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ABSTRACT. We consider the inverse problem of recov-
ering the shape of an extended source of known homoge-
neous strength within a conducting medium from one voltage
and current measurement on the accessible boundary of the
medium and present an iterative solution method via bound-
ary integral equations. The main idea of our approach is
to equivalently reformulate the inverse source problem as
an inverse boundary value problem with a non-local Robin
condition on the boundary of the source domain. Following
our approach in [12] for an inverse Dirichlet problem, from
Green’s representation formula we obtain a nonlinear inte-
gral equation for the unknown boundary curve which can
be solved by regularized Newton iterations. We present the
foundations of the inverse algorithm and illustrate its feasi-
bility by some numerical examples.

1. Introduction. Electrostatic imaging models the detection of in-
clusions or sources within a conducting medium from voltage and cur-
rents measurements on its boundary and leads to inverse problems for
the Laplace equation. In this paper, we will examine an inverse source
problem with an extended source spread over a subdomain of the con-
ducting medium. For this, we assume that Ω is a doubly connected
bounded domain in R2 with boundary ∂Ω that consists of two disjoint
C2 smooth closed Jordan curves Γm and Γs such that ∂Ω := Γm ∪ Γs

and Γs is contained in the interior of Γm. Here, Γs stands for the
boundary of an extended source to be determined, and Γm stands for
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the measurement surface. We denote by Ωs and Ωm the bounded do-
mains with boundaries Γs and Γm, respectively. By ν, we denote the
unit normal vector to Γs and to Γm that is directed into the exterior
of Ωs and the exterior of Ωm, respectively.

Our topic is the inverse problem of reconstructing the inclusion Ωs

from the Cauchy data on Γm of a solution u ∈ H1(Ωm) of the source
equation

(1.1) ∆u = χs in Ωm,

where χs denotes the characteristic function of Ωs. We note that,
in principle, we need only consider the problem with Dirichlet data
f = 0. For a given Cauchy pair (f, g) on Γm of a solution u of
(1.1), the function v = u − uf where uf ∈ H1(Ωm) is the unique
harmonic function with uf = f on ∂Ωm again satisfies (1.1) but with
zero Dirichlet data. This shows that no further information can be
gained by using different Dirichlet data since the harmonic function
uf does not carry any information on Γs. A similar argument shows
that we also could restrict ourselves to the case of constant Neumann
data g = |Ωs|/|Γm|. However, for convenience, we present our inverse
algorithm for the general case. Concerning uniqueness, we note that Γs

is uniquely determined by one Cauchy pair, provided it is star-like with
respect to the center of gravity of Ωs and the radial distance function
describing Γs is Lipschitz continuous (see [5, Theorem 4.1.1]).

We propose a new iterative scheme for the numerical solution of the
above inverse source problem. The main idea of our approach is to
equivalently reformulate the Dirichlet problem for the source equation
(1.1) in Ωm as a boundary value problem for the Laplace equation in
Ω with a Dirichlet boundary condition on Γm and a non-local Robin
condition on Γs in terms of the Dirichlet-to-Neumann operator for
harmonic functions in Ωs. Then, following our approach in [12] for an
inverse Dirichlet problem, from Green’s representation formula applied
to the solution of the combined Dirichlet and Robin problem we obtain
a nonlinear integral equation for the unknown boundary curve Γs which
can be solved by regularized Newton iterations.

As alternative methods for the same problem we mention the ap-
proach by Hettlich and Rundell [4] who suggested Newton iterations for
the boundary-to-data map associated with the source problem. More
recently, Hanke and Rundell [3] proposed another Newton type itera-
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tion in the framework of the reciprocity gap principle using trigonomet-
ric harmonics as test functions. Relations of our approach with these
two methods will be discussed at the end of Section 3.

The plan of the paper is as follows. Section 2 provides two bound-
ary integral equation methods for solving the direct source problem
and introduces notation. We then proceed in Section 3 with the pre-
sentation of our reconstruction algorithm for the shape Γs including a
short discussion of some relations to the regularized Newton iterations
for the boundary-to-data map as proposed in [4]. In the final Section 4
we will provide numerical examples illustrating the feasibility of the
inverse algorithm.

