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ABSTRACT. Consider a nonlinear operator equation
z — K(z) = f, where K is a Urysohn integral operator with a
smooth kernel. Using the orthogonal projection onto a space
of discontinuous piecewise polynomials of degree < r, previ-
ous authors have established an order r + 1 convergence for
the Galerkin solution, 2r 4+ 2 for the iterated Galerkin solu-
tion, 3r+ 3 for the modified projection solution and 4r+4 for
the iterated modified projection solution. Equivalent results
have also been established for the interpolatory projection at
Gauss points. In this paper, the iterated Galerkin/iterated
collocation solution and the iterated modified projection so-
lution are shown to have asymptotic series expansions. The
Richardson extrapolation can then be used to improve the
order of convergence to 2r + 4 in the case of the iterated
Galerkin/iterated collocation method and to 4r + 6 in the
case of the iterated modified projection method. Numerical
results are given to illustrate this improvement in the orders
of convergence.

1. Introduction. Let X = L°°[0,1], and consider a Urysohn inte-
gral operator

1
K(z)(s) = / k(s,t,x(t))dt, se€[0,1], z € X,
0
where the kernel k(s,t,u) is a real valued continuous function. For

f € X, we are interested in a solution of

(1.1) z—K(z) = f.
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We assume that the above equation has a unique solution ¢. Let a and
b be real numbers such that

Lgfér,lu ©(s), Joax ¢(s)| € (a,b).

Define
Q=[0,1] x [0,1] x [a, b].

For r > 0, let X,, be the space of piecewise polynomials of degree
< r with respect to a uniform partition of [0, 1] with n subintervals. Let
h = 1/n. We consider two types of projections from L°°[0,1] to X,.
Let 7, be either the restriction to L°°[0, 1] of the orthogonal projection
from L?[0, 1] to X,, or the interpolatory projection at r+1 Gauss points
in each subinterval of the partition. If 7, is the orthogonal projection,
then in the classical Galerkin method, (1.1) is approximated by

<,0,Cj - ﬂ'nK(%Cj) =mnf.
If 7, is an interpolatory projection, then the collocation solution ¢ is
obtained by solving

QOS - WnK(QOS) =7nf

The above projection methods have been studied in research litera-
ture. See Krasnoselskii [12], Krasnoselskii, Vainikko et al. [13] and
Krasnoselskii and Zabreiko [14].

The iterated Galerkin solution is defined by

on = K(e5)+ f
and the iterated collocation solution is defined in a similar fashion.

The iterated projection methods for a Urysohn integral operator
with Green’s function type kernel are analyzed in [4]. Assume that

Ok 41 0%k

— ), — Q 10, 1].

8uec (), au2€C() and feC"0,1]
Then the following orders of convergence can be deduced from the error
estimates of [4]:

(1.2) les = ¢lloo = O(h™Y), lloy = ¢llec = O(A™),

(1.3) 103 — ¢lloe = O(R*F2).
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In [8, 9], the following modified projection method is proposed:
(1.4) on — Ky (o) = 1,
where
(1.5) KM(z) = m,K(2) + K(mp2) — 1 K (7)), =€ X.

It is a generalization of the modified projection method in the linear
case, which was proposed in [15].

As in the case of the iterated Galerkin method, we perform one step
of iteration and define the iterated modified projection solution as:

(1.6) on =K (o)) + f.

Let P
K, aT,j € C+2(Q) and fe C¥H2)0,1).

Then, the following orders of convergence for the modified projection
solution and its iterated version are proved in [10]:

(L.7) len" = @l = O(RT),

(1.8) 16" = ¢lloo = O(RYY).

In [7], a non-linear integral operator with a kernel of the form
k(s,t)U(z(t)) is considered. The kernel x(s,t) is assumed to be of the
type of Green’s function, and the approximating operator is considered
to be the Nystrom operator obtained by replacing the integral by the
composite trapezoidal rule. Asymptotic expansions for approximate
solutions at the node points are obtained and Richardson extrapolation
is employed to improve orders of convergence.

In the case of a linear integral equation of the second kind, asymp-
totic series expansions for the iterated Galerkin/iterated collocation
solutions are proved by McLean [18] and, for the iterated modified
projection solution, are proved by Kulkarni and Grammont [16]. As-
ymptotic series expansions for the iterated collocation method are also
obtained in Lin et al. [17]. The aim of this paper is to extend these
results to the present case of nonlinear integral equations and obtain
asymptotic series expansions for ¢ and 3. Richardson extrapolation
can then be used to obtain approximate solutions of higher order.
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The paper is organized as follows. In Section 2, notation is set
and some preliminary results are proved for later use. In Section 3,
asymptotic series expansions for the iterated Galerkin/iterated collo-
cation solutions as well as for the iterated modified projection solution
associated with both the orthogonal projection and the interpolatory
projection at Gauss points are obtained. Numerical solutions are given
in Section 4.

2. Preliminaries. Let a be a positive integer. For z € C¥[0, 1], we
define
[e3
lzllace =D Nz,
i=0

where z(*) denotes the ith derivative of z.
Consider the following uniform partition of [0, 1]:

n—1

1 2
(2.1) 0l<—<=-<x---< <1,
n n

and let
h=—.
n

We consider two types of projections from L>°[0, 1] to X,,.

(1) The map m, is the restriction to L*°[0,1] of the orthogonal
projection from L2[0,1] to X,,.
(2) Let 79,71,...,7 be the r + 1 Gauss points in [0, 1], and let

tij:(i—l—f—’rj)h, izl,...,n,ij,L...r,
be the collocation points. Define m, : C[0,1] — X,, as
(Wn:c)(tm)::c(ti,j), Z.:L...,TL, jZO,]., , T

This map is extended to L*°[0,1] as in [3] and then m, :
L*>[0,1] — X,, is a projection.

