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ORDER OF APPROXIMATION FOR
SAMPLING KANTOROVICH OPERATORS

DANILO COSTARELLI AND GIANLUCA VINTI

ABSTRACT. In this paper, we study the problem of the
rate of approximation for the family of sampling Kantorovich
operators in the uniform norm, for uniformly continuous and
bounded functions belonging to Lipschitz classes (Zygmund-
type classes), and for functions in Orlicz spaces. The general
setting of Orlicz spaces allows us to directly deduce the
results concerning the order of approximation in Lp-spaces,
1 ≤ p < ∞, very useful in applications to Signal Processing,
in Zygmund spaces and in exponential spaces. Particular
cases of the sampling Kantorovich series based on Fejér’s
kernel and B-spline kernels are studied in detail.

1. Introduction. In [4] the authors introduced the sampling Kan-
torovich operators and studied their convergence in the general setting
of Orlicz spaces in the one-dimensional case. Later these results have
been extended in [19] to the multivariate setting, in [20, 39] to the
nonlinear case and in a more general context in [7, 40]. Applications
to civil engineering images have been studied in [18].

In this paper, we study the problem of the rate of approximation
for the sampling Kantorovich operators in various settings. We con-
sider the case of uniform approximation for uniformly continuous and
bounded functions belonging to Lipschitz classes and the case of modu-
lar approximation for functions in Orlicz spaces. In this context, we will
introduce Lipschitz classes of Zygmund-type which take into account
the modular functional involved.

The sampling Kantorovich operators, considered here, are of the
form
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(I) (Swf)(x) :=
∑
k∈Z

χ(wx− tk)

[
w

∆k

∫ tk+1/w

tk/w

f(u) du

]
(x ∈ R),

where f : R → R is a locally integrable function such that the
series is convergent for every x ∈ R, χ : R → R represents a
kernel function satisfying suitable properties and (tk)k∈Z is a certain
increasing sequence of real numbers with ∆k := tk+1− tk > 0, for every
k ∈ Z. We observe that the choice of (tk)k∈Z allows us to obtain an
irregular sampling scheme. The importance of studying the sampling
series of the form (I) relies also on its application to the theory of Signal
Processing. In particular, the multivariate versions of (I) (in linear and
nonlinear cases) have applications to Image Processing (see [19, 20])
and allows us to investigate image reconstruction.

The sampling operators (I) represent an averaged version, in the
Kantorovich sense, of the generalized sampling operators introduced
by Paul Leo Butzer and his school (see, e.g. , [1, 5, 9, 10, 11, 12,
15, 16, 17, 22, 34, 36, 37]), which consist of a generalization of the
classical sampling theory based on the classical Whittaker-Kotelnikov-
Shannon sampling theorem (see, e.g., [3, 13, 21, 23, 24, 25, 26, 35]).

One of the advantages, with respect to generalized sampling opera-
tors, given by the discrete operators (I) is that, instead of the sampling
values f(k/w), one has an average of f on a small interval containing
k/w (here, instead of k, we have tk). This situation very often occurs
in Signal Processing when one cannot exactly match the node tk: this
represents the so-called “time-jitter error.” Therefore, the theory of
sampling Kantorovich operators reduces time-jitter errors calculating
the information in a neighborhood of a point rather than exactly at
that point. Moreover, the integral form of the sampling Kantorovich
operators is suitable for its study in the setting of Lp-spaces, or more
generally in Orlicz spaces Lφ(R); indeed such operators, due to their
form, are continuous in Lφ(R), and this situation, in general, does not
occur for the generalized sampling operators. For the general theory of
Orlicz spaces, see, e.g., [2, 8, 27, 28, 29, 30, 32].

The paper is organized as follows. Section 2 is devoted to notation
and some preliminary notions concerning Orlicz spaces. In Section 3 we
recall the definition of sampling Kantorovich operators and give some
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basic results, while in Section 4 we study the order of approximation
in C(R) (the set of all uniformly continuous and bounded functions)
for the family (Swf)w>0. Section 5 shows the results concerning the
order of approximation in the general setting of Orlicz spaces. Finally,
Section 6 is devoted to the study of particular examples of kernels, such
as Fejér’s and B-spline kernels, to which the theory can be applied.

2. Preliminary notions. In the following, we denote by C(R) the
set of all uniformly continuous and bounded functions f : R → R
endowed with the usual sup-norm ∥ · ∥∞. In order to study the rate of
approximation of a family of linear operators, we recall the Zygmund-
type class (Lipschitz class) in which we will work.

We define the class Lip∞(ν), 0 < ν ≤ 1, as

Lip∞(ν) := {f ∈ C(R) : ∥f(·)− f(·+ t)∥∞
= O(|t|ν), as t → 0} ,

where, for any two functions f , g : R → R, f(t) = O(g(t)) as t → 0
means that there exist constants C, γ > 0 such that |f(t)| ≤ C|g(t)|
for every t ∈ [−γ, γ] ([8, 38]).

We now recall some basic facts concerning Orlicz spaces.