The method described in [12] for the inverse problem with a Dirich-
let condition on Γs and in [6] for a Neumann condition on Γs has been
recently also applied to a local Robin or impedance condition by Cakoni
et al. [1].

In principle, our proposed method can be also used for the case where
the source domain Ωs consists of a finite number of disjoint subsets
provided a priori information on the number, the location and the size
of the subsets is available. This a priori information, for example,
could be obtained by a rational approximation algorithm as developed
recently by Hanke and Rundell [3].

Finally, we also note that our method allows a straightforward
extension to the Helmholtz equation with a source term.

2. The direct problem. We begin by studying the Dirichlet prob-
lem for (1.1), subject to the boundary condition

(2.1) u = f on ∂Ωm

for a given f ∈ H1/2(Ωm) as the corresponding direct problem. In
particular, we present two different approaches for solving this bound-
ary value problem by boundary integral equations. Although the first
approach we are describing will not be useful for the solution of the
inverse problem we found it helpful to have two independent methods
available for the direct problem. In the course of this section the reader
also will get familiar with the integral operators that will be needed for
our inverse algorithm.
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For the first method, in terms of the fundamental solution

Φ(x, y) =
1

2π
ln

1

|x− y|
, x ̸= y,

we introduce the single- and double-layer potential operators

Sjk : H−1/2(Γj) −→ H1/2(Γk)

and

Kjk : H1/2(Γj) −→ H1/2(Γk)

defined by

(2.2) (Sjkφ)(x) := 2

∫
Γj

Φ(x, y)φ(y) ds(y), x ∈ Γk,

and

(2.3) (Kjkφ)(x) := 2

∫
Γj

∂Φ(x, y)

∂ν(y)
φ(y) ds(y), x ∈ Γk,

for j, k = m, s. Without loss of generality, we assume that there exists
a point xm in Ωm such that |x − xm| ≠ 1 for all x ∈ Γm and a point
xs in Ωs such that |x − xs| ̸= 1 for all x ∈ Γs. Then Theorem 3.16
in [9] (see also [10, Theorem 7.38]) guarantees that the single-layer
operators Sjj : H−1/2(Γj) → H1/2(Γj) are injective for j = m, s. In
the sequel, we will refer to this as assumption G. Note that, by a change
of variables, any domains Ωm and Ωs always can be scaled to a setting
where the condition G is satisfied.

Here, for simplicity, we have chosen just to work with the single-
layer operators and point out that, alternatively, in order to obtain
injectivity, we could modify them by adding an additional term as in
[10, Theorem 7.41]. We also note that in R3, the condition G is not
required for the injectivity of the single-layer operators.

We introduce a special solution u0 of the Poisson equation

(2.4) ∆u0 = 1

in Ωs by

(2.5) u0(x) :=
1

4
|x|2, x ∈ Ωs,
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and note that for our purposes (2.5) can be replaced by any other
explicit expression for a solution to (2.4). In our first approach we
search the solution of the Dirichlet problems (1.1) and (2.1) in the
form

u =

{
v in Ω,
u0 + v in Ωs,

with a potential

(2.6)
v(x) =

∫
Γs

{
Φ(x, y)ψ(y) +

∂Φ(x, y)

∂ν(y)
η(y)

}
ds(y)

+

∫
Γm

∂Φ(x, y)

∂ν(y)
φ(y) ds(y), x ∈ Ω ∪ Ωs.

By the jump relations, assuming that φ ∈ H1/2(Γm) and choosing

(2.7) ψ = −∂u0
∂ν

∣∣∣
Γs

and η = u0|Γs

ensures that u is an H1(Ωm) solution of (1.1). The Dirichlet boundary
condition (2.1) is satisfied provided φ solves the integral equation

(2.8) −φ+Kmmφ = 2f − Ssmψ −Ksmη.

Clearly, by the classical results on the double-layer integral equation of
the second kind for the interior Dirichlet problem (see [10]), the equa-
tion (2.8) possesses a unique solution φ ∈ H1/2(Γm). For its approx-
imate solution, an efficient Nyström method based on trigonometric
approximations as described, for example, in [10] can be employed.