In both cases,
mx — x, x € C[0,1],

and, if x € C™1[0, 1],

(2.2) lz = mpzllos < CrlzF V] ooh™
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where C is a constant independent of n (see Chatelin [6]). Also,

(23) sup ||7Tn||Loo[011]*>Loo[011] < 00.

Let =,y € C"t0,1]. If m, is the restriction of the orthogonal
projection to L°°[0,1], then we deduce the following estimate from
(2.2):

‘/ = m)y(t) dt

(2, (I —m)7)|

(T = mn)z, (I —mn)7)|
([l Voo [ly T [looh® ¥,

IA

where 7(t) denotes the complex conjugate of y(t).

If m, is the interpolatory projection at r + 1 Gauss points, then
for x € C™1[0,1] and y € C?"*2(0,1], the following error estimate is
proved in [5]:

@5) | [ w00 =m0l < Caliehr il

where Cs is a constant independent of n.

Assume that
k€ C*T(Q) and % € C* Q).

Then K is a compact operator from L°°[0,1] to C?"72[0,1]. As in
Section 1, we assume that (1.1) has a unique solution ¢. We also
assume that f € C?772[0,1]. Then, since,

(2.6) p—K(p) =,
it follows that ¢ € C*"*2[0, 1].

The operator K is then Fréchet differentiable, and the Fréchet
derivative is given by

(KW = [ s,tvle) g(0)de

0
For ¢ > 0, let
B(p,0) ={¢ € X : [ — ¥[|oc <6}
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denote the closed § neighborhood of .

Since dk/0u € C*T4(Q), it follows that K’ is Lipschitz continuous
in a neighborhood in B(y,d) of ¢, that is, there exists a constant vy
such that

(2.7) 1K' (@) = K' (D)l <l = Ylloc, ¢ € B(p,0).

Also, the second derivative K" (¢) is a bi-linear function and is given
by
82
(K" (¥)(91,92)) () = B S (5,1, 0(1) g1 (B)ga(2) dt.

In general, the ith derivative K () (1) is i-linear and is given by

1 ilﬂ?
28 (KOWon-.90) ()= [ GHGL00) 00 ile) .

We define
IKO@W)] = sup

lg;lloo<1
Jj=1,...1

KQ@) (g1, 9|

. i=1,...,5.

It follows from (2.8) that

'k
(1) < ) —
(2.9)  [[K™ ()]l Jmax W( ,Lw(t))', i=1,...,5.

Consider
K()o)s) = [ Lo, tp(e) gl0) .

0
As ¢ is fixed, we write
(hs,0) = 205, tplt), 5.t € [0,1]
Since 9k /0u € C?"+4(Q), it follows that
[(.7 ) € C2T+4([07 ]-] X [O’ 1])

The operator K'(p) is compact. Assume that 1 is not an eigenvalue of
K'(¢). Then it can be shown that

M=(I-K'(p)"'K'(¢)
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is a compact linear integral operator (see [17]) given by

(Mg)(s) = / m(s,)a(t) dt,

where the smoothness of kernel m is the same as that of kernel ¢ of the
integral operator K’'(¢), that is,

m(-,-) € C*"4([0,1] x [0,1]).
Let m, be either the restriction of the orthogonal projection to

L]0, 1] or the interpolatory projection at r + 1 Gauss points.

We prove some preliminary results.

Lemma 2.1. Let

Ok 2r+6
— T(Q).
Ou €C (@)
Then
(2.10) |M(I — 7)) KD (p)|| = O(R*+?), i=1,...,5.

Proof. Fori=1,...,5

- Lotk
KO@)g1,-00)(6) = [ G (5.0t aa(0) . g:(t) e
0
and, for j =1,...,2r + 2,

) J L gitig
KO 9] )= [ G st (o). o) .

Let S
. 0 tig
C i = o~ ,t7 t 5 :1,,5
>t ;} s,Itlg[io),(l] dsI Qu’ (5,2 ( ))' ‘
Then
(2.11)

HKU)(%)(Qh s i)

< Covillgrlloe - lgilloe, i=1,...,5.
2r+42,00
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For a fixed s € [0,1] and for ¢ =1,...,5, we have
M(I_WH)K()(QO 917 "agl
/ m(s, ) (I — m ) KD () (g1, ..., 9:)(t) dt.

Let
ms(t) = m(s,t), te][0,1].

Using the estimate (2.4) in the case of orthogonal projection and the
estimate (2.5) in the case of interpolatory projection, we obtain

M(I =) KD (@) (g1, 9)(5)|

< Co|lms]lr+1,00 H[((z‘)(@(m7 i) R2r+2.
2r+2,00
Let
ek m
= s, t)|.
]l 741,00 ]Zogtem] S (s )’

Then, from (2.11),

M =) KO @), 90)||

< CoCorillmllri1,00llg1lloc - - - 1gilloch® 2
and hence, for: =1,...,5,
| MU= m)ED ()| = sup || M=) KO@) g1, 0|
g lloo <1
j:l ..... i

< CyC944||m|| 41,000 12,

which completes the proof. O

As the proof of the following result is similar to that of the above
lemma, we skip its proof.

Lemma 2.2. Let
%

ReCQ), o

c O3t (Q) and feC*™20,1].
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Then:
1M (I = m) K" (9)(I = 1) plloc = O(R"),
M (I — 7)) K' ()T — 1)K’ (p)]| = O(h*+4),
[M(I —mn) K () (I — 7)) K" ()| = (h47+4),
IM(I = m) K" (9) (I — ) K ()| = O(R*+Y),
| M (I — 7)) K' () (I — 7)) K () (I — ) @] 00 = O(RS"T0).