A function φ : R+
0 → R+

0 is said to be a φ-function if it satisfies the
following conditions:

(Φ1) φ is a non decreasing and continuous function;

(Φ2) φ(0) = 0, φ(u) > 0 if u > 0 and limu→+∞ φ(u) = +∞.

Let us now consider the functional Iφ associated to the φ-function
φ and defined by

Iφ[f ] :=

∫
R

φ(|f(x)|) dx,

for every f ∈ M(R), i.e., for every (Lebesgue) measurable function
f : R → R. As it is well-known, Iφ is a modular functional (see, e.g.,
[8, 30, 32]), and the Orlicz space generated by φ is defined by

Lφ(R) := {f ∈ M(R) : Iφ[λf ] < +∞, for some λ > 0} .

A notion of convergence in Orlicz spaces, called modular convergence,
was introduced in [31].
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We will say that a net of functions (fw)w>0 ⊂ Lφ(R) is modularly
convergent to f ∈ Lφ(R), if there exists λ > 0 such that

(1) Iφ[λ(fw − f)] =

∫
R

φ(λ|fw(x)− f(x)|) dx −→ 0, w → +∞.

Moreover, we recall, for the sake of completeness, that in Lφ(R) a
strong notion of convergence can also be given, i.e., the Luxemburg-
norm convergence, see e.g., [8, 30]. Definition (1) induces a topology
in Lφ(R), called modular topology.

We now define by Lipφ(ν), 0 < ν ≤ 1, the Zygmund-type class in
Orlicz spaces, as the set of all functions f ∈ M(R) such that there
exists λ > 0 with

Iφ[λ(f(·)− f(·+ t))] =

∫
R

φ (λ |f (x)− f (x+ t)|) dx = O(|t|ν),

as t → 0. For further results concerning Orlicz spaces, see [2, 6, 8, 9,
27, 28, 29, 30, 32, 33].

3. Sampling Kantorovich operators and some basic results.
In this section, we first recall the definition of the sampling Kantorovich
operators introduced in [4].

Let Π = (tk)k∈Z be a sequence of real numbers such that −∞ <
tk < tk+1 < +∞ for every k ∈ Z, limk→±∞ tk = ±∞ and there are two
positive constants ∆, δ such that δ ≤ ∆k := tk+1 − tk ≤ ∆, for every
k ∈ Z.

In what follows, a function χ : R → R will be called a kernel if it
satisfies the following properties:

• (χ1) χ ∈ L1(R) and is bounded in a neighborhood of 0;
• (χ2) for some µ > 0,∑
k∈Z

χ(wx− tk)− 1 =: Aw(x)− 1 = O(w−µ), as w → +∞,

uniformly with respect to x ∈ R;
• (χ3) for some β > 0,

mβ,Π(χ) := sup
u∈R

∑
k∈Z

|χ(u− tk)| · |u− tk|β < +∞;
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• (χ4) there exists α > 0 such that, for every M > 0,∫
|u|>M

w |χ(wu)| du = O(w−α), as w → +∞.

Remark 3.1. We point out that condition (χ4) is used only when we
study sampling Kantorovich operators in the setting of Orlicz spaces.

We can now recall the definition of the sampling Kantorovich opera-
tors for a given kernel χ. We denote by (Sw)w>0 the family of operators
defined by

(2) (Swf)(x) :=
∑
k∈Z

χ(wx− tk)

[
w

∆k

∫ tk+1/w

tk/w

f(u) du

]
(x ∈ R),

where f : R → R is a locally integrable function such that the series is
convergent for every x ∈ R.

We begin giving the proof of the following lemma.

Lemma 3.2. Under the assumptions (χ1) and (χ3) on the kernel χ,
we have:

(i) m0,Π(χ) := supu∈R

∑
k∈Z |χ(u− tk)| < +∞;

(ii) For every γ > 0∑
|wx−tk|>γw

|χ(wx− tk)| = O(w−β), as w → ∞,

uniformly with respect to x ∈ R, where β > 0 is the constant
of condition (χ3).

Proof. For a proof of (i), see e.g., [4].

(ii) Let γ > 0 be fixed. For every x ∈ R and w > 0, we obtain:∑
|wx−tk|>γw

|χ(wx− tk)| ≤
1

γβwβ

∑
|wx−tk|>γw

|χ(wx− tk)| · |wx− tk|β ≤ 1

γβwβ
mβ,Π(χ) < +∞,

and so the assertion follows. �
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Remark 3.3.

(a) We note that, if f ∈ L∞(R), using Lemma 3.2 (i), Swf are
well-defined for every w > 0. Indeed,

|(Swf)(x)| ≤ m0,Π(χ) ∥f∥∞ < +∞,

for every x ∈ R and w > 0, i.e., Sw : L∞(R) → L∞(R).
(b) Conditions (χ3) is obviously fulfilled if χ(x) = O(x−1−β−ε) as

x → ±∞, for some ε > 0. In this case, (χ3) holds, see [4, 14].
(c) Instead of assuming condition (χ2), one can directly assume

the following condition:

(3)
∑
k∈Z

χ(u− tk) = 1, for every u ∈ R.

