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ASYMPTOTICALLY TYPED SOLUTIONS TO A
SEMILINEAR INTEGRAL EQUATION

YONG-KUI CHANG, XIAO-XIA LUO AND G.M. N’GUÉRÉKATA

ABSTRACT. In this paper, we investigate the existence
of µ-pseudo almost automorphic solutions to the semilinear

integral equation x(t) =
∫ t
−∞ a(t − s)[Ax(s) + f(s, x(s))] ds,

t ∈ R in a Banach space X, where a ∈ L1(R+), A
is the generator of an integral resolvent family of linear
bounded operators defined on the Banach space X, and f :
R×X → X is a µ-pseudo almost automorphic function. The
main results are proved by using integral resolvent families
combined with the theory of µ-pseudo almost automorphic
functions.

1. Introduction. In this paper, we are mainly concerned with
the existence of µ-pseudo almost automorphic mild solutions to the
following semilinear integral equations such as

(1) x(t) =

∫ t

−∞
a(t− s)[Ax(s) + f(s, x(s))] ds, t ∈ R,

where a ∈ L1(R+), A : D(A) ⊆ X → X is the generator of an
integral resolvent family defined on a complex Banach space X, and
f : R ×X → X is a µ-pseudo almost automorphic function satisfying
some suitable conditions given later.

The concept of almost automorphy was first introduced in the lit-
erature by Bochner [7, 8]; it is an important generalization of the
classical almost periodicity. For more details on these topics, we re-
fer the reader to [1, 2, 3, 4, 11, 12, 15, 14, 13, 23, 24, 25] and
the references therein. Since then, almost automorphy has become
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one of the most attractive topics in the qualitative theory of evolu-
tion equations, and there have been several interesting, natural and
powerful generalizations of the classical almost automorphic functions.
The concept of asymptotically almost automorphic functions was intro-
duced by N’Guérékata in [26]. Liang, Xiao and Zhang in [19, 31] pre-
sented the concept of pseudo almost automorphy. In [27], N’Guérékata
and Pankov introduced the concept of Stepanov-like almost automor-
phy and applied this concept to investigate the existence and unique-
ness of an almost automorphic solution to the autonomous semilinear
equation. Blot et al. introduced the notion of weighted pseudo almost
automorphic functions with values in a Banach space in [6], which
generalizes that of pseudo-almost automorphic functions. Xia and Fan
presented the notation of Stepanov-like weighted pseudo almost auto-
morphic functions in [30]. Zhang, Chang and N’Guérékata investigated
some properties and new ergodic theorems of Stepanov-like weighted
pseudo almost automorphic functions in [33, 34]. Recently, Blot, Cieu-
tat and Ezzinbi in [5] applied the measure theory to define an ergodic
function, and they investigated many powerful properties of µ-pseudo
almost automorphic functions, and the classical theories of pseudo al-
most automorphy and weighted pseudo almost automorphy become
particular cases of µ-pseudo almost automorphy.

In recent years, Cuevas and Lizama [10] studied the existence and
uniqueness of almost automorphic solutions to equation (1). In [17],
Henŕıquez and Lizama investigated the existence and regularity of com-
pact almost automorphic solutions to semilinear integral equation (1).
The authors investigated the existence of pseudo-almost automorphic
solutions to equation (1) in [36]. And, in [35], the existence of weighted
pseudo almost automorphic solutions to equation (1) with Sp -weighted
pseudo almost automorphic coefficients was investigated. However, to
the best of our knowledge, the existence of µ-pseudo almost automor-
phic solutions to equation (1) is an untreated topic in the literature.
Motivated by the above-mentioned works [10, 17, 36, 35], the main
purpose of this paper is to investigate the existence results of µ-pseudo
almost automorphic solutions to problem (1) by using integral resol-
vent families combined with the theory of µ-pseudo almost automorphic
functions. Our main results can be seen as a generalization of the clas-
sical results on almost automorphic, pseudo almost automorphic and
weighted pseudo almost automorphic solutions in [10, 17, 36, 35].
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The rest of this paper is organized as follows. In Section 2, we
introduce some basic definitions, lemmas and preliminary results which
will be used throughout this paper. In Section 3, we prove some
existence results of µ-pseudo almost automorphic mild solutions for
the semilinear integral equation (1).