Lemma 2.3. Let

K€ C2H2(Q), % € C¥O(Q) and f e C¥H20,1).
Then
(2.12) HM ((Krjy)/ (90) _ K/(<,0)> (w?{\b/[ _ QP)HOO = O(h6r+6).

Proof. Recall from (1.5) that
KQ/[ (p) = M K(p) + K(mnp) — mn K (Tnip).

Hence,
(KM) (9) = m K () + (I — 7)) K/ (70 0)Tn
and
(KXY (¢) = K'(p) = (1 — DK () + (I — 1) K (map) s,
= (I - m)K' ()T — 7,)
+ (I = ) (K (M) — K ()T

Thus,
(213) M ((KM) (9) = K'(9)) (¢~ ¢)

=M —m)K'(9)I = m) (o) = @)
+ M(I = 7,) (K (mnp) — K'(0))m (00" — @) -
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Using (1.4) and (2.6), we write the first term in the above expression
as:

—M(I —m,)K'(0)(I — ) [0 — @]
= —M(I —m)K'(9)(I — m,) [KM (o)) — K ()]
= _M(I - WH)K/(‘P)(I - 7"'n)

(2.14) [ KM () = (K) (9) (93 = )]
u— > ()T = m) [KX () so)]
—M(I - 7)) K (p)(I = 7) [(Kﬁ/[) e - )]

By [10, Lemma 3.3],

[E (on') = K" (0) + (KM) (9) (e = @) oo = O (h°F°)
and hence, by Lemma 2.1,
(2.15) |MI — 7)) K'(9)(I — 7p)

KXY () = K () = (K (0) (00 = )| llso = O (157+%).

Next,
Ky () = K(p) = (I = m0) [K(m) — K ()]

Choose n big enough so that 7, € B(p,d). Then, by Taylor’s theorem,

K(mne) — K(p) = K'(¢) (e — ©) + %K”(@)(mw —p)?

for some & € B(p,d). Then, by Lemma 2.1 and Lemma 2.2, we obtain
(2.16) [|M(I —m0)K'(0)(I = 70) [ () = K(9)] [loo = O (7).
Consider the third term:
—M(I =) K'(9)(I = m) (K1) () (92 — )
= _M( — ) K /(‘P)(I - 7Tn)Kd(WnSD)Wn (‘PnM - Q:‘7)
=-—M(I —m)K /(<P)(I*7Tn)
(K'(mn) = K'(0))70n (03" = 0)
—M(I = 7)) K' () (I = 7)) K (@) (00 = ) -
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Then, by the estimates (1.7), (2.3), (2.7), and by Lemma 2.1 and
Lemma 2.2, we obtain

IM(I=7,) K" (0)(I=70) (KM) (0) (6} =) ||
< |MI =) K (@) I =ma) || K (mnp) — K () ]| |

(2.17) len' = @lloo
HIM (I = m) K () (I = ) K (@) [ llleon” = @lloo
=0 (h°°).

From (2.14)—(2.17), we deduce
(2.18) 1ML =) K" (9)(I = 7n) (93 = ¢) [l = O (A7°).
Note that, for n large enough,

(K'(mn) — K' ()70 (00 — @)
= K"(p)(mne — 0, mn (01" — ©))

+ %K(g)(ga) (e — @)%, (02" — )
4 % K@) ((map — )%, 10 (M = 9)) |

for some & € B(y,d). Hence, using the estimates (1.7), (2.2), (2.3) and
Lemma 2.1, we obtain

(2.19) |M(I = m0)(K'(map) = K'(9))70 (03] = #) lloo = O (7).

The required result follows from (2.13), (2.18) and (2.19). O
For ¢ = 1,2,..., let B;(7) denote the Bernoulli polynomial of
degree 7. Then
(2.20) Bi(t) = (-1)'B;(1—17), T1€]0,1].
Let
BQ(T) = 1.

We quote the Euler-MacLaurin formula for future reference:
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If 1 € CP+1[0,1], then, for 0 < 7 < 1,

1

th(z‘ —147)h] = [ w(t)dt

0

(2.21) + O(hPTh).

Let

0%k

q(S,t) = W(s,t,gp(t)), s,te [071]

We are interested in an asymptotic series expansion for K" (¢)(m,¢ —
)%, We need to consider two different cases.

2.1. Orthogonal projection. Let 7g,71,... be the sequence of or-
thonormal polynomials in L?[0, 1]. Then 7, is a polynomial of degree p
and

(1ps 1g) = Opq  for all p,q > 0.
Fori=1,...,n, define n;, on [(¢ — 1)h,ih] by
Nipl(i =1+ 7)h] =~ 2ny(7), 0<7<1,
and then extend by zero to [0,1]. The functions n;,, i = 1,...,n,p =

0,...,r, form an orthonormal basis for X,, and the orthogonal projec-
tion , from L2[0,1] to X,, is given by

an = Z ZW» nlp>7774)

i=1 p=0
Let .
Arir(o,7) =D mp(0)mp(7)
p=0
and ) ‘
X;(T) :/0 Ar+1(0,7')(0;,!7—)jd0, j=1,...,r+2.
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The following asymptotic series expansion can be deduced using
results from [18]: If Ox/0u € C?"T4(Q) and ¢ € C*"+4[0, 1], then

(2.22) K'(p)(mnth — 1) = T(9)h*+2 4 O(h* ),
(2.23) M(mntp — ) = U(4)*+2 4 O(hH),
where

T () (5) = barr2,2012 K'(0) 2 (s)

2741 5\ 2+l 1
. v ()
#3 b [( 8t> syt (t)} 7

t=0
U®)(s) = bari2,2r42 M) (s)

2r+1 a 2r+1—1 1
= (1)
+ ; b27‘+2,l [(875) m(&t)w (t):| ,

t=0

with

1 1 i
Baryoi(1) (0—7)°
b r i = Ar 5 A 3 dod )
a2, /0 /0 (o T)(2r+271)! 1! 7ar
7 =

1,...,2r+2.