Clearly, if condition (3) holds, (χ2) is fulfilled for every µ > 0.

Moreover, in case of the uniform sampling scheme tk = k, k ∈ Z,
condition (3) is equivalent to:

χ̂(k) :=

{
0, k ∈ Z \ {0} ,
1, k = 0,

where χ̂(v) :=
∫
R
χ(u)e−ivu du, v ∈ R, is the Fourier transform of χ;

see [4, 14].

4. Order of approximation in C(R). We will now study the rate
of approximation of the family of linear sampling Kantorovich operators
(2) in C(R). We may state the result on the order of approximation
for Swf − f with respect to the sup-norm ∥ · ∥∞, with f ∈ Lip∞(ν),
0 < ν ≤ 1.

Theorem 4.1. Let χ be a kernel and f ∈ Lip∞(ν), 0 < ν ≤ 1. Then

∥Swf − f∥∞ = O(w−ϵ), as w → +∞,

where ϵ := min{ν, β, µ} and µ, β > 0 are the constants of conditions
(χ2) and (χ3), respectively.

Proof. First, we consider the case of χ satisfying condition (χ3) for
0 < β ≤ 1.
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Now let f ∈ Lip∞(ν), 0 < ν ≤ β, be fixed. By Remark 3.3 (a), Swf
are well defined for every w > 0. Moreover, since f ∈ Lip∞(ν), there
exist constants C, γ > 0 such that

sup
x∈R

|f(x)− f(x+ t)| ≤ C|t|ν ,

for every t ∈ [−γ, γ]. Now let x ∈ R be fixed. Then we can write

|(Swf)(x)− f(x)| ≤ |(Swf)(x)− f(x)Aw(x)|
+ |f(x)Aw(x)− f(x)|

≤
∑
k∈Z

|χ(wx− tk)|
w

∆k

∫ tk+1/w

tk/w

|f(u)− f(x)| du

+ |f(x)||Aw(x)− 1|

≤
( ∑

|wx−tk|≤wγ/2

+
∑

|wx−tk|>wγ/2

)
|χ(wx− tk)|

w

∆k

×
∫ tk+1/w

tk/w

|f(u)− f(x)| du

+ ∥f∥∞|Aw(x)− 1| =: I1 + I2 + I3.

By putting u = x+t in the integrals of I1 and taking into account that,
for every t ∈ [tk/w − x, tk+1/w − x], if |wx− tk| ≤ wγ/2, we have

|t| ≤ |t− tk/w + x|+ |tk/w − x| ≤ ∆

w
+

γ

2
< γ,

for sufficiently large w > 0 and then

I1 =
∑

|wx−tk|≤wγ/2

|χ(wx− tk)|
w

∆k

×
∫ (tk+1/w)−x

(tk/w)−x

|f(x+ t)− f(x)| dt(4)

≤ C
∑

|wx−tk|≤wγ/2

|χ(wx− tk)|
w

∆k

∫ (tk+1/w)−x

(tk/w)−x

|t|ν dt.

In order to estimate (4) we introduce the following notations. We
denote by L := {k ∈ Z : |wx− tk| ≤ wγ/2}, L1 := {k ∈ L : tk/w ≥ x}
and L2 := {k ∈ L : tk+1/w ≤ x}, with w > 0. We can observe that
L = L1 ∪ L2 ∪ L3, where L3 := {k} if there exists k ∈ Z such that
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tk/w < x < tk+1/w, otherwise L3 := ∅. In what follows, we consider
only the case of L3 := {k} (the case L3 := ∅ is similar). Now, we
rewrite the last term of (4) as follows:

∑
|wx−tk|≤wγ/2

|χ(wx− tk)|
w

∆k

∫ (tk+1/w)−x

(tk/w)−x

|t|ν dt

=

( ∑
k∈L1

+
∑
k∈L2

+
∑
k∈L3

)
|χ(wx− tk)|

w

∆k

×
∫ (tk+1/w)−x

(tk/w)−x

|t|ν dt

=: J1 + J2 + J3.

We first estimate J1. We have

J1 ≤
∑
k∈L1

|χ(wx− tk)| sup
t∈[(tk/w)−x,(tk+1/w)−x]

|t|ν(5)

≤
∑
k∈L1

|χ(wx− tk)| |tk+1/w − x|ν

=
1

wν

∑
k∈L1

|χ(wx− tk)| |tk +∆k − wx|ν ,

for every w > 0. Now, since 0 < ν ≤ β ≤ 1, we have that | · |ν is
concave, and then subadditive, so we obtain

J1 ≤ w−ν
∑
k∈L1

|χ(wx− tk)| [|tk − wx|ν +∆ν
k]

≤ w−ν
∑
k∈L1

|χ(wx− tk)| |wx− tk|ν

+ w−ν∆ν
∑
k∈L1

|χ(wx− tk)| .