Note, that this approach is not suited for solving the inverse problem
since in this case in addition to Γs and φ also ψ and η would be
unknown.

For the second approach for solving the direct problem in addition
to the single- and double-layer boundary operators we also need the
corresponding normal derivative operators

K ′
jk : H−1/2(Γj) −→ H−1/2(Γk)

and

Tjk : H1/2(Γj) −→ H−1/2(Γk)
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defined by

(2.9) (K ′
jkφ)(x) := 2

∫
Γj

∂Φ(x, y)

∂ν(x)
φ(y) ds(y), x ∈ Γk,

and

(Tjkφ)(x) := 2
∂

∂ν(x)

∫
Γj

∂Φ(x, y)

∂ν(y)
φ(y) ds(y),(2.10)

x ∈ Γk,

for j, k = m, s. Further we introduce the Dirichlet-to-Neumann op-
erator A : H1/2(Γs) → H−1/2(Γs) for the domain Ωs mapping the
Dirichlet trace on Γs of harmonic functions in H1(Ωs) onto the Neu-
mann trace on Γs. From the existence analysis for the interior Dirichlet
problem via the double-layer integral equation, we have the represen-
tation

(2.11) A = Tss(Kss − I)−1.

Alternatively, using the single-layer integral equation, we also have

(2.12) A = (K ′
ss + I)S−1

ss

provided the geometric assumption G ensuring injectivity of Sss is im-
posed. (Details on the representations (2.11) and (2.12) are described,
for example, in [10].)

For a solution u ∈ H1(Ωm) of (1.1), the function u−u0 in Ωs (recall
the definition (2.5)) is harmonic, and we have

∂(u− u0)

∂ν

∣∣∣∣
Γs

= A(u− u0)|Γs .

Therefore, in view of the continuity of u and its normal derivative across
Γs, the source problem (1.1) and (2.1) can be separated into two parts.
First we solve for a harmonic function u in Ω with Dirichlet condition
(2.1) on Γm and the non-local Robin condition

(2.13)
∂u

∂ν
−Au =

∂u0
∂ν

−Au0|Γs on Γs.

Then, knowing u|Γs , we solve for a harmonic function v in Ωs with
Dirichlet values v = u−u0 on Γs and set u := u0+ v in Ωs. (Note that
if we are only interested in the Neumann trace of u on Γm the second
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part can be omitted.) Existence of the solution to the mixed Dirichlet
and Robin problems (2.1) and (2.13) is evident as restriction of the
solution to the original source problems (1.1) and (2.1) and uniqueness
follows from Green’s integral theorem and the positive definiteness of
the Dirichlet-to-Neumann map A.

There are various possibilities for solving the mixed Dirichlet and
Robin problems (2.1) and (2.13). By the jump relations, a single-layer
approach on both boundary components

(2.14)

u(x) =

∫
Γm

φm(y)Φ(x, y) ds(y)

+

∫
Γs

φs(y)Φ(x, y) ds(y), x ∈ Ω,

satisfies both (2.1) and (2.13), provided that φm ∈ H−1/2(Γm) and
φs ∈ H−1/2(Γs) solve the system of integral equations

Smmφm + Ssmφs = f,(2.15)

K ′
msφm −ASmsφm − φs +K ′

ssφs −ASssφs =
∂u0
∂ν

−Au0|Γs .(2.16)

Theorem 2.1. Provided the geometric assumption G is satisfied, the
system of boundary integral equations (2.15)–(2.16) is uniquely solvable.

Proof. Assume that φm and φs solve the homogeneous form of
(2.15)–(2.16), and define u by (2.14) in all of R2. Then, in view of
the uniqueness for the mixed Dirichlet and Robin problem in Ω we
have that u = 0 in Ω. From u = 0 on Γs and the uniqueness for the
Dirichlet problem in Ωs it follows that u = 0 in Ωs, and consequently
φs = 0 by the jump relations. Now, finally we have that Smmφm = 0,
and injectivity of Smm ensures that φm = 0. Thus, we have proved
injectivity for (2.15)–(2.16).