Note that the coefficients by,42; are independent of h.

We now obtain asymptotic series expansions for K" (@) (w10 — 1)?
and for K®)(¢)(mnb — ¥)3. The proof is similar to that of [18,
Theorem 5.1]. Note that, in the proof of (2.22) and of (2.23), we
need £(-,-) € C?"*4[0,1] and m(-,-) € C?"*4]0,1]. The smoothness
conditions on the kernel ¢(-,-) of K”(¢) and on ¢ in the following
lemma are less stringent.

Lemma 2.4. Let (-,-) € C([0,1] x [0,1]) and ¢ € C"3[0,1]. Then
(2.24) K" (@) (mat) = 0)° = Vi()h*+2 + O(h*+Y),

where

Vi(y) = </01 XT'+1(T)2dT> K" () (w(rﬂ))z
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is independent of h. Also,
(2.25) KO () (mnth — )% = Va ()P + O(h3THY),

where

Va(y) = </01 xr+1(7)3d7) K®)(y) <¢(r+1)>3

is independent of h.

Proof. Note that

(2.26) [(i — 1+ )R] dr.

We write

(mnt) =) [(i = 1+ 7)h]
r ih
= ZO { / Dh [¢(U) - ¢[(Z -1+ T)h]] mp(u) du}nw[( 1+ T)h].

p:
Let u = (i — 1 + 0)h in the above expression to obtain
(Tt = )[(i =1 4 7)h]

= / (Zw(ﬂ%(ﬂ) (¥[(i — 1+ o)h] —¥[(i — 1 + 7)h]) do.
0 \;5
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By Taylor’s theorem,
(mnt) = P)[(i = 1 + 7)h]

r+2

_Z{/ Arir(o,7) i o=y da}w (i — 1+ 7)h]AI
+O(hr+3)
r42

—Zx (M)yYD[(i — 1+ 7)h]h? + O(hF3).

We recall the Christoffel-Darboux identity ([11, page 342]):

ATJrl(O—7 7_) _ aa:_1 Nr+1 (U)nr (Ti : ZT (0)77T+1(7-)

)

where a, is the leading coefficient of the polynomial 7,.

Since 7, is orthogonal to polynomials of degree < r — 1, we obtain

—_ )\
udozo, j=1,...,r

G0 = [ Aot

Hence,

(Tt = )[(t — 1+ 7)h]
= Yo (MO — 1 + 7)R] " T!
+ Xr2 ()P [(i — 1 4 7)h] B2
+ O(h™3).

Substituting the above expression in (2.26), we obtain

K" () (mnt) — 1)%(s)
:h2T+2/o Xra1(T th (i—1+7)h)
(w01 -1 +T>hl) ar
(2.27) + 2p2r T3 / 1 Xr1(T)Xra2(T) B Z (i—1+7)h)
0

YUV — 14+ )R D [(i — 1+ 7)h) dr
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+ O(h27'+4)'

By the Euler-MacLaurin series expansion (2.21),

h§:[ (i = 1+ IR ((i = 1+ 7)h)?]

1

-/ (s 0 (0t + Ba(r) [q<s,t>(w<r+l>)2<t>] h

t=0
(2.28)  +O(h?)
1

= K"(g) (49 () + Bu(r) [q<s,t> (w(*ﬂ))Z(t)} _h
+0(h?) )

and

n

h§:[ (i—1+7) mﬂ“%u—1+7mmﬂﬂuu—1+rmﬂ

(2.20) = / a5, DO O (1) dt + O(h)
= K"() (44,9042 () + O(h).

1
w2 [ v naln) dr K7 o) (505,002 ) (5004
0
+O(R*H).
Since, for 7 € [0, 1],

np(1—7) = (=1)"n,(7),
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it follows that, for o, 7 € [0, 1],

Aria(o,7) an =Ar1(1—0,1—71).
Hence, for 7 € [0,1] and for j =1,...,7 + 2,
1
(U—T)
xj<f>=/0 Arnalor) I do = (1= 7).
Also, for 7 € [0,1]

Bl(’T) = —Bl(l —T).

As a consequence,

1 1
/ Xr+1(7)?Bi(1)dr =0 and / Xr+1(T)Xr42(7) dT = 0.
0 0

Hence for s € [0, 1],

1 2
K"(i) (muto—1)(5) = ( / er(TﬁdT) K”() (1) () 2+
+ O(h27"-‘,-4)7
which completes the proof of (2.24).

The proof of (2.25) is similar. O

Remark 2.5. If r =0, then
1 3
valw) = [ e KO ) (s’
0

Since
XI(T) = _Xl(l - T)’ TE [Ov 1}7

it follows that
Va(y) =0

and

(2.30) K@ () (matp — 9)*(s) = O(h*) = O(h*H4).
If » > 1, then 3r + 3 > 2r + 4, and hence from (2.25),
(2.31) KO (@) (matr = )°(s) = O(R*4).
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2.2. Interpolatory projection. Recall that 7o, 71,..., 7. are the r+1
Gauss points in [0,1]. Let

T

wra () = [[ (=)

p=0
and, fori=r+1,...,2r +2,
1 i—r—1 r
(o0 —1) [T0, Ty oy Try T)(- — O)
(2.32) @i(T):/ G ' * do.
o (@E—r—=1) r!

Since the Gauss points are symmetric in [0, 1], it follows that, for
T €[0,1],

wr1(7) = (1) wrpa (1 - 7),
@i(7) = (1) (1 1),
t=r+1,...,2r+ 2.