We estimate J2. We have

J2 ≤
∑
k∈L2

|χ(wx− tk)| sup
t∈[(tk/w)−x,(tk+1/w)−x]

|t|ν

≤
∑
k∈L2

|χ(wx− tk)| |tk/w − x|ν
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= w−ν
∑
k∈L2

|χ(wx− tk)| |wx− tk|ν ,

for every w > 0. Finally, we estimate J3. Using again the subadditivity
of | · |ν , we obtain

J3 ≤
∣∣χ(wx− tk)

∣∣ sup
t∈[(tk/w)−x,(tk+1/w)−x]

|t|ν

≤
∣∣χ(wx− tk)

∣∣max
{∣∣tk/w − x

∣∣ν , ∣∣tk+1/w − x
∣∣ν}

≤ 1

wν

∣∣χ(wx− tk)
∣∣ [∣∣tk − wx

∣∣ν +∆ν
]

= w−ν
∣∣χ(wx− tk)

∣∣ ∣∣wx− tk
∣∣ν

+ w−ν∆ν
∣∣χ(wx− tk)

∣∣ ,
for every w > 0. Then, by the above estimates, we can state that

J1 + J2 + J3 ≤ w−ν
∑
k∈L

|χ(wx− tk)| |wx− tk|ν

+ w−ν∆ν
∑

k∈L1∪L3

|χ(wx− tk)|

≤ w−ν [mν,Π(χ) + ∆νm0,Π(χ)].

Now, since if mβ,Π(χ) < +∞ then mν,Π(χ) < +∞ for every 0 < ν ≤ β,
by condition (χ3) and Lemma 3.2 (i) we have

J1 + J2 + J3 ≤ w−ν [mν,Π(χ) + ∆νm0,Π(χ)]

=: w−νM < +∞,

for every fixed w > 0. Then, by the above inequality and the estimate
in (4), we obtain that

I1 = O(w−ν), as w → +∞,

uniformly with respect to x ∈ R. Further,

I2 ≤ 2 ∥f∥∞
∑

|wx−tk|>wγ/2

|χ(wx− tk)| = O(w−β), as w → ∞,

uniformly with respect to x ∈ R, as a consequence of Lemma 3.2 (ii).
Finally, from condition (χ2) we obtain that I3 = O(w−µ), as w → +∞,
uniformly with respect to x ∈ R. Thus, we have shown that

|(Swf)(x)− f(x)| ≤ I1 + I2 + I3
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= O(w−ν) +O(w−β) +O(w−µ), as w → ∞,

uniformly with respect to x ∈ R and, therefore, we finally obtain that

∥Swf − f∥∞ = O(w−ϵ), as w → +∞,

where ϵ := min{ν, β, µ}.
Let us now consider the case f ∈ Lip∞(ν), with β ≤ ν ≤ 1 fixed. It

is easy to observe that Lip∞(ν) ⊆ Lip∞(β), so this can be reduced to
the above case, from which we obtain that

∥Swf − f∥∞ = O(w−ϵ), as w → +∞,

where ϵ := min{β, µ} = min{ν, β, µ}, since ν ≥ β.

Finally, we study the case of χ satisfying condition (χ3) for β > 1.
As noted above, mβ,Π(χ) < +∞ implies m1,Π(χ) < +∞, which means
the kernel satisfies condition (χ3) also for β = 1, and so this can be
reduced to the previous case. This completes the proof. �

5. Order of approximation in Orlicz spaces. We will now study
the order of approximation for the sampling Kantorovich operators in
the general setting of Orlicz spaces Lφ(R), for the φ convex. First of
all, we recall a modular continuity property for our operators Sw.

Theorem 5.1. Let χ be a kernel. For every f ∈ Lφ(R), the following
holds:

Iφ[λSwf ] ≤
∥χ∥1

δm0,Π(χ)
Iφ[λm0,Π(χ)f ] (λ > 0),

for every w > 0. In particular, Swf ∈ Lφ(R) whenever f ∈ Lφ(R).

For a proof of Theorem 5.1, see [4].

Now, we establish the following result which gives a degree of
approximation for the sampling Kantorovich operators in Orlicz spaces.

Theorem 5.2. Let χ be a kernel. Moreover, let f ∈ Lφ(R)∩Lipφ(ν),
0 < ν ≤ 1, be fixed. Suppose, in addition, that there exist θ and γ > 0
such that

(6)

∫
|t|≤γ

w|χ(wt)||t|ν dt = O(w−θ), as w → +∞.
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Then there exists λ > 0 such that

Iφ[λ(Swf − f)] = O(w−ϵ), as w −→ +∞,

with ϵ := min{θ, ν, µ, α}, where µ, α > 0 are the constants of
conditions (χ2) and (χ4), respectively.

