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ON THE PROBLEMS OF PERIDYNAMICS WITH
SPECIAL CONVOLUTION KERNELS

S.A. ALIMOV, YANZHAO CAO AND O.A. ILHAN

ABSTRACT. The well-posedness and regularity of a peri-
dynamic model with a special kernel is studied. The
differential-integral equation describing the model is first
converted to an operator valued Volterra integral equation.
Then the existence and regularity of the solution of the peri-
dynamics problem are established through the study of the
Volterra integral equation. The regularity results improve
the previous known results for more general peridynamics
models.

1. Introduction. In the classical theory of solid mechanics, the be-
havior of solids is described by partial differential equations (PDES)
through Newton’s second law of motion. However, when spontaneous
cracks and fractures exist, such PDE models are inadequate to charac-
terize the discontinuities of physical quantities such as the displacement
field. Recently, a peridynamic continuum model was proposed which
only involves the integration over the differences of the displacement
field [3, 7, 10, 11]. A linearized peridynamic model can be described
by the following integro-differential equation with initial values.

∂2u(x, t)

∂t2
+

∫
Ω

K(x, y)[u(x, t)− u(y, t)] dy = f(x, t), x ∈ Ω, t > 0,

(1.1)

u(x, 0) = ϕ(x), x ∈ Ω,

ut(x, 0) = ψ(x), x ∈ Ω,
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where Ω ⊂ Rn. Here u : Ω × [0, T ] → Rn is the unknown function,
the n × n matrix-function K defined on Ω × Ω is the kernel, and
f : Ω× [0, T ] → Rn is the external force. We consider all the integrals
in terms of tempered distributions (see [8]).

A typical kernel for peridynamic models is given by the following
function (see [11]).

(1.2) K(x, y) =
(x− y)⊗ (x− y)

λ(|x− y|)
,

where ⊗ denotes the dyadic product and λ is a real valued function.
This problem has been studied by several authors. In particular, when
Ω is bounded, it is shown in [5, 6] that if

(1.3)

∫ 1

0

rn−1

λ(r)
dr <∞,

then a unique solution u ∈ C1([0, T ], L2(Ω)d) of (1.1) exists. When
Ω = Rn, Du and Zhou [14] show that a unique solution of (1.1) also
exists in a certain function space when

(1.4)

∫ 1

0

rn+3

λ(r)
dr <∞,

which is a weaker condition than (1.3).

In this paper, we study the regularities of the solution of (1.1) with
kernel K given by

(1.5) K(x, y) =
(x− y)⊗ (x− y)

|x− y|α+2
, x, y ∈ Rn, n > 1.

Equation (1.5) is an important special case of a class of linearized
peridynamic models (see [4, page 50]). To study such a special case,
we first rewrite K defined above as a differential operator applied to
an integral operator with kernel |x− y|2−α. Then we convert (1.1) into
an operator valued Volterra integral equation of the second kind with a
differential-integral operator kernel. Using pseudo-differential operator
theory, we demonstrate the well-posedness and regularity of (1.1) for
0 < α ≤ n through well-posedness of the Volterra integral equation.
For 0 < α < n, our result improves the regularity result of [5]; for
α = n, our result improves a result of Du and Zhou [14].
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The paper is organized as follows. In the next section, we convert
(1.1) into an operator valued Volterra integral equation of the second
kind and study the existence and regularity of its solution for 0 < α <
n. In the last section, we consider the α = n case.

2. Solution regularity for α < n.

2.1. Conversion to operator valued Volterra integral equa-
tions. Let operator A and matrix Λ be defined as

(2.1) Av(x) =

∫
Ω

K(x, y)v(y) dy, x ∈ Ω,

and

(2.2) Λ(x) =

∫
Ω

K(x, y) dy, x ∈ Ω,

where K is given by (1.5). Then we may rewrite (1.1) as

(2.3)
∂2u(x, t)

∂t2
− [A− Λ(x)]u(x, t) = f(x, t), x ∈ Ω.

Integrating (2.3) twice with respect to t, we obtain the Volterra type
operator valued integral equation

(2.4) u(x, t)− [A−Λ(x)]

∫ t

0

(t−s)u(x, s) ds = F (x, t), x ∈ Ω, t > 0.

where

F (x, t) = ϕ(x) + tψ(x) +

∫ t

0

(t− s)f(x, s) ds,(2.5)

x ∈ Ω, t > 0.