The following asymptotic series expansions can be deduced using results
from [18]: If Ok/0u € C?*"T4(Q) and ¢ € C*+4[0, 1], then

(2.33) K'()(mnt) — ) = T($)h* 2 + O(h*H),

(2.34) M (1) — ¢) — U(w)h2r+2 n O(h27’+4),
where, for s € [0,1],

T($)(5) = darroariz K (0)0 ") (s)

2941 9\ T+ _ 1
+ d2r+2,z{(8t) E(SJW(Z)U)} :

1=r+1 =0
U(h)() = dari2,2042 M2 (s)
2r+1 o or1—i .
i\ =7 (4)
+ Z dary2,i K@t) m(s, )y (t)} .
1=r+1
with

1
BQT+271'(T)
daryos=— | ®i(T) oo wepa (1) dr,
2r+2, /0 (T)(2T+2—Z)!w+1(’r> T

t=r+1,...,2r+2.
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Note that the coefficients da,42,; are independent of h.

We now obtain an asymptotic series expansion for K" () (m,¢ —)?
and for K®) () (w1 — )3, As in the proof of [18, Theorem 4.1],
the crucial step is the error formula in the interpolating polynomial in
terms of the divided differences.

Lemma 2.6. Let q(-7 ) c C([()7 1} % [07 1]) and ) € CT+3[0’ 1]. Then
(2.35) K"()(mnth = 1) = Vi()h* 2 + O(h*" 1),

where

2

1
Viw) = </0 Wr+1(7)2<1>r+1(T)2d7> K" (¢) (¢<r+1)>
and
(2.36) E® () (matp = )° = K F2Va(9) + O(h*HY),

where

3

9= ([ oo mentepar) £ (0)’

Proof. Note that

L o2k
K" (o) (mnth — ¥)*(s) = ; P2 (56 e() (mnt) — $)2(t) dt
n ik ,
= n) — dt.
S at) tm = w0
Since
(Wnl/))(tij)zlﬂ(tij), jZO,L...,’I‘, i:l,...,n,
we obtain

T

(M) (8) —(t) = [tiOatila---atir,t]w(H(t—tip)>, t € [(i—1)h,ih).

p=0
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Thus,
K" () (mnt) — )%(s)
n ih 2
= Z/ q(s,t) (([tio,til,...,tir,t]w) H(t—tip)> dt.

i—1 7 (@E—=1)h

Let t = (i — 14 7)h. Then

r

H(t —tip) = R H(T —Tp) = hr+1wr+1(7—)

p=0 p=0
and
K" (@) (mnt) — 9)*(s)
noo1
_ s ;/0 a(s, (i — 1+ 7))
(2.37) {[tiostits - s tirs (i — 1+ TR} wpp (7)2 dr.

By Peano representation for divided differences ([19]), we get

ih . . ) L= )T
[ti07ti17~-~7tir7t]"/}: [tzoatzlw-wt:mt]( Z)+¢(r+1)(z) dz.
(i—1)h r.

By putting
t=@G—-147)h, z=(i—1+0)h

in the above expression, we obtain
[ti()a til? ey tira t]d’

By R S R
0

r!
By Taylor’s theorem,

PUEV((i =1+ o)h)
=TT (i = 1+ 7)h) + (i — 1+ 7)) (0 — 7)h + O(R?).
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Then

tiostits- - tir, ] = WU (i — 14 7)) ®yrp (T)
+h U (i — 1+ 7)h)Dypa(r) + O(R?).

Substituting the above expression into (2.37), we obtain
K" ()(mnt) — 9)*(s)
s [ S (Y als, (i~ 14 7)R)
i=1
{00 = 14 1)) (7)
+h U (=14 7)h )<I>r+2(r)}2 dr + O(h*"t)
= h2’"+2/ i: [q (i—1+7)h w(”l ((z—l—l—T)h)Q}
i=1
w1 (7)2 @1 (7)dT

+2h2T+3/ hZ[ (i—1+7)h)prt

(GG =1+ TP (= 1+ 7))
W1 (7)2 @41 (7) @y (7)dT + O(RP ).

Using (2.28) and (2.29), we obtain
Km0~ 076) = ([ a0 )
K"() (1) (5) 127+
+( [ B moratryar)
[q(s,t)@(m))z(t)]l s

t=0

L9 ( /O et (1701 () 1a() d7->
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K”(<p) (w(r+1)’¢(r+2)) (S) h2r+3
+ O(R*t4).
Since, for 7 € [0, 1],

Qi1 (7) = Cppa (1 —7),
ria(1) = —Ppia(l —7),

W (1) = (=1 pa (1 - 7)

and
Bl(T) = —Bl(l — T),

the terms containing h?" 3 vanish and, hence, for s € [0, 1],
K" (@) (mnth — 1)%(s)
1 2
= ([ o )k (6070 ) 10,
0

which completes the proof of (2.35).
The proof of (2.36) is similar.

Remark 2.7. If r =0, then

Va(y) = (/O w1(7)3<1>1(7)3d7) K@ () (wm)?’.
Since
Dy(1)=P1(1—7), and wi(r)=-wi(l1—-7), 7T€]0,1],

it follows that
V2(¢) =0

and

(2.38) K@ ()(mntp — ) = O(h) = O(h*"*1).
If r > 1, then 3 + 3 > 2r + 4, and hence, from (2.36),
(2.39) K@ (@) (mat) — 9)* = O(R* ).
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3. Main results.

3.1. Iterated collocation/iterated Galerkin method. Let ¢, de-
note either the Galerkin solution, cpg, or the collocation solution, gog ,
and let ¢ denote the iterated Galerkin or the iterated collocation so-
lution. Note that

S _
ﬂ-nwn = @n-

Theorem 3.1. Letr > 0 and X, be the space of piecewise polynomials
of degree < r with respect to the uniform partition (2.1). Let m,
be either the restriction to L>°[0,1] of the orthogonal projection from
L?[0,1] to X,, or the interpolatory projection at v+ 1 Gauss points in
each subinterval of the partition. Assume that

k€ CTT(Q), % € C¥t5(Q) and feC*T,1].