Proof. First of all, by the assumption f ∈ Lφ(R)∩Lipφ(ν), 0 < ν ≤
1, we have that there exist λ1, λ2 > 0 such that Iφ[λ1f ] < +∞, and

Iφ[λ2(f(·)− f(·+ t))] = O(|t|ν), as t → 0,

i.e., there exist M1 and γ > 0 such that

Iφ[λ2(f(·)− f(·+ t))] ≤ M1|t|ν ,

for every |t| ≤ γ. Now, by the properties of the convex modular
functional Iφ, for λ > 0, we can write:

Iφ[λ(Swf − f)] =

∫
R

φ(λ|(Swf)(x)− f(x)|) dx

≤ 1

3

{∫
R

φ

(
3λ

∣∣∣∣(Swf)(x)

−
∑
k∈Z

χ(wx− tk)
w

∆k

∫ tk+1/w

tk/w

f

(
u+x− tk

w

)
du

∣∣∣∣) dx

+

∫
R

φ

(
3λ

∣∣∣∣∑
k∈Z

χ(wx− tk)
w

∆k

×
∫ tk+1/w

tk/w

f

(
u+ x− tk

w

)
du− f(x)Aw(x)

∣∣∣∣) dx

+

∫
R

φ (3λ |f(x)Aw(x)− f(x)|) dx
}

=:
1

3
{J1 + J2 + J3} .

First, we estimate J1. Applying Jensen’s inequality and the Fubini-
Tonelli theorem,

J1 =

∫
R

φ

(
3λ

∣∣∣∣(Swf)(x)
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−
∑
k∈Z

χ(wx− tk)
w

∆k

∫ tk+1/w

tk/w

f

(
u+ x− tk

w

)
du

∣∣∣∣) dx

≤ 1

m0,Π(χ)

∫
R

∑
k∈Z

|χ(wx− tk)|φ
(
3λm0,Π(χ)

w

∆k

×
∫ tk+1/w

tk/w

∣∣∣∣f(u)− f

(
u+ x− tk

w

)∣∣∣∣ du) dx

≤ 1

m0,Π(χ)

∑
k∈Z

∫
R

|χ(wx− tk)|φ(3λm0,Π(χ)
w

∆k

×
∫ tk+1/w

tk/w

∣∣∣∣f(u)− f

(
u+ x− tk

w

)∣∣∣∣ du) dx.

Putting t = x − tk/w and applying the Fubini-Tonelli theorem and
Jensen’s inequality again, we may write

J1 ≤ 1

m0,Π(χ)

∫
R

|χ(wt)|
∑
k∈Z

φ
(
3λm0,Π(χ)

w

∆k

×
∫ tk+1/w

tk/w

|f(u)− f(u+ t)| du
)
dt

≤ 1

m0,Π(χ)

∫
R

|χ(wt)|
{∑

k∈Z

w

∆k

×
∫ tk+1/w

tk/w

φ(3λm0,Π(χ)|f(u)− f(u+ t)|) du
}
dt

≤ 1

m0,Π(χ) δ

∫
R

w|χ(wt)|{∑
k∈Z

∫ tk+1/w

tk/w

φ(3λm0,Π(χ)|f(u)− f(u+ t)|) du
}
dt

=
1

m0,Π(χ) δ

∫
R

w|χ(wt)|

×
{∫

R

φ(3λm0,Π(χ)|f(u)− f(u+ t)|) du
}
dt

=
1

m0,Π(χ) δ

{∫
|t|≤γ̃

w|χ(wt)|
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×
(∫

R

φ(3λm0,Π(χ)|f(u)− f(u+ t)|) du
)
dt

+

∫
|t|>γ̃

w|χ(wt)|
(∫

R

φ(3λm0,Π(χ)|f(u)− f(u+ t)|) du
)
dt

}
=

1

m0,Π(χ) δ
{J1,1 + J1,2} ,

with γ̃ := min{γ, γ}, where γ > 0 is the constant of condition (6).
Now, we fix λ > 0 such that:

λ ≤ min

{
λ1

3M2
,

λ1

6m0,Π(χ)
,

λ2

3m0,Π(χ)
,
λ2δ

6∆

}
,

where M2 > 0 is obtained from condition (χ2), i.e., M2 is such that∣∣∣∣∑
k∈Z

χ(wx− tk)− 1

∣∣∣∣ ≤ M2w
−µ,

uniformly with respect to x ∈ R and for sufficiently large w > 0. Since
f ∈ Lipφ(ν) and by condition (6), we obtain:

J1,1 ≤
∫
|t|≤γ̃

w|χ(wt)|
[ ∫

R

φ(λ2|f(u)− f(u+ t)|) du
]
dt

≤ M1

∫
|t|≤γ̃

w|χ(wt)| |t|ν dt

= O(w−θ), as w → +∞.

For J1,2, by the convexity of φ, we have

J1,2 ≤
∫
|t|>γ̃

w|χ(wt)|1
2

[ ∫
R

φ(6λm0,Π(χ)|f(u)|) du

+

∫
R

φ(6λm0,Π(χ)|f(u+ t)|) du
]
dt,

and noting that∫
R

φ(6λm0,Π(χ)|f(u+ t)|) du =

∫
R

φ(6λm0,Π(χ)|f(u)|) du,

for every t ∈ R, we obtain
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J1,2 ≤
∫
|t|>γ̃

w|χ(wt)|
∫
R

φ(6λm0,Π(χ)|f(u)|)du

= Iφ[6λm0,Π(χ)f ]

∫
|t|>γ̃

w|χ(wt)| dt.