2. Preliminaries. In this section, we fix some basic definitions,
notations, lemmas and preliminary facts which will be used in the
sequel. Throughout the paper, the notation (X, ∥ · ∥) is a complex
Banach space and BC(R,X) denotes the Banach space of all bounded
continuous functions from R to X, equipped with the supremum norm
∥f∥∞ = supt∈R ∥f(t)∥. Furthermore, we denote by B(X) the space of
bounded linear operators from X into X endowed with the operator
topology, and the notation ρ(A) stands for the resolvent set of A.

Throughout this work, we denote by B the Lebesgue σ-field of R and
by M the set of all positive measures µ on B satisfying µ(R) = +∞
and µ([a, b]) < +∞, for all a, b ∈ R(a < b).

Definition 2.1. [8] A continuous function f : R → X is said to be
almost automorphic if, for every sequence of real numbers {s′n}n∈N

there exists a subsequence {sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R. The collection of all such functions will be denoted by
AA(R,X).

Define

PAA0(R,X) :=

{
ϕ ∈ BC(R,X) : lim

T→∞

1

2T

∫ T

−T

∥ϕ(σ)∥dσ = 0

}
.

In the same way, we define PAA0(R×X,X) as the collection of jointly
continuous functions f : R×X → X which belong to BC(R×X,X))
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and satisfy

lim
T→∞

1

2T

∫ T

−T

∥ϕ(σ, x)∥ dσ = 0

uniformly in the compact subset of X.

Definition 2.2. [18, 32] A continuous function f : R → X (re-
spectively R × X → X) is called pseudo-almost automorphic if it
can be decomposed as f = g + ϕ, where g ∈ AA(R,X)(respectively
AA(R×X,X)) and ϕ ∈ PAA0(R,X) (respectively PAA0(R×X,X)).
Denote by PAA(R,X) (respectively PAA(R × X,X)) the set of all
such functions.

Definition 2.3. [5] Let µ ∈ M. A bounded continuous function
f : R → X is said to be µ-ergodic if

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥f(t), dµ(t) = 0.

We denote the space of all such functions by ε(R,X, µ).

Definition 2.4. [5] Let µ ∈ M. A continuous function f : R → X
is said to be µ-pseudo almost automorphic if f is written in the form:
f = g + ϕ, where g ∈ AA(R,X) and ϕ ∈ ε(R,X, µ). We denote the
space of all such functions by PAA(R,X, µ).

Obviously, we have AA(R,X) ⊂ PAA(R,X, µ) ⊂ BC(R,X).

Lemma 2.5. [5, Proposition 2.13] Let µ ∈ M. Then (ε(R,X, µ), ∥ ·
∥∞) is a Banach space.

Lemma 2.6. [5, Theorem 4.1] Let µ ∈ M and f ∈ PAA(R,X, µ)
be such that f = g + ϕ, where g ∈ AA(R,X) and ϕ ∈ ε(R,X, µ).
If PAA(R,X, µ) is translation invariant, then {g(t) : t ∈ R} ⊂
{f(t) : t ∈ R}, (the closure of the range of f).

Lemma 2.7. [5, Theorem 2.14] Let µ ∈ M and I be the bounded
interval (eventually I = ∅). Assume that f ∈ BC(R,X). Then the
following assertions are equivalent.
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(i) f ∈ ε(R,X, µ).
(ii) lim r → +∞ 1

µ([−r,r]\I)
∫
[−r,r]\I ∥f(t)∥ dµ(t) = 0.

(iii) For any ε > 0, lim r → +∞µ({t∈[−r,r]\I:∥f(t)∥>ε})
µ([−r,r]\I) = 0.

Lemma 2.8. [5, Theorem 4.7] Let µ ∈ M. Assume that PAA(R,X, µ)
is translation invariant. Then the decomposition of a µ-pseudo almost
automorphic function in the form f = g + ϕ where g ∈ AA(R,X) and
ϕ ∈ ε(R,X, µ) is unique.

Lemma 2.9. [5, Theorem 4.9] Let µ ∈ M. Assume that PAA(R,X, µ)
is translation invariant. Then (PAA(R,X, µ), ∥ · ∥∞) is a Banach
space.

We recall that the Laplace transform of a function f ∈ L1
loc(R+,X)

is given by

L(f)(λ) := f̂(λ) :=

∫ ∞

0

e−λtf(t) dt, Reλ > ω,

where the integral is absolutely convergent for Reλ > ω. In order to
establish an operator theoretical approach to equation (1), we recall
the following definition.

Definition 2.10. [22] Let A be a closed linear operator with domain
D(A) ⊆ X. We say that A is the generator of an integral resolvent if
there exist ω ≥ 0 and a strongly continuous function S : R+ → B(X)
such that {1/â(λ) : Reλ > ω} ⊆ ρ(A) and(

1

â(λ)
I −A

)−1

x =

∫ ∞

0

e−λtS(t)x dt, Reλ > ω, x ∈ X.