Let ¢ be the unique solution of (1.1) and ¢ the iterated Galerkin or
the iterated collocation solution. Assume that 1 is not an eigenvalue of
K'(¢). Then

(3.1) Y =@+ nh* T+ O(R ),

where the function n is independent of h.

Proof. Throughout this proof, we use the following relation:

on =9 =ma(on — ) — (I = ).
We quote the following identity from [3, equation (2.28)].

on —p=1—-K'()  {[K(pn) — K(¢) = K'(¢)(on — ¢)]
— M(I —7,)[K(on) — K() = K'(¢©)(n — ¢)]
(3.2) —M(I — ) K' (@) (on — ) — M(I — )¢} .

Choose n big enough so that ¢, € B(p,d). By Taylor’s theorem and
estimate (1.2),

K(pn) — K(p) — K'(¢)(¢n — )

E®(p) KW ()

=\ _ _ 4
5 (on —@)° + 51 (on — )

(pn — )% +
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" 3)
- K 2(@ (o — 0)* + K 6(@ (on — @)% + O(R*" ).
We write
K (@) on—¢)? = K (9@ —¢) — (I —ma)p]?

K" () (mn(eS — 9))°
—2K" () (mn (s — ), (I = 70)0)
+K" () (I~ m)p)” .

Using the estimates (1.3), (2.2) and (2.3), we obtain

(3.4)
1K () (ma(p

whereas

S
n — ¥
1K

<

) 2loo < IE"(@)l7all?lli — @llZ = O(n"+4),

(@)(ﬂ-n(@s - (:0)’ (I - 7Tn)<p) Hoo

LK () Imallllen = lloclle = el
O(h3r+3).

If r > 1, then 3r + 3 > 2r 4+ 4, and we can write
(3.5) 1K () (mn(eh — @), (I = 7)) lloo = O(R*" ).
Let r = 0. Then, for a fixed s € [0, 1],

K" () (mn(05 = ), (I = 7n)) (5)

ih
/(._1), q(s,t)(mn (05 — @) ()T — ) ep(t) dt
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n

< lmallies = elloo

=1

ih
/ q(s,t)(I — mp)(t) dt’ < Ch?rt,
(i—1)h

Hence,
(36  |E (@malel -0 (T m)e)|| = 0w+,

By Lemma 2.4, in the case of the orthogonal projection and, by
Lemma 2.6 in the case of the interpolatory projection, we have

"

(3.7) K’ () (mp — 0)* = Vi(p) B2 + O(R>H4).

Combining the results from (3.3)—(3.7), we obtain

"

(3.8) K (9)(on — )% = Vi(p) h¥ T2 + O(h*" ).
Note that
K® (@) (n — ¢)* = KO (p) (mn(0) — ) — (I = 7))
= KO (p) (ma(e5 — )’
—3K® (p) ((Wn wn 2,(1—%)@)
+3K(3) (p) ( (I — 7Tn)g0)2)

By Remark 2.5 in the case of the orthogonal projection and Remark 2.7
in the case of the interpolatory projection at Gauss points, and using
the estimates (1.3), (2.2) and (2.3), we obtain

1K (@) (on — )]l = OB,
Hence, from (3.3), (3.8) and the above result,
(39) (I —K'(¢)" [Klgn) ~ K(p) = K'(¢)(pn ~ 9)
= (1= K@) Vi) 4+ O+,
By Lemma 2.1 and the estimate (1.2),
IM(T = m) [ () — K () ~ K'(2) (o0 — @)l

1
< SIMI = m) K" ()llon — @15



92 R.P. KULKARNI AND T.J. NIDHIN

1
+ g IM(I - 1) K@ (@) llon — 0ll3

+ illMllll(I — ) KW @llen — eli5
(3.10) = O(h* ).
We write
M(I = 1) K' () (0n — ) = M(I = 1) K' (@)1 (7 = )
= M(I = ) K" (0)(I = 7).
Using estimate (1.3) and Lemmas 2.1 and 2.2, we then obtain
(3.11) IM(I = 70) K" (9)(0n = @)oo = O(RT).

Lastly, by the asymptotic expansion (2.23) in the case of orthogonal
projection and by the asymptotic expansion (2.34) in the case of
interpolatory projection, we obtain

(3.12) M(mnp — @) = U()h?+2 + O(h2+4).

The asymptotic expansion (3.1) then follows from (3.2), (3.9)—(3.12)
with 1
=5 = K'()"Vile) + Ulp). D

We can now apply one step of Richardson extrapolation and obtain
approximations of ¢ of higher order. Define

B _ 22T+2g0§n B QO;SLV
P = 22r4+2 _ 1

Then we have the following result.

Corollary 3.2. Under the assumptions of Theorem 3.1,
(3.13) lp = ¢ lloo = O(R*F1).

Proof. Note that
Py =@ +nh¥ T2+ Ot

and

2r+42
o =0+ (2> + O(R* ).
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Hence,
22r+2 S _ .8
El = 22:—?—22“— 190” =@+ O(h2T+4)a
which completes the proof. O

3.2. Iterated modified projection method.

Theorem 3.3. Letr > 0 and X, be the space of piecewise polynomials
of degree < r with respect to the uniform partition (2.1). Let m,
be either the restriction to L*°[0,1] of the orthogonal projection from
L?[0,1] to X,, or the interpolatory projection at v+ 1 Gauss points in
each subinterval of the partition. Assume that

K € C?TH(Q), % € C¥t5(Q) and fe C*T0,1].