Therefore, by the above inequality, the choice of λ and condition (χ4),
it follows immediately that

J1,2 = O(w−α), as w → +∞.

Now, we estimate J2. Putting t = u− tk/w and by the convexity of φ
we have

J2 ≤
∫
R

φ

(
3λ

∣∣∣∣∑
k∈Z

χ(wx− tk)

×
[
w

∆k

∫ tk+1/w

tk/w

f

(
u+ x− tk

w

)
du− f(x)

]∣∣∣∣) dx

=

∫
R

φ

(
3λ

∣∣∣∣∑
k∈Z

χ(wx− tk)

[
w

∆k

∫ ∆k/w

0

f(x+ t) dt− f(x)

]∣∣∣∣) dx

=

∫
R

φ

(
3λ

∣∣∣∣∑
k∈Z

χ(wx− tk)
w

∆k

∫ ∆k/w

0

[f(x+ t)− f(x)] dt

∣∣∣∣) dx

≤
∫
R

φ

(
3λ

∣∣∣∣∑
k∈Z

χ(wx− tk)
w

δ

∫ ∆k/w

0

|f(x+ t)− f(x)| dt
∣∣∣∣) dx

≤
∫
R

φ

(
3λ

∣∣∣∣∑
k∈Z

χ(wx− tk)
w

δ

∫ ∆/w

0

|f(x+ t)− f(x)| dt
∣∣∣∣) dx

≤ 1

2

{∫
R

φ

(
6λ

∣∣∣∣∑
k∈Z

χ(wx− tk)− 1

∣∣∣∣wδ
∫ ∆/w

0

|f(x+ t)− f(x)| dt
)
dx

+

∫
R

φ

(
6λ

w

δ

∫ ∆/w

0

|f(x+ t)− f(x)| dt
)
dx

}
.

By condition (χ2), the monotonicity of φ, Jensen’s inequality and
Fubini-Tonelli theorem, we obtain, for sufficiently large w,

J2 ≤ 1

2

{∫
R

φ

(
6λM2w

−µw

δ

∫ ∆/w

0

|f(x+ t)− f(x)| dt
)
dx
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+

∫
R

φ

(
6λ

w

δ

∫ ∆/w

0

|f(x+ t)− f(x)| dt
)
dx

}
≤

∫
R

φ

(
6λ

w

δ

∫ ∆/w

0

|f(x+ t)− f(x)| dt
)
dx

≤
∫
R

w

∆

{∫ ∆/w

0

φ

(
6λ

∆

δ
|f(x+ t)− f(x)|

)
dt

}
dx

=
w

∆

∫ ∆/w

0

{∫
R

φ

(
6λ

∆

δ
|f(x+ t)− f(x)|

)
dx

}
dt,

where in the above inequalities the constant 6λM2w
−µ ≤ 6λ for

sufficiently large w > 0. Now, since f ∈ Lipφ(ν), by the choice of
λ, and by the change of variable t = u/w, we have that

J2 ≤ M1

∆
w

∫ ∆/w

0

|t|ν dt = M1

∆
w−ν

∫ ∆

0

|u|ν du =: Cw−ν ,

for sufficiently large w > 0, i.e., J2 = O(w−ν), as w → +∞.

Finally, we estimate J3. By condition (χ2), the convexity of φ and
for sufficiently large w > 0, we have

J3 ≤
∫
R

φ (3λ |f(x)| |Aw(x)− 1|) dx

≤
∫
R

φ
(
3λM2w

−µ |f(x)|
)
dx

≤ w−µIφ[3M2λf ] ≤ w−µIφ[λ1f ]

< +∞.

In conclusion, combining all the above estimates, we obtain

Iφ[λ(Swf − f)] = O(w−ϵ), as w → +∞,

where ϵ := min{θ, ν, µ, α}. �

Note that condition (6) is satisfied when, for instance, the kernel χ
is with compact support, with suppχ ⊂ [−B,B], B > 0. Indeed,

(7)

∫
|t|≤γ

w|χ(wt)||t|ν dt ≤
∫
|u|≤B

|χ(u)|
∣∣∣∣ uw

∣∣∣∣ν du =: Kw−ν ,
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for sufficiently large w > 0, i.e., θ = ν. Moreover, in the above case, χ
satisfies condition (χ4) for every α > 0. Hence, we obtain the following.

Corollary 5.3. Let χ be a kernel with compact support. Moreover, let
f ∈ Lφ(R) ∩ Lipφ(ν), 0 < ν ≤ 1. Then, there exists λ > 0 such that

Iφ[λ(Swf − f)] = O(w−ϵ), as w → +∞,

with ϵ := min{ν, µ}, where µ > 0 is the constant of condition (χ2).

