms of the scattered electric and magnetic fields
|u0|, |v0| and the interior electric and magnetic fields |u1|, |v1| are
presented in Figures 4 and 5 for different values of the polar angle φ,
which in R2 corresponds to the incident direction (cosφ, sinφ) ∈ S .
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