In this case, S(t) is called the integral resolvent family generated by A.

Now, we establish several relations between the integral resolvent
family and its generator. The following result is a direct consequence
of [20, Proposition 3.1, Lemma 2.2].

Lemma 2.11. Let S(t) be the integral resolvent family on X with
generator A. Then the following properties hold :
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(b-1) S(t)D(A) ⊆ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and
t ≥ 0.

(b-2) Let x ∈ D(A) and t ≥ 0. Then

S(t)x = a(t)x+

∫ t

0

a(t− s)AS(s)x ds.

(b-3) Let x ∈ X and t ≥ 0. Then
∫ t

0
a(t− s)AS(s)x ds ∈ D(A) and

S(t)x = a(t)x+A

∫ t

0

a(t− s)S(s)x ds.

In particular, S(0) = a(0)I.

For more on integral resolvent families and related issues, we refer
the reader to [20, 21, 28, 29].

Now, we recall a useful compactness criterion.

Let h : R → R be a continuous function such that h(t) ≥ 1 for all
t ∈ R and h(t) → ∞ as |t| → ∞. We consider the space

Ch(X) =

{
u ∈ C(R,X) : lim

|t|→∞

u(t)

h(t)
= 0

}
.

Endowed with the norm ∥u∥h = supt∈R ∥u(t)∥/h(t), it is a Banach
space (see [17]).

Lemma 2.12. [17] A subset K ⊆ Ch(X) is a relatively compact set if
it verifies the following conditions:

(c-1) The set K(t) = {u(t) : u ∈ K} is relatively compact in X for
each t ∈ R.

(c-2) The set K is equicontinuous.
(c-3) For each ε > 0 there exists L > 0 such that ∥u(t)∥ ≤ εh(t) for

all u ∈ K and all |t| > L.

Lemma 2.13. [16] (Leray-Schauder alternative theorem). Let D
be a closed convex subset of a Banach space X such that 0 ∈ D.
Let F : D → D be a completely continuous map. Then the set
{x ∈ D : x = λF (x), 0 < λ < 1} is unbounded or the map F has
a fixed point in D.
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3. Main results. This section is mainly focused upon some exis-
tence results of µ-pseudo almost automorphic solutions to problem (1).

Theorem 3.1. Let µ ∈ M and f = g + h ∈ PAA(R × X,X, µ).
Assume that

(a1) f(t, x) is uniformly continuous on any bounded subset Q ⊂ X
uniformly in t ∈ R.

(a2) g(t, x) is uniformly continuous on any bounded subset Q ⊂ X
uniformly in t ∈ R.

Then the function is defined by F (·) := f(·, ϕ(·)) ∈ PAA(R,X, µ) if
ϕ ∈ PAA(R,X, µ).

Proof. The main proof of this theorem is conducted similarly as
that of [9, Theorem 3.1]. For completeness and readability, we give
the detailed proof here. Let f = g + h with g ∈ AA(R × X,X),
h ∈ ε(R × X,X, µ), and ϕ = u + v, with u ∈ AA(R,X), and
v ∈ ε(R,X, µ).

Now we define

F (t) = g(t, u(t)) + f(t, ϕ(t))− g(t, u(t))

= g(t, u(t)) + f(t, ϕ(t))− f(t, u(t)) + h(t, u(t)).

Let us rewrite

G(t) = g(t, u(t)), Φ(t) = f(t, ϕ(t))− f(t, u(t)), H(t) = h(t, u(t)).

Thus, we have F (t) = G(t) + Φ(t) + H(t). In view of [19, Lemma
2.2], G(t) ∈ AA(R,X). Next we prove that Φ(t) ∈ ε(R,X, µ). Clearly,
Φ(t) ∈ BC(R,X). For Φ to be in ε(R,X, µ), it is enough to show that

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

∥Φ(t)∥ dµ(t) = 0.

By Lemma 2.6, u(R) ⊂ ϕ(R) is a bounded set. From assumption

(a1) with Q = ϕ(R), we conclude that, for each ε > 0, there exists a
constant δ > 0 such that for all t ∈ R,

∥ϕ− u∥ ≤ δ =⇒ ∥f(t, ϕ(t))− f(t, u(t))∥ ≤ ε.
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Denote by the following set Ar,ε = {t ∈ [−r, r] : ∥f(t)∥ > ε}. Thus, we
obtain

Ar,ε(Φ) = Ar,ε(f(t, ϕ(t))− f(t, u(t))) ⊂ Ar,δ(ϕ(t)− u(t))

= Ar,δ(v).