If the kernel χ has not compact support, we may require that the
absolute moment

mν(χ) :=

∫
R

|χ(u)| |u|νdu < +∞,

for some 0 < ν ≤ 1. In this case, for every γ > 0 we have

(8)

∫
|t|≤γ

w|χ(wt)||t|ν dt ≤
∫
|u|≤γw

|χ(u)|
∣∣∣∣ uw

∣∣∣∣ν du ≤ mν(χ)w
−ν ,

for every w > 0, which shows that (6) holds for θ = ν. Thus, we obtain
the following.

Corollary 5.4. Let χ be a kernel with mν(χ) < +∞, for some
0 < ν ≤ 1. Moreover, let f ∈ Lφ(R) ∩ Lipφ(ν) be fixed. Then, there
exists λ > 0 such that

Iφ[λ(Swf − f)] = O(w−ϵ), as w → +∞,

with ϵ := min{ν, µ, α}, where µ > 0 and α > 0 are the constants of
conditions (χ2) and (χ4), respectively.

Remark 5.5. Convex φ-functions generating remarkable examples of
Orlicz spaces where the theory of sampling Kantorovich operators is
valid are: φp(u) := up, 1 ≤ p < ∞, φα,β := uα logβ(u + e), for α ≥ 1,

β > 0 and φγ(u) = eu
γ − 1, for γ > 0, u ≥ 0. It is well known that

φp generates the Lp(R)-space and the corresponding convex modular
functional is given by Iφp [f ] := ∥f∥pp. While φα,β and φγ generate the

Lα logβ L-spaces (or Zygmund spaces), largely used in the theory of
partial differential equations, and the exponential spaces respectively,
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Figure 1. The Fejér’s kernel F .

used for embedding theorems between Sobolev spaces. The convex
modular functionals corresponding to φα,β and φγ are

Iφα,β [f ] :=

∫
R

|f(x)|α logβ(e+ |f(x)|) dx, (f ∈ M(R)),

and

Iφγ [f ] :=

∫
R

(e|f(x)|
γ

− 1) dx, (f ∈ M(R)),

respectively.

6. Applications to special kernels. As a first example, we con-
sider the sampling Kantorovich operators based upon the Fejér’s kernel
(see Figure 1), of the form

F (x) :=
1

2
sinc 2

(
x

2

)
, (x ∈ R),
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where the sinc-function and its Fourier transform are given by

sinc (x) :=

{
sin(πx)

πx , x ∈ R \ {0} ,
1, x = 0,

ŝinc (v) :=

{
1, |v| ≤ π,
0, |v| > π.

Clearly, F is bounded, belongs to L1(R) and satisfies the moment
conditions (χ3) for β = 1 in view of Remark 3.3 (b), see [4, 14].
Moreover, for every M > 0∫

|u|>M

w F (wu) du ≤ 2

π2
w−1

∫
|u|>M

1

u2
du =: Kw−1,

for every w > 0, then condition (χ4) holds for α = 1. Furthermore,
taking into account that the Fourier transform of F is given by (see
[14])

F̂ (v) :=

{
1− |v/π|, |v| ≤ π,
0, |v| > π,

we obtain by Remark 3.3 (c) that, for the case of uniform-spaced
sampling tk = k, k ∈ Z, condition (χ2) is fulfilled for every µ > 0.
Finally, in [14] is proved that, the Fejér’s kernel has the absolute
moments mν(F ) < +∞, for every 0 < ν ≤ 1. Then, the sampling
Kantorovich operators based on the Fejér’s kernel now take the form

(SF
wf)(x) =

1

2

∑
k∈Z

[
w

∫ (k+1)/w

k/w

f(u) du

]
sinc 2

(
wx− k

2

)
, (x ∈ R),

for every w > 0, where f : R → R is a locally integrable function
such that the above series is convergent for every x ∈ R. For SF

wf ,
from Theorem 4.1, Theorem 5.1 and Corollary 5.4, we can obtain,
respectively, the following.

Corollary 6.1. Let f ∈ Lip∞(ν), with 0 < ν ≤ 1. Then∥∥SF
wf − f

∥∥
∞ = O(w−ν), as w → +∞.

In case of Orlicz spaces, for every f ∈ Lφ(R), the following holds:

Iφ[λSF
wf ] ≤ 1

δ
Iφ[λf ],

for some λ > 0 and for every w > 0. In particular, SF
wf ∈ Lφ(R)

whenever f ∈ Lφ(R).
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Moreover, for any f ∈ Lφ(R) ∩ Lipφ(ν), 0 < ν ≤ 1, there exists
λ > 0 such that

Iφ[λ(SF
wf − f)] = O(w−ν), as w → +∞.

We observe that, since the Fejér’s kernel has unbounded support,
for the reconstruction of a given signal f by means of SF

wf , we need an

infinite number of mean values w
∫ (k+1)/w

k/w
f(u) du in order to evaluate

our operators at any fixed point x ∈ R. Therefore, for a practical
application of the theory of sampling Kantorovich operators based
upon kernel having unbounded support, the sampling series must be
truncated, and this produces truncation errors.