Using the identity

TmmSmm = K ′2
mm − I

(see [10]) the system (2.15)–(2.16) can be equivalently transformed into
a system with a compact perturbation of the identity. Hence, by the
Riesz theory, injectivity implies existence of a solution. �
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Again, the boundary integral equations (2.15)–(2.16) can be effi-
ciently solved via a combination of Nyström and collocation methods
based on trigonometric polynomial approximations that take proper
care of the logarithmic singularity in the single-layer operators. When
the representation (2.11) of the Dirichlet-to-Neumann map A is used,
the implementation of the hypersingular operator Tss can be reduced
to the implementation of Sss by employing Maue’s formula

(2.17) Tssφ =
d

ds
Sss

dφ

ds

and trigonometric differentiation as described in [10, subsection 13.5],
see also [11].

For creating the synthetic data to be used in the inverse algorithm,
we found it quite convenient to have two independent methods available
for verifying the correctness of our numerical implementation. From
the general error analysis in [10], it can be concluded that for analytic
boundaries and analytic Dirichlet data both methods are exponentially
convergent.

Table 1 gives some approximate values for the parameterized normal
derivative g̃ = g ◦ zm for the apple-shaped Γs given by (4.4) and the
circle Γm given by (4.6) in Section 4. The Dirichlet data are f = 0. The
exponential convergence is clearly exhibited. The results in Table 1 are
obtained via the integral equation (2.8). For n = 64, the method based
on the non-local Robin condition via the system of integral equations
(2.15)–(2.16) gives the same results up to 12 decimals. In both cases,
the normal derivative of the double-layer potential on Γm is discretized
via Maue’s formula.

Table 1. Numerical solution for direct problem.

n g̃(0) g̃(π/2) g̃(π) g̃(3π/2)

8 0.113024245219 0.139099807477 0.144891779304 0.126847715069

16 0.113105431204 0.138908670358 0.144111296858 0.125685584383

32 0.113083117312 0.138918100239 0.144118988822 0.125692471507

64 0.113083118465 0.138918099791 0.144118988474 0.125692471222

We conclude this section by noting that the above methods have
immediate extensions both to the source equation with other right
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hand sides (instead of the characteristic function) and to the Helmholtz
equation.

3. The nonlinear integral equation. Recall that the inverse
problem is to recover Γs from the Cauchy data

f = u|Γm and g :=
∂u

∂ν

∣∣∣
Γm

of a solution u to (1.1). Following the approach for the solution
of an inverse Dirichlet problem as suggested in [12], from Green’s
representation formula applied to u in the domain Ω we obtain the
following equivalent integral equation.

Theorem 3.1. The inverse problem is equivalent to solving the non-
linear integral equation

(3.1)

−1

2
[Ksm − SsmA]

(
Kmsf − Smsg + Sss

∂u0
∂ν

∣∣∣∣
Γs

−Kssu0|Γs − u0|Γs

)
= f +Kmmf − Smmg + Ssm

(
∂u0
∂ν

∣∣∣∣
Γs

−Au0|Γs

)
for the unknown Γs.

Proof. For a harmonic function u ∈ H1(Ω) with Cauchy data (f, g)
on Γm that satisfies the non-local Robin condition (2.13) we set

φ := u|Γs .

Then by Green’s formula we have that
(3.2)

u(x) =

∫
Γs

{
∂Φ(x, y)

∂ν(y)
φ(y)

−Φ(x, y)

(
∂u0
∂ν

∣∣∣
Γs

+Aφ−Au0|Γs

)
(y)

}
ds(y)

+

∫
Γm

{
Φ(x, y)g(y)− ∂Φ(x, y)

∂ν(y)
f(y)

}
ds(y), x ∈ Ω.
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Letting x tend to Γm and Γs from inside Ω, we obtain the integral
equations

(3.3)
Ksmφ− SsmAφ = f +Kmmf − Smmg

+Ssm

(
∂u0
∂ν

∣∣∣
Γs

−Au0|Γs

)
and

(3.4) −φ+Kssφ− SssAφ = Kmsf − Smsg + Sss

(
∂u0
∂ν

∣∣∣
Γs

−Au0|Γs

)
for the unknowns φ and Γs. Using (2.11) and

SssTss = K2
ss − I,

we have that

(3.5) SssA = Kss + I.