Therefore, the following inequality holds

µ{t ∈ [−r, r] : ∥f(t, ϕ(t))− f(t, u(t))∥ > ε}
µ([−r, r])

≤ µ{t ∈ [−r, r] : ∥ϕ(t)− u(t)∥ > δ}
µ([−r, r])

.

Since ϕ(t) = u(t)+ v(t) and v ∈ ε(R,X, µ), Lemma 2.7 yields that, for
the above-mentioned δ, we have

lim
r→∞

µ{t ∈ [−r, r] : ∥ϕ(t)− u(t)∥ > δ}
µ([−r, r])

= 0,

and then we obtain

(2) lim
r→∞

µ{t ∈ [−r, r] : ∥f(t, ϕ(t))− f(t, u(t))∥ > ε}
µ([−r, r])

= 0.

From Lemma 2.7 and the relation (2), we draw a conclusion that
Φ(t) ∈ ε(R,X, µ).

Finally, we have only to show that H(t) = h(t, u(t)) ∈ ε(R,X, µ).
We have the set u([−r, r]) is compact since u is continuous on R as
almost automorphic functions. So, the function g belongs to AA(R ×
X,X), and g is uniformly continuous on [−r, r] × u([−r, r]). Then it
follows from (a1) that h(t, x) is uniformly continuous with x ∈ u([−r, r])
uniformly in t ∈ [−r, r]. Thus, for any ε > 0, there exists a constant
δ > 0 such that, for x1, x2 ∈ u([−r, r]) with ∥x1 − x2∥ < δ, we have

(3) ∥h(t, x1)− h(t, x2)∥ <
ε

2
, for all t ∈ [−r, r].

On the other hand, since the set u([−r, r]) is compact, there exist finite
balls Ok with βk ∈ u([−r, r]), k = 1, . . . ,m, and radius δ given above,
such that u([−r, r]) ⊂

∪m
k=1 Ok. Then the sets Uk := {t ∈ [−r, r] :

u(t) ∈ Ok}, k = 1, . . . ,m are open in [−r, r] and [−r, r] =
∪m

k=1 Uk.
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Define Vk by

V1 = U1, Vk = Uk − ∪k−1
i=1 Ui, 2 ≤ k ≤ m.

Then it is obvious that Vi ∩ Vj = ∅, if i ̸= j, 1 ≤ i, j ≤ m. So we get

Λ : = {t ∈ [−r, r] : ∥H(t)∥ ≥ ε}
= {t ∈ [−r, r] : ∥h(t, u(t))∥ ≥ ε}

⊂
m∪

k=1

{t ∈ Vk : ∥h(t, u(t))− h(t, βk)∥+ ∥h(t, βk)∥ ≥ ε}

⊂
m∪

k=1

({
t ∈ Vk : ∥h(t, u(t))− h(t, βk)∥ ≥ ε

2

}
∪{

t ∈ Vk : ∥h(t, βk)∥ ≥ ε

2

})
.

It follows from relation (3) that{
t ∈ Vk : ∥h(t, u(t))− h(t, βk)∥ ≥ ε

2

}
= ∅, k = 1, . . . ,m.

Thus, if we set Ar,(ε/2)(hk) := Ar,(ε/2)(h(t, βk)), then Ar,ε(H) ⊂∪m
k=1 Ar,(ε/2)(hk) and

1

µ([−r, r])

∫
[−r,r]

∥H(t)∥ dµ(t) ≤
m∑

k=1

1

µ([−r, r])

∫
[−r,r]

∥hk(t)∥ dµ(t).

And, since h ∈ ε(R×X,X, µ), we have

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

∥hk(t)∥ dµ(t) = 0, k = 1, . . . ,m.

It follows that limr→∞ 1/µ([−r, r])
∫
[−r,r]

∥H(t)∥ dµ(t) = 0. According

to Lemma 2.7, we deduce that H(t) = h(t, u(t)) ∈ ε(R,X, µ). This
completes the proof. �

From the above theorem, we have the following result.