In order to avoid this problem, we can take into consideration
kernels with compact support. In this case, the infinite sampling series
computed at any x ∈ R reduces to a finite one. Remarkable examples
of such kernels are given by the well-known B-splines of order n ∈ N
(see Figure 2 for the B-spline of order 3), defined by

Mn(x) :=
1

(n− 1)!

n∑
i=0

(−1)i
(
n

i

)(
n

2
+ x− i

)n−1

+

,

where the function (x)+ := max {x, 0} denotes the positive part of
x ∈ R (see [4, 14, 39]).

We have that the Fourier transform of Mn is given by

M̂n(v) := sincn
(

v

2π

)
, (v ∈ R),

and then, if we consider the case of the uniform sampling scheme,
condition (χ2) is satisfied for every µ > 0, by Remark 3.3 (c). Clearly,
Mn are bounded on R, with compact support [−n/2, n/2], and hence
Mn ∈ L1(R), for all n ∈ N. Moreover, it is easy to deduce that
conditions (χ3) and (χ4) are fulfilled for every β > 0 and α > 0. Then,
the sampling Kantorovich operators based on the B-spline kernel of
order n now take the form

(SMn
w f)(x)=

∑
k∈Z

[
w

∫ (k+1)/w

k/w

f(u) du

]
Mn (wx− k) , (x ∈ R),
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Figure 2. The B-spline of order 3.

for every w > 0, where f : R → R is a locally integrable function such
that the above series is convergent for every x ∈ R. From Theorem 4.1
and Corollary 5.3, we obtain the following.

Corollary 6.2. Let f ∈ Lip∞(ν), with 0 < ν ≤ 1. Then∥∥SMn
w f − f

∥∥
∞ = O(w−ν), as w → +∞.

In case of Orlicz spaces, for every f ∈ Lφ(R), the following holds:

Iφ[λSMn
w f ] ≤ 1

δ
Iφ[λf ],

for some λ > 0 and for every w > 0. In particular, SMn
w f ∈ Lφ(R)

whenever f ∈ Lφ(R).

Moreover, for any f ∈ Lφ(R) ∩ Lipφ(ν), 0 < ν ≤ 1, there exists a
λ > 0 such that

Iφ[λ(SMn
w f − f)] = O(w−ν), as w → +∞.
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For other useful examples of kernels, see e.g., [4, 8, 14, 38].

We now consider the situations above described in some special
case of Orlicz spaces. As a first example we study the case Lφ(R) =

Lα logβ(R) with α ≥ 1 and β > 0. The Zygmund spaces are examples
of Orlicz spaces for which the corresponding φ-functions φα,β(u) =

uα logβ(u + e), u ≥ 0, satisfy the well-known ∆2-condition (see, e.g.,
[8, 30, 31]). We write the following corollaries for the operators Sχ

w,
with χ = F or χ = Mn.

Corollary 6.3. For every f ∈ Lα logβ(R), with α ≥ 1 and β > 0, the
following holds:∫

R

|(Sχ
wf)(x)|α logβ(e+ λ|(Sχ

wf)(x)|) dx

≤ 1

δ

∫
R

|f(x)|α logβ(e+ λ|f(x)|) dx,

for some λ > 0 and for every w > 0. In particular, Sχ
wf ∈ Lα logβ(R)

whenever f ∈ Lα logβ(R).

Moreover, for any f ∈ Lα logβ(R) ∩ Lipφα,β
(ν), 0 < ν ≤ 1, there

exists a λ > 0 such that∫
R

|(Sχ
wf)(x)|α logβ(e+ λ|(Sχ

wf)(x)|) dx=O(w−ν), as w → +∞.

A further important class of Orlicz spaces, to which the theory of
sampling Kantorovich operators can be applied, is that one generated
by the φ-functions φp(u) = up, p ≥ 1, u ≥ 0. Obviously, φp(u) satisfy
the ∆2-condition and the corresponding Orlicz spaces are the well-
known Lp-spaces. Corollary 6.3 can be easily formulated also in the Lp

setting.

Finally, important examples of Orlicz spaces generated by φ-functions
which do not satisfy the ∆2-condition are given, e.g., by the exponential
spaces generated by the φ-functions φγ(u) = eu

γ − 1, γ > 0 and u ≥ 0.
In the latter setting, we point out the following corollary concerning
the order of approximation for the sampling Kantorovich operators Sχ

w,
with χ = F or χ = Mn.
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Corollary 6.4. For every f ∈ Lφγ (R), γ > 0, the following holds:∫
R

(
e|λ(S

χ
wf)(x)|γ − 1

)
dx ≤ 1

δ

∫
R

(
e|λf(x)|

γ

− 1
)
dx,

for some λ > 0 and for every w > 0. In particular, Sχ
wf ∈ Lφγ (R)

whenever f ∈ Lφγ (R).

Moreover, for any f ∈ Lφγ (R)∩ Lipφγ
(ν), 0 < ν ≤ 1, there exists a

λ > 0 such that∫
R

(
e|λ(S

χ
wf)(x)|γ − 1

)
dx = O(w−ν), as w → +∞.
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