Hence, (3.4) is equivalent to

(3.6) −2φ = Kmsf − Smsg + Sss
∂u0
∂ν

∣∣∣
Γs

−Kssu0|Γs − u0|Γs .

Inserting this into (3.3), we obtain (3.1).

Conversely, assume Γs solves (3.1). Then we define φ via (3.6) and
have that φ also satisfies (3.4). We further define u in R2 \ ∂Ω by
the right hand side of (3.2). Then, (3.3) and (3.4) imply that u = 0
when approaching Γm and Γs from outside Ω. To conclude u = 0 in
R2 \ Ω via uniqueness for the exterior and interior Dirichlet problem
we need to proceed analogous to the proof of Theorem 3.16 in [9] using
our geometric assumption G. When approaching ∂Ω from inside Ω, the
jump relations imply that

u = f and
∂u

∂ν
= g on Γm

and

u = φ and
∂u

∂ν
=
∂u0
∂ν

+Aφ−Au0|Γs on Γs.

As worked out in Section 2, the latter ensures that u can be extended
from Ω into Ωm as an H1 solution of (1.1). Hence, Γs solves the inverse
problem for the given Cauchy pair (f, g). �
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The integral equation (3.1) now can be approximately solved via
linearization with respect to Γs and iteration, that is, by regularized
Newton iterations. The Dirichlet trace φ is only of secondary interest
in connection with the inverse problem and therefore can be viewed
as a slip variable. The fortunate fact that it can be eliminated in a
straightforward manner due to the transformation of (3.4) into (3.6)
is not typical for the approach to derive equivalent nonlinear integral
equations via Green’s theorems for this type of inverse boundary value
problem. In general, the method proposed in [12] uses two equations
for the unknown shape Γs and for a density function depending on the
type of boundary condition on Γs and linearizes both equations with
respect to both unknowns and then iterates.

Nevertheless, also in the present case, in the spirit of the method
proposed first by Johansson and Sleeman [7], for an inverse scattering
problem, it is tempting to try an alternative method. In this iteration
scheme, given an approximation for Γs, we determine the density φ
from the transformed equation (3.6). Then keeping φ fixed, we update
Γs by linearizing (3.3) with respect to Γs. However, our numerical
experiments with this approach did not result in a convergent scheme.
Knowing that the approach from [7] is sensitive to whether the arc
length is integrated into the slip variable φ (see also a corresponding
discussion in [12]) we assume that this lack of convergence is due to
the fact that we choose the slip variable φ such that we avoided the
occurrence of the arc length in our parameterized integral operators in
order to obtain simpler expressions for the linearizations.

For the foundation of these linearizations and the Newton type
iterations we need the Fréchet derivatives of the involved single- and
double-layer operators with respect to Γs. To this end, without much
loss of generality, we assume that the C2-boundaries Γj for j = m, s
have parametric representations with counter clockwise orientation

(3.7) Γj = {zj(t) : t ∈ [0, 2π]}

with 2π periodic C2 smooth functions zj : R → R2 such that zj is injec-
tive on [0, 2π). In view of (2.2) and (2.3), we introduce parameterized
single- and double-layer operators

S̃jk : H−1/2
per [0, 2π] −→ H1/2

per [0, 2π]
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and

K̃jk : H1/2
per [0, 2π] −→ H1/2

per [0, 2π]

by

(3.8) S̃jk(ψ)(t) :=
1

π

∫ 2π

0

ln
1

|zk(t)− zj(τ)|
ψ(τ) dτ, t ∈ [0, 2π],

and

K̃jk(ψ)(t) :=
1

π

∫ 2π

0

[z′j(τ)]
⊥ · [zk(t)− zj(τ)]

|zk(t)− zj(τ)|2
ψ(τ) dτ,(3.9)

t ∈ [0, 2π],

for j, k = m, s. Here, we write a⊥ = (a2,−a1) for any vector a =
(a1, a2), that is, a

⊥ is obtained by rotating a clockwise by 90 degrees.
In view of the representation (2.11) of the Dirichlet-to-Neumann map
and Maue’s formula (2.17), we further introduce the parameterized

Dirichlet-to-Neumann operator Ã : H
1/2
per [0, 2π] → H

−1/2
per [0, 2π] by

(3.10) Ãψ :=
d

dt
S̃ss

d

dt

(
K̃ss − I

)−1

ψ.