Let ¢ be the unique solution of (1.1) and ¢ the unique solution of
(1.4) in B(y,d). Assume that 1 is not an eigenvalue of K'(¢). Then

(314) 8‘5’,]\]’/[ _ Q0+ Ch4r+4 + O (h47‘+6) ,

where the function ¢ is independent of h.

Proof. From (1.6) and (2.6), we obtain

Pn' — 0 =K(gp') - K ().
We quote the following result from Grammont et al. [10]:

For n large enough,

K(ohh) = K() = K' () () — @) + R(eh — o),
with

1
(R(p)" —©))(s) = /0 (1—0) (K" (¢ +0(en" —©) (en —©)?) (s)db,

s €10,1].
Let 92k
Cs = max ?(s,t,u) .

lul<ll¢lloo+d
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Then, by (1.7),

IR~ @)l < DM~ pl)? = OROH0),
Thus,
(3.15) P — ¢ =K'(¢)(en — )+ OO,
Note that

K'(p)(en' — o) = —(I = K'(¢)) "K' (¢)
[K(p) = K'(0)p — K} (o0) + K'(9)h']
= —M [K() — K} (o0 + K' (o) (e) — )] .

We write

( ]
(3.16) +M((K") () = K'(9)) (7 = ).
Since, by definition,
K%((p) = mn K (p) + K(mnp) — mn K(mnep),
we have

M(K(p) — K} ()

M(I = 7n)(K(p) — K(mngp))
= M(m, — 1) [K(mnp) — K(p)
—K'(¢)(mn — )]
(3.17) +M (1 — K () (T — ¢).

By Taylor’s theorem, for n large enough,

K(mnp) — K(p) — K'(¢) (Tt — )
_ K"(p) K®(p)

5 (T —9)" + (o — ¢)?
@ )
K 24(@ (mnp — ) + K12(()<p) (Tn — ©)°
©)
K ©) (e — 9)°,

720
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for some & € B(y, 9).
Using estimate (2.2) and Lemma 2.1, we obtain

M(mp — 1) [K(mnp) — K(p) — K'(9) (70 — ¢)]

_ %M(wn — DE"(¢)(mnp — 9)?

+ 2 M~ DE® (@) (map — 9)° + O(R70),

Using the asymptotic expansions (2.23) and (2.24) in the case of
orthogonal projection and the asymptotic expansions (2.34) and (2.35)
in the case of interpolatory projection, we obtain

M(my, — K" () (T — ¢)* = U(Vi()) K" + O (R17F°).

In a similar fashion, using the asymptotic expansions (2.23) and (2.25)
in the case of orthogonal projection and asymptotic expansions (2.34)
and (2.36) in the case of interpolatory projection, we obtain

M(r, — DE® (9)(mnip — 9)* = U(Va()) h*"° + O (B7) .

By Remark 2.5 in the case of orthogonal projection and by Remark 2.7
in the case of interpolatory projection, we have the following result:

If » = 0, then Va(¢) = 0. On the other hand, if » > 1, then
5r 4+ 5 > 4r + 6. Hence,

[M (700 = DE® () (0 — )%l = O (*7F6).
As a consequence,

(3.18)  M(mn — I) [K (mngp) — K(p) = K'(0) (mngp — )]
_ U(Vl(w))h4r+4 +0 (h'9Y.
2

Using the asymptotic expansions (2.22) and (2.23) in the case of
orthogonal projection and the asymptotic expansions (2.33) and (2.34)
in the case of interpolatory projection, we obtain

(3.19)  M(m, — D)K'(¢)(mnp — ) = K" HU(T(p)) + O (A1F°) .
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Hence, using (3.17), (3.18) and (3.19), we obtain
(3.20)

M(K(p) = K3 (¢)) = <U(T(<p)) + U(V;W) AT 4 O (B4t |

By [10, Lemma 3.3],
(3.21)
M [K () — K2 () = (KXY ()@ = )], = O(hsr+9)

and, by Lemma 2.3,
(3.22) MK () = K' (@) (en' = 9)|. = OR°).

From (3.16), (3.20), (3.21) and (3.22), it follows that
K' (@) (o) — ) = - (U(T(ga)) + U(V;(SD))>MT+4 L0 (h4r+6) .

The asymptotic expansion (3.14) follows from (3.15) using the above

result with
T, -

We can now apply one step of the Richardson extrapolation and
obtain approximations of ¢ of higher order. Define

B, _ 2 — o
Pn” = 24r+4 _ 1 '

Then we have the following result.

Corollary 3.4. Under the assumptions of Theorem 3.3,
(3.23) lp = 2l = O(RYE).

Remark 3.5. We refer to [10] for the implementation details and the
discussion of the complexity of various methods discussed in this paper.

4. Numerical results. In this section, we illustrate the improve-
ment of orders of convergence by Richardson extrapolation obtained in
Corollaries 3.2 and 3.4.
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Consider
1

ds
4.1 — _— = 0<s<1
R e= == e (O LRSS
where f is so chosen that

1
)= ——
°0 =77

is a solution of (4.1).
We consider the following uniform partition of [0, 1]:

1 2 n
(4.2) I<=—<—-<--<==1,

n o n n
and choose X, to be the space of the piecewise constant and piecewise
linear polynomials with respect to the above partition. The computa-
tions are done for n = 2,4,8,16 and 32.

If X,, is the space of piecewise constant functions, then in both
the cases of orthogonal and interpolatory projection at the midpoints,
the order of convergence in the Sloan method is 1/n%, and in iterated
version of the modified projection method is 1/n%. We need to evaluate
certain integrals numerically, and it is necessary to choose the numerical
quadrature rule which has order of convergence at least 1/n*. We
choose composite 2 point Gaussian quadrature with respect to the
uniform partition of [0, 1] with 256 intervals.