Corollary 3.2. Let µ ∈ M. Suppose that f = g+h ∈ PAA((R,X, µ))
with g ∈ AA(R,X), h ∈ ε(R,X, µ), and both f and g are Lipschitizian
with x ∈ X uniformly in t ∈ R. Then the function defined by
F (·) := f(·, ϕ(·)) ∈ PAA((R,X, µ)) if ϕ ∈ PAA((R,X, µ)).
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Definition 3.3. [17] Let A be the generator of a resolvent family
{S(t)}t≥0. A continuous function x : R → X satisfying the integral
equation

x(t) =

∫ t

−∞
S(t− s)f(s) ds, for all t ∈ R,

is called a mild solution on R to equation (1).

First, we list the following basic assumptions:

(H1) For strongly continuous functions, S : [0,∞) → B(X), there
exists ϕ ∈ L1(R+) such that ∥S(t)∥ ≤ ϕ(t) for all t ∈ R+.

(H2) f ∈ PAA(R×X,X, µ) and there exists a positive number Lf

such that
∥f(t, x)− f(t, y)∥ ≤ Lf∥x− y∥

for all t ∈ R and each x, y ∈ X.

(H3) f ∈ PAA(R×X,X, µ), and there exists a nonnegative function
Lf ∈ L1(R) such that

∥f(t, x)− f(t, y)∥ ≤ Lf (t)∥x− y∥

for all t ∈ R and each x, y ∈ X.

Lemma 3.4. Let µ ∈ M. Let {S(t)}t≥0 ⊂ B(X) be a strongly
continuous family of bounded linear operators that satisfies assumption
(H1). If f : R → X is a µ-pseudo almost automorphic function, and
F (t) is given by

F (t) =

∫ t

−∞
S(t− s)f(s) ds, t ∈ R,

then F ∈ PAA(R,X, µ).

Proof. Since f ∈ PAA(R,X, µ), we have by definition that f =
g + h, where g ∈ AA(R,X) and h ∈ ε(R,X, µ). Then

F (t) =

∫ t

−∞
S(t− s)g(s) ds+

∫ t

−∞
S(t− s)h(s) ds = G(t) +H(t),

whereG(t) =
∫ t

−∞ S(t−s)g(s) ds andH(t) =
∫ t

−∞ S(t−s)h(s) ds. From

the proof of Cuevas [10, Lemma 3.1], it follows that t → G(t) is almost
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automorphic. To complete the proof, we show that H(t) ∈ ε(R,X, µ).
For r > 0, we have

1

µ([−r, r])

∫
[−r,r]

∥H(t)∥ dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

∫ t

−∞
∥S(t− s)∥∥h(s)∥ ds dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

∫ ∞

0

∥S(s)∥∥h(t− s)∥ ds dµ(t)

≤
∫ ∞

0

ϕ(s)

(
1

µ([−r, r])

∫
[−r,r]

∥h(t− s)∥ dµ(t)
)
ds.

Now, using the fact that the space ε(R,X, µ) is translation invariant,
it follows that t → h(t − s) belongs to ε(R,X, µ) for each s ∈
R. Moreover, since ϕ(s) is integrable in [0,∞), using the Lebesgue
dominated convergence theorem, it follows that

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

∥H(t)∥dµ(t) = 0.

The proof is now complete. �

Theorem 3.5. Let µ ∈ M. Assume that A generates an integral re-
solvent family {S(t)}t≥0 and that (H1)–(H2) hold. If Lf ≤ ∥ϕ∥−1

L1(R+),

then equation (1) has a unique µ-pseudo almost automorphic mild so-
lution.

Proof. We define the nonlinear operator Λ : PAA(R,X, µ) →
PAA(R,X, µ) by

(Λx)(t) :=

∫ t

−∞
S(t− s)f(s, x(s)) ds, t ∈ R.

Given x ∈ PAA(R,X, µ), it follows from Theorem 3.1 that the function
s → f(s, x(s)) is in PAA(R,X, µ). Now, by Lemma 3.4, we have that
Λx ∈ PAA(R,X, µ). Hence, Λ is well defined. Now it suffices to show
that the operator Λ has a unique fixed point in PAA(R,X, µ). For
this, let x and y be in PAA(R,X, µ). We have

∥Λx− Λy∥∞ = sup
t∈R

∥∥∥∥ ∫ t

−∞
S(t− s)[f(s, x(s))− f(s, y(s))] ds

∥∥∥∥
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≤ Lf sup
t∈R

∫ ∞

0

∥S(s)∥∥x(t− s)− y(t− s)∥ ds

≤ Lf∥x− y∥∞
∫ ∞

0

ϕ(s) ds

= Lf∥ϕ∥L1(R+)∥x− y∥∞.