Then the parameterized version of (3.1) becomes

(3.11)
−1

2
[K̃sm − S̃smÃ]

(
K̃msf̃ − S̃msg̃ + S̃ssṽ0 − K̃ssũ0 − ũ0

)
= f̃ + K̃mmf̃ − S̃mmg̃ + S̃sm

(
ṽ0 − Ãũ0

)
,

which needs to be solved for zs, and where we set

f̃ = f ◦ zm, g̃ = |z′m| g ◦ zm

and

(3.12)
ũ0 = u0 ◦ zs =

1

4
|zs|2,

ṽ0 = |z′s|
∂u0
∂ν

◦ zs =
1

2
[z′s]

⊥ · zs.

Collecting all the terms in (3.11) that depend on zs, we define the
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operator F : H2
per[0, 2π] → L2[0, 2π] by

F (xs) := −1

2

[
K̃sm − S̃smÃ

] (
K̃msf̃ − S̃msg̃ + S̃ssṽ0 − K̃ssũ0 − ũ0

)
− S̃sm

(
ṽ0 − Ãũ0

)
,

and a right hand side h ∈ L2[0, 2π] by

h := f̃ + K̃mmf̃ − S̃mmg̃.

Then, in short hand, equation (3.11) becomes

(3.13) F (zs) = h.

Note that the only terms entering into F that do not depend on zs are

the Cauchy data f̃ and g̃. For all the other terms the Fréchet derivatives
with respect to zs are needed and put together by the product rule to
create the Fréchet derivative of F . (We refrain from writing down the
rather lengthy explicit expression for the derivative of F in terms of the
derivatives of all the operators and functions entering the definition of
F .)

Given an approximate solution zs of (3.13), we need to solve the
linearized equation

dF [zs; ζ] = h− F (zs)

for ζ to update the approximation zs into zs + ζ. Since the linearized
equation is ill-posed regularization is required, for this we suggest the
classical Tikhonov regularization with H2 penalization. For a detailed
introduction to the topic of regularized Newton iterations we refer
to [2, 8].

The Fréchet derivatives of the integral operators given by (3.8) and
(3.9) with respect to the boundary are obtained by differentiating their
kernels with respect to zs. The derivatives of the single-layer operators



192 RAINER KRESS AND WILLIAM RUNDELL

are given by

dS̃ss[ψ, zs; ζ](t) = − 1

π

∫ 2π

0

[zs(t)− zs(τ)] · [ζ(t)− ζ(τ)]

|zs(t)− zs(τ)|2
ψ(τ) dτ,

dS̃sm[ψ, zs; ζ](t) =
1

π

∫ 2π

0

[zm(t)− zs(τ)] · ζ(τ)
|zm(t)− zs(τ)|2

ψ(τ) dτ,

dS̃ms[ψ, zs; ζ](t) = − 1

π

∫ 2π

0

[zs(t)− zm(τ)] · ζ(t)
|zs(t)− zm(τ)|2

ψ(τ) dτ,

for t ∈ [0, 2π]. The kernel of dS̃ss is continuous with diagonal values

−z
′
s(t) · ζ ′(t)
π|z′c(t)|2

.

The derivatives of the double-layer potentials are slightly more involved
and are of the form

dK̃jk[ψ, zs; ζ](t)=
1

π

∫ 2π

0

[
Pjk(t, τ)

|zk(t)−zj(τ)|2
+

Rjk(t, τ)