If X,, is the space of piecewise linear functions, then in the cases
of interpolatory projection at Gauss 2 points, the order of convergence
in the Sloan method is 1/n* and an iterated version of the modified
projection method is 1/n®. In this case, we choose composite 2 point
Gaussian quadrature with respect to the uniform partition of [0, 1] with
n? intervals.

4.1. Orthogonal projection. Let X, be the space of piecewise
constant functions (r = 0) with respect to the partition (4.2) and
m » L[0,1] — X, the restriction of the orthogonal projection from
L2[0,1] to X,,.

The expected orders of convergence from (1.2), (1.3) and (3.13) are
as follows:
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e Galerkin solution: 6¢ =1,
Sloan solution: §° = 2,
Extrapolated solution: §%' =4,

whereas the expected orders of convergence from (1.7), (1.8) and (3.23)

are as follows:

e Modified projection solution: § = 3,
Iterated modified projection solution: 6/ = 4,
Extrapolated solution: 572 = 6.

TABLE 4.1. Orthogonal projection: r = 0.

Galerkin Sloan Extrapolation
n [ lle—eGlos 09 | lle—0Slloo 65 | lo—entlos sPL
2 | 1.85 x 10— 8.05 x 10~ 2
4 1.05 x 10~1  0.81 | 1.99 x 1073 2.01 2.32 x 10~°
8 | 5.65x1072 090 | 497 x 104 200 | 2.13x 1076 3.45
16 | 2.91 x1072  0.96 | 1.24 x 10~%  2.00 1.42 x 107 3.91
32 | 145 x 1072  1.01 | 3.10x10°°% 2.00 8.99 x 10— 9 3.98

TABLE 4.2. Orthogonal projection: r = 0.

Modified Projection Tterated Modified Extrapolation
Projection
n e — oMo sM le — 3Mllce  61M [ o - oB2)0e 82
2 4.40 x 10~ 3 7.61 x 10~
4 6.71 x 10—4 2.71 4.40 x 10—6 4.11 2.32 x 10~7
8 9.44 x 1072 2.83 2.66 x 1077 4.05 2.13 x 1079 5.31
16 1.25 x 1075 2.92 1.65 x 1078 401 | 1.42x 10710 5385
32 1.57 x 10°6 2.99 1.03 x 10—9 4.00 | 8.99 x 10712 584

It is seen from Tables 4.1 and 4.2 that the computed orders of
convergence match well with the theoretical orders of convergence.

4.2. Interpolatory projection. For » = 0,1, let X,, be the space
of piecewise polynomials of degree < r with respect to the partition
(4.2). The collocation points are chosen to be r + 1 Gauss points in

each subinterval.

The expected orders of convergence from (1.2), (1.3) and (3.13) are

as follows:
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e Collocation solution: 6¢ =r + 1,
Sloan solution: 6% = 2r + 2,
Extrapolated Solution: §F* = 2r + 4,

whereas the expected orders of convergence from (1.7), (1.8) and (3.23)
are as follows:

e Modified projection solution: § = 3r + 3, Iterated modified
projection solution: 6™ = 4r + 4, Extrapolated solution:
0P = 4r 4+ 6.

TABLE 4.3. Interpolation at midpoints: » = 0.

Collocation Sloan Extrapolation
n | e —©Sloe  6° | e —0Slos 89 | o —enllloo 051
2 [ 1.93x 101 1.27 X 10~
4 1.08 x 10~1  0.84 | 3.15 x 1073 2.01 1.82 x 102
8 | 5.73x102 0.91 | 7.86 x 1074 2.00 | 2.00x 1076 3.18
16 | 2.93x1072 097 | 1.96 x 1074 200 | 1.37x 1077  3.87
32 | 1.45 x 1072 1.01 | 4.91 x 107°% 2.00 8.77 x 10—9 3.97

TABLE 4.4. Interpolation at midpoints: r = 0.

Modified Projection Tterated Modified Extrapolation
Projection
e — oMo M e —eMise ™™ [ e —ep?llee  sP2
2 6.92 x 103 3.30 x 10— 4
4 1.02 x 103 2.76 2.13 x 1072 3.95 7.31 x 1077
8 1.40 x 1074 2.87 1.834 x 1076 3.99 6.81 x 1072 6.75
16 1.82 x 1075 2.94 8.37 x 10~8 4.00 | 8.46 x 10711 6.33
32 2.27 x 10~6 3.00 5.23 x 10~9 4.00 | 1.01 x 10712 6.39

TABLE 4.5. Interpolation at Gauss 2 points: r = 1.

Collocation Sloan Extrapolation
n | le—©Sloe  6C | le—0Slos 89 | o —enlllce 51
2 | 7.60 x 10~ 2 1.36 x 10—
4 | 264x1072 1.53 | 8.18x 107° 4.05 | 3.388x 106
8 7.92x 1073  1.74 | 468 x 1076 413 | 4.68 x 1077 2.85
16 | 2.13x 1073 1,90 | 2.84 x 10~7  4.04 | 9.09 x 1072 5.68
32 | 5.17x107% 204 | 1.76 x 1078 401 | 1.44 x 10710 598
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TABLE 4.6. Interpolation at Gauss 2 points: r = 1.

Modified Projection Tterated Modified Extrapolation
Projection

n le = M lloo sM le — Moo SIM | e — on?lloe  sP2

2 5.06 x 10— 1 6.47 x 10~ 2

4 1.07 x 10—° 5.56 2.09 x 10~ 7 8.27 4.37 x 1078

8 1.85 x 107 5.86 8.45 x 1010 7.95 | 2,67 x 10711 10.68

16 3.07 x 1079 5.90 3.35 x 1012 7.98 | 473x 1071 914

32 4.74 x 10~ 11 6.02 1.34 x 1014 7.96 | 2.11 x 10715 4.49

It is seen from Tables 4.3-4.6 that the computed orders of conver-
gence match well with the theoretical orders of convergence.
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