This implies that Λ is a contraction, so by the Banach contraction
principle, we draw a conclusion that there exists a unique fixed point
x(·) for Λ in PAA(R,X, µ) such that Λx = x. It is clear that x is a
µ-pseudo almost automorphic mild solution of equation (1). The proof
is complete. �

An immediate consequence of Theorem 3.5 and [17, Corollary 3.5]
is the following result for the scalar equation.

Corollary 3.6. Let µ ∈ M, and let ρ > 0 be a real number. Suppose
a ∈ L1(R+) is a positive, nonincreasing and log-convex function. If
f : R×R → R is a µ-pseudo almost automorphic function and satisfies
the Lipschitz condition

|f(t, x)− f(t, y)| ≤ L|x− y|, for all t, x, y ∈ R.

Then there is Sρ ∈ L1(R+) ∩ C(R+) satisfying the linear equation

Sρ(t) = a(t)− ρ

∫ t

0

a(t− s)Sρ(s) ds.

Moreover, if L < ∥Sρ∥−1
L1(R+), then the semilinear equation

x(t) =

∫ t

−∞
a(t− s)[−ρx(s) + f(s, x(s))] ds, t ∈ R,

has a unique µ-pseudo almost automorphic mild solution.

A differential Lipschitz condition is considered in the following result.
Recall that an integral resolvent family {S(t)}t≥0 ⊂ B(X) is said to
be uniformly bounded if there exists a constant M > 0 such that
∥S(t)∥ ≤ M for all t ≥ 0.

Theorem 3.7. Let µ ∈ M. Assume that A generates a uniformly
bounded integral resolvent family {S(t)}t≥0 and that (H1) and (H3)
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hold. Then equation (1) has a unique µ-pseudo almost automorphic
mild solution.

Proof. Consider the nonlinear operator Λ given by

(Λx)(t) :=

∫ t

−∞
S(t− s)f(s, x(s)) ds, t ∈ R.

Let x ∈ PAA(R,X, µ), and by Corollary 3.2, it follows that the func-
tion s → f(s, x(s)) is in PAA(R,X, µ). Moreover, from Lemma 3.4,
we infer that Λx ∈ PAA(R,X, µ), that is, Λ maps PAA(R,X, µ) into
itself.

Next, we prove that the operator Λ has a unique fixed point in
PAA(R,X, µ). Indeed, for each t ∈ R, x, y ∈ PAA(R,X, µ), we have

∥(Λx)(t)− (Λy)(t)∥ ≤
∫ t

−∞
∥S(t− s)[f(s, x(s))− f(s, y(s))]∥ ds

≤ M

∫ t

−∞
Lf (s)∥x(s)− y(s)∥ ds

≤ M∥x− y∥∞
∫ t

−∞
Lf (s) ds,

and

∥(Λ2x)(t)− (Λ2y)(t)∥ ≤ M

∫ t

−∞
Lf (s)∥(Λx)(s)− (Λy)(s)∥ ds

≤ M2∥x− y∥∞
∫ t

−∞
Lf (s)

∫ s

−∞
Lf (σ) dσ ds

≤ M2

2
∥x− y∥∞

(∫ t

−∞
Lf (s) ds

)2

.

Inducting on n in the same way, we get

∥(Λnx)(t)− (Λny)(t)∥ ≤ Mn

(n− 1)!
∥x− y∥∞

×
[ ∫ t

−∞
Lf (s)

(∫ s

−∞
Lf (σ) dσ

)n−1

ds

]
≤ Mn

n!
∥x− y∥∞

(∫ t

−∞
Lf (s) ds

)n

.
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Therefore,

∥Λnx− Λny∥∞ ≤
(M∥Lf∥L1(R))

n

n!
∥x− y∥∞.

Since (M∥Lf∥L1(R))
n/n! < 1 for n sufficiently large, by the contraction

mapping theorem, we conclude that Λ has a unique fixed point x ∈
PAA(R,X, µ). It is clear that the fixed point is the µ-pseudo almost
automorphic mild solution of equation (1). This ends the proof. �

We next study the existence of µ-pseudo almost automorphic mild
solutions of equation (1) when the perturbation f is not Lipschitz
continuous. For that, we require the following assumptions:

(H4) f ∈ PAA(R×X,X, µ), and f(t, x) is uniformly continuous in
any bounded subset K ⊂ X uniformly for t ∈ R.

(H5) There exists a continuous nondecreasing functionWf : [0,∞) →
(0,∞) such that

∥f(t, x)∥ ≤ Wf (∥x∥) for all t ∈ R and x ∈ X.

Remark 3.8. Condition (H4) is applied in [1] to consider weighted
pseudo-almost periodic solutions to a semilinear fractional differential
equation, see [1, Remark 3.4].