|zk(t)−zj(τ)|4

]
ψ(τ) dτ

for t ∈ [0, 2π] and j, k = m, s. The numerators are given by

Pss(t, τ) = [ζ ′(τ)]⊥ · [zs(t)− zs(τ)] + [z′s(τ)]
⊥ · [ζ(t)− ζ(τ)],

Psm(t, τ) = [ζ ′(τ)]⊥ · [zm(t)− zs(τ)]− [z′s(τ)]
⊥ · ζ(τ),

Pms(t, τ) = [z′m(τ)]⊥ · ζ(t),

and by

Rss(t, τ) = −2[z′s(τ)]
⊥ · [zs(t)− zs(τ)][zs(t)− zs(τ)] · [ζ(t)− ζ(τ)],

Rsm(t, τ) = 2[z′s(τ)]
⊥ · [zm(t)− zs(τ)][zm(t)− zs(τ)] · ζ(τ),

Rms(t, τ) = −2[z′m(τ)]⊥ · [zs(t)− zm(τ)][zs(t)− zm(τ)] · ζ(t).

The kernel of the operator dK̃ss is continuous with the diagonal values

[z′s(t)]
⊥ · ζ ′′(t) + [ζ ′(t)]⊥ · z′′s (t)

2π |z′s(t)|2
− [z′s(t)]

⊥ · z′′s (t) z′s(t) · ζ ′(t)
π |z′s(t)|4

.
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In view of the definition (3.10), the Fréchet derivative of Ã is given by

dÃ(ψ, zs; ζ) :=
d

dt
dS̃ss

[
d

dt

(
K̃ss − I

)−1

ψ, zs; ζ

]
− d

dt
S̃ss

d

dt

(
K̃ss − I

)−1

dK̃ss

[(
K̃ss − I

)−1

ψ, zs; ζ

]
.

The derivatives of ũ0 and ṽ0 are obvious from (3.12).

The Newton iterations for (3.13) are closely related to the Newton
iterations for the boundary-to-data operator

G : Γs 7−→
∂u

∂ν

∣∣∣
Γm

that maps Γs to the normal derivative of the solution to (1.1) and (2.1).
For a given Γs, we can consider (3.1) also as a linear integral equation
for the unknown normal derivative g in the direct problem. From this,
we observe that the boundary to data operator G satisfies

WG(Γs) = r(f, u0),

where

W := Smm +
1

2
[Ksm − SsmA]Sms

and

r(f, u0) :=
1

2
[Ksm − SsmA]

(
Kmsf + Sss

∂u0
∂ν

−Kssu0|Γs − u0|Γs

)
+ f +Kmmf + Ssm

(
∂u0
∂ν

−Au0|Γs

)
.

Therefore, in our approach, instead of G(Γs) = g, we linearize
WG(Γs) =Wg. If, in a slight abuse of notation, we identify G with its
parameterized version, from

d {WG−Wg} [zs, ζ] = dW [G(zs)− g; ζ] +WdG[zs, ζ]

and [4, Corollary 3.1], we can conclude that, for star-like boundaries,
the linearized equation (3.1) is injective at the exact solution.

As an advantage of our approach as compared to the Newton
iterations for the boundary-to-data map G we note that here we have
explicit expressions available for the Fréchet derivatives entering into
the derivative of F in terms of boundary integral operators. Opposed
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to this, the Fréchet derivative of G is characterized in [4, Theorem 2.1]
by the solution of transmission boundary value problems.

Although both the approach of this paper and the shape reconstruc-
tion part of the method proposed by Hanke and Rundell [3] are Newton
type iterations, they differ conceptually. The shape reconstruction in
[3] is based on the reciprocity gap principle, i.e., on Green’s integral
theorem with trigonometric harmonics as test functions, whereas the
current approach may be viewed as based on the reciprocity gap prin-
ciple with fundamental solutions as test functions, in addition to the
reformulation of the source problem as a non-local Robin problem.

4. Numerical examples. As proof of concept rather than a docu-
mentation of a fully developed code, in this final section we present some
numerical reconstructions. For these examples, the Neumann data were
obtained by the integral equations presented in Section 2. Since these
are based on a potential approach whereas the integral equations in the
inverse algorithm are based on Green’s formula, committing an inverse
crime is avoided.