Now, we are ready to state another main result.

Theorem 3.9. Let µ ∈ M. Assume that A generates an integral
resolvent family {S(t)}t≥0 that satisfies assumption (H1), let f : R ×
X → X be a function that satisfies assumptions (H4) and (H5), and
the following additional conditions:

(i) For each r ≥ 0, the function t →
∫ t

−∞ ϕ(t − s)W (rh(s)) ds

belongs to BC(R). We set

β(r) =

∥∥∥∥ ∫ t

−∞
ϕ(t− s)W (rh(s)) ds

∥∥∥∥
h

.
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(ii) For each ε > 0, there is a δ > 0 such that, for every u,
v ∈ Ch(X), ∥u− v∥h ≤ δ implies that∫ t

−∞
ϕ(t− s)∥f(s, u(s))− f(s, v(s))∥ ds ≤ ε

for all t ∈ R.
(iii) lim infξ→∞(ξ/β(ξ)) > 1.
(iv) For all a, b ∈ R, a < b, and r > 0, the set {f(s, x) : a ≤ s ≤

b, x ∈ Ch(X), ∥x∥h ≤ r} is relatively compact in X.

Then equation (1) has a µ-pseudo almost automorphic mild solution.

Proof. We define the nonlinear operator Λ : Ch(X) → Ch(X) by

(Λx)(t) :=

∫ t

−∞
S(t− s)f(s, x(s)) ds, t ∈ R.

We will show that Λ has a fixed point in PAA(R,X, µ). For the sake
of convenience, we divide the proof into several steps.

(I) For x ∈ Ch(X), we have that

∥(Λx)(t)∥ ≤
∫ t

−∞
ϕ(t− s)Wf (∥x(s)∥) ds

≤
∫ t

−∞
ϕ(t− s)Wf (∥x∥hh(s)) ds.

It follows from condition (i) that Λ is well defined.
(II) The operator Λ is continuous. In fact, for ε > 0, we take δ > 0

involved in condition (ii). If x, y ∈ Ch(X) and ∥x − y∥h ≤ δ,
then

∥(Λx)(t)− (Λy)(t)∥

≤
∫ t

−∞
ϕ(t− s)∥f(s, x(s))− f(s, y(s))∥ ds ≤ ε,

which shows the assertion.
(III) We will show that Λ is completely continuous. We set Br(X)

for the closed ball with center at 0 and radius r in the space
X. Let V = Λ(Br(Ch(X))) and v = Λ(x) for x ∈ Br(Ch(X)).
First, we will prove that V (t) is a relative subset of X for
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each t ∈ R. It follows from condition (i) that the function
s → ϕ(s)Wf (rh(t−s)) is integrable on [0,∞). Hence, for ε > 0,
we can choose a ≥ 0 such that

∫∞
a

ϕ(s)Wf (rh(t − s)) ds ≤ ε.
Since

v(t) =

∫ a

0

S(s)f(t− s, x(t− s)) ds

+

∫ ∞

a

S(s)f(t− s, x(t− s)) ds

and

∥∥∥∥ ∫ ∞

a

S(s)f(t− s, x(t− s)) ds

∥∥∥∥
≤

∫ ∞

a

ϕ(s)Wf (rh(t− s)) ds ≤ ε,

we get v(t) ∈ ac0(K)+Bε(X), where c0(K) denotes the convex
hull of K and K = {S(s)f(ξ, x) : 0 ≤ s ≤ a, t − a ≤ ξ ≤ t,
∥x∥h ≤ r}. Just as the proofs in [17, Theorem 4.9(iii)],
using the strong continuous argument of S(·) and property
(iv) of f , we infer that K is a relatively compact set, and

V (t) ⊆ ac0(K) +Bε(X), which establishes our assertion.
Second, we show that the set V is equicontinuous. In fact,

we can decompose

v(t+ s)− v(s)

=

∫ s

0

S(σ)f(t+ s− σ, x(t+ s− σ)) dσ

+

∫ a

0

[S(σ + s)− S(σ)]f(t− σ, x(t− σ)) dσ

+

∫ ∞

a

[S(σ + s)− S(σ)]f(t− σ, x(t− σ)) dσ.
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For each ε > 0, we can choose a > 0 and δ1 > 0 such that∥∥∥∥ ∫ s

0

S(σ)f(t+ s− σ, x(t+ s− σ)) dσ

+

∫ ∞

a

[S(σ + s)− S(σ)]f(t− σ, x(t− σ)) dσ

∥∥∥∥
≤

∫ s

0

ϕ(σ)Wf (rh(t+ s− σ)) dσ

+

∫ ∞

a

[ϕ(σ + s) + ϕ(σ)])Wf (rh(t− σ)) dσ

≤ ε

2

for s ≤ δ1. Moreover, since {f(t − σ, x(t − σ)) : 0 ≤ σ ≤ a,
x ∈ Br(Ch(X))} is a relatively compact set and S(·) is strongly
continuous, we can choose δ2 > 0 such that ∥[S(σ + s) −
S(σ)]f(t − σ, x(t − σ))∥ ≤ ε/2a for s ≤ δ2. Combining these
estimates, we get ∥v(t+ s)− v(t)∥ ≤ ε for s small enough and
independent of x ∈ Br(Ch(X)).

Finally, applying condition (i), it is easy to see that

∥v(t)∥
h(t)

≤ 1

h(t)

∫ t

−∞
ϕ(t− s)Wf (rh(s)) ds −→ 0,

|t| → ∞,

and this convergence is independent of x ∈ Br(Ch(X)). Hence,
by Lemma 2.12, V is a relatively compact set in Ch(X).

(IV) Let us now assume that xλ(·) is a solution of equation xλ =
λΛ(xλ) for some 0 < λ < 1. We can estimate

∥xλ(t)∥ = λ

∥∥∥∥ ∫ t

−∞
S(t− s)f(s, xλ(s))

∥∥∥∥
≤

∫ t

−∞
ϕ(t− s)Wf (∥xλ∥hh(s)) ds

≤ β(∥xλ∥h)h(t).

Hence, we get
∥xλ∥h

β(∥xλ∥h)
≤ 1,
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and combined with condition (iii), we conclude that the set
{xλ : xλ = λΛ(xλ), λ ∈ (0, 1)} is bounded.

(V) It follows from assumption (H4) and Theorem 3.1 that the
function t → f(t, x(t)) belongs to PAA(R,X, µ), whenever
x ∈ PAA(R,X, µ). Moreover, from Lemma 3.4 we in-
fer that Λ(PAA(R,X, µ)) ⊂ PAA(R,X, µ) and noting that
PAA(R,X, µ) is a closed subspace of Ch(X), consequently, we
can consider Λ : PAA(R,X, µ) → PAA(R,X, µ). Using prop-
erties (I)–(III), we deduce that this map is completely contin-
uous. Applying Lemma 2.13 we can infer that Λ has a fixed
point x ∈ PAA(R,X, µ), which finishes the proof. �

Corollary 3.10. Let µ ∈ M. Assume that A generates an integral
resolvent family {S(t)}t≥0 that satisfies assumption (H1). Let f :
R×X → X be a function that satisfies assumption (H4) and the Hölder
type condition

∥f(t, x)− f(t, y)∥ ≤ C∥x− y∥α, 0 < α < 1,

for all t ∈ R and x, y ∈ X, where C > 0 is a constant. Moreover,
assume the following conditions:

(a) f(t, 0) = q.

(b) supt∈R

∫ t

−∞ ϕ(t− s)h(s)α ds = C2 < ∞.

(c) For all a, b ∈ R, a < b, and r > 0, the set {f(s, x) : a ≤ s ≤
b, x ∈ X, ∥x∥h ≤ r} is relatively compact in X.

Then equation (1) has a µ-pseudo almost automorphic mild solution.

Proof. Let C0 = ∥q∥, C1 = C. We take Wf (ξ) = C0 + C1ξ
α.

Then condition (H4) is satisfied. It follows from (b), we can see that
function f satisfies (i) in Theorem 3.7. To verify (ii), note that for each
ε > 0 there is 0 < δα < ε/(C1C2) such that for every u, v ∈ Ch(X),

∥u − v∥h ≤ δ implies that
∫ t

−∞ ϕ(t − s)∥f(s, u(s)) − f(s, v(s))∥ ds ≤ ε

for all t ∈ R. On the other hand, the hypothesis (iii) in the statement
of Theorem 3.7 can be easily verified using the definition of Wf . This
completes the proof. �
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of nonautonomous evolution equations, Nonlin. Anal. 70 (2009), 4158–4164.

15. H.S. Ding, T.J. Xiao and J. Linag, Existence of positive almost automorphic
solutions to nonlinear delay integral equations, Nonlin. Anal. 70 (2009), 2216–2231.

16. A. Granas and J. Dugundji, Fixed point theory, Springer-Verlag, New York,
2003.
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