In principle, the parameterization of the update ζ obtained from
(3.13) is not unique. To cope with this ambiguity, and in view of the
uniqueness result in [5], we use star-like parameterizations of the form

(4.1) zs(t) = r(t)(cos t, sin t), 0 ≤ t ≤ 2π,

with a non-negative function r representing the radial distance of Γc

from the origin. Consequently, the perturbations are of the form

(4.2) ζ(t) = q(t)(cos t, sin t), 0 ≤ t ≤ 2π,

with a real function q. In the approximations, we assume r and its
update q to have the form of a trigonometric polynomial of degree J .
In all of our examples we chose J = 8 for exact data and J = 6 for
noisy data.

The three shapes to be reconstructed are a peanut-shaped curve

(4.3) zc(t) = 0.5
√

cos2 +0.25 sin2 t (cos t, sin t),

an apple-shape curve

(4.4) zc(t) =
0.5 + 0.4 cos t+ 0.1 cos 2t

1 + 0.7 cos t
(cos t, sin t)
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Figure 1. Reconstruction of (4.3) for exact data (left) and 3 percent noise
(right).

and a kite-shaped curve

(4.5) zc(t) = (−0.2 + 0.4 cos t+ 0.2 cos 2t, 0.4 sin t)

for 0 ≤ t ≤ 2π. Note that none of the boundary curves belongs to the
corresponding approximation space. The measurement curve Γm is the
circle with the representation

(4.6) zm(t) = 0.9 (cos t, sin t), t ∈ [0, 2π],

where the factor 0.9 is chosen to satisfy the condition G. We used the
Cauchy pair with Dirichlet data f = 0.

In the figures the exact Γs is given as dotted (blue) curve and the
reconstruction as full (red) curve. The data curve Γm is dashed-dotted
(green) and the initial guess dashed (magenta).

For one iteration step, we collocated the linearized equation (3.1)
at the points tj = jπ/n, j = 1, . . . , 2n, and solved by Tikhonov
regularization with an H2 penalty term for the Fourier coefficients of
the update trigonometric polynomials q. The number of collocation
and quadrature points is 2n = 64 on each curve.

The regularization parameter in the Tikhonov regularization was
chosen by trial and error. However, to illustrate the feasibility and the
stability of our method, we used the same regularization parameters
in all examples. Depending on the mth iteration step, for exact data
the regularization parameters for an H2 penalization was chosen as
λ = 0.001 × 0.8m and for noisy data as λ = 0.01 × 0.9m. For the
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Figure 2. Reconstruction of (4.4) for exact data (left) and 3 percent noise
(right).

Figure 3. Reconstruction of (4.5) for exact data (left) and 3 percent noise
(right).

perturbed data, random noise is added point-wise to the exact data,
and the relative error is with respect to the L2 norm.

As a stopping rule, we employed a type of discrepancy principle.
For the exact data the iterations were stopped when the residual
∥F (zs) − h∥L2 became less than 0.5 × 10−5 for the first time. This
stopping number turned out to be m = 9 for the peanut-shape, m = 18
for the apple-shape and m = 29 for the kite-shape. For noisy data, the
iterations were stopped when the residual increased for the first time.
Typically, this occurred between 5 and 12 iterations and, of course,
depended on the individual perturbation.

The iterations were started with an initial guess given by a circle



AN INVERSE SOURCE PROBLEM 197

centered at the origin. When Γs is a circle of radius ρ from Green’s
integral theorem ∫

Ωm

χs dx =

∫
Γm

g ds

we have that

(4.7) πρ2 =

∫
Γm

g ds.

This suggests the use of (4.7) for the choice of the radius for the initial
guess. However, we observed that the reconstruction algorithm is not
too sensitive to the choice of the initial radius.

In principle, we also can shift the center of the star-like represen-
tation (4.1) by adding a constant vector z0 to the representation of
z. When Γs is a circle of radius ρ, using Green’s integral theorem, its
center z0 = z0,1 + iz0,2 can be obtained from

(4.8) πρ2z0 =

∫
Γm

wg ds,

where w(x1, x2) = z0 + x1 + ix2 for (x1, x2) ∈ R2. This suggests the
use of (4.8) for the center z0 in a shifted star-like representation. For
an extension of our approach to multiple sources as indicated at the
end of Section 1, the Padé algorithm in [3] generates centers for the
subregions by a generalization of the use of (4.7) and (4.8).
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