We refer the readers to [1, 2] for studies of operator valued integral
equations.
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2.2. Solution regularity for 0 < α < n. Assume that the kernel
function K is given by (1.5). Set

∇⊗∇ =



∂2

∂x21

∂2

∂x1∂x2
· · · ∂2

∂x1∂xn
∂2

∂x2∂x1

∂2

∂x22
· · · ∂2

∂x2∂xn
· · · · · · · · · · · ·
∂2

∂xn∂x1

∂2

∂xn∂x2
· · · ∂2

∂x2n


and

∇2 = ∆I =


∆ 0 · · · 0
0 ∆ · · · 0
· · · · · · · · · · · ·
0 0 · · · ∆


where ∆ is the Laplace operator and I is the identity matrix.

Proposition 2.1. For α ̸= 2 and α < n, the following holds:

(2.6)

[
∇⊗∇− 1

n− α
∇2

]
1

|x− y|α−2
= α(α− 2)

(x− y)⊗ (x− y)

|x− y|α+2
.

Proof. Notice that

∂

∂xk

1

|x− y|α−2
= −(α− 2)

xk − yk
|x− y|α

,

and, for j ̸= k,

∂2

∂xj∂xk

1

|x− y|α−2
= α(α− 2)

(xk − yk)(xj − yj)

|x− y|α+2
.

Also notice that

∂2

∂x2k

1

|x− y|α−2
= α(α− 2)

(xk − yk)
2

|x− y|α+2
− (α− 2)

1

|x− y|α
.

Hence,

(∇⊗∇)
1

|x− y|α−2
= α(α− 2)

(x− y)⊗ (x− y)

|x− y|α+2
− α− 2

|x− y|α
I.
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Let r = |x|. Then

∆
1

|x− y|α−2
=

1

rn−1

∂

∂r

(
rn−1 ∂r

2−α

∂r

)
=

2− α

rn−1

∂rn−α

∂r

= − (n− α)(α− 2)

|x− y|α
.

Thus,

1

n− α
∆

1

|x− y|α−2
= − α− 2

|x− y|α
,

1

n− α
∇2 1

|x− y|α−2
= − α− 2

|x− y|α
I,

and (2.6) follows. �

Set

Lα(∇) =
1

α(α− 2)

[
(∇⊗∇)− 1

n− α
∇2

]
.

In the rest of this section we assume that Ω is a bounded domain with
piecewise smooth boundary. In view of Proposition 2.1, we may rewrite
the operator A defined by (2.1) as

Au(x) = Lα(∇)

∫
Ω

u(y)

|x− y|α−2
dy x ∈ Ω.

For any p > 1 and β > 0 we define the Sobolev space Lβ
p (R

n) as the
Banach space of the functions f ∈ Lp(R

n) with the finite norm defined
by (see [9, page 154])

∥f∥Lβ
p
= ∥F−1[(1 + |ξ|2)β/2 · Ff(ξ)]∥Lp(Rn).

Here

Ff(ξ) = f̂(ξ) =

∫
Rn

f(x) e−ix·ξ dx

is the Fourier transform in terms of distributions.

Remark 2.2. For the integer β > 0, the space Lβ
p (R

n) coincides with

the usual Sobolev space W β
p (R

n).
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Theorem 2.3. Let 0 < α < n, α ̸= 2 and 1 < p < ∞. Then A is a
bounded operator from Lp(Ω) to Sobolev space Ln−α

p (Rn).

Proof. For an arbitrary R > 0, we introduce χ ∈ C∞(R) such that
0 ≤ χ(r) ≤ 1 for r ∈ R and

(2.7) χ(r) =

{
1 0 ≤ |r| ≤ R,

0 |r| ≥ 2R.

Set

gα(x) =
χ(|x|)
|x|α−2

, x ∈ Rn,

and consider the linear operator Gα defined as

Gαu(x) =

∫
Rn

gα(x− y)u(y) dy

=

∫
Rn

u(y)

|x− y|α−2
χ(|x− y|) dy, x ∈ Ω,

for u ∈ Lp(R
n) such that u(x) = 0 for x /∈ Ω. It is clear that for

R > diam (Ω)
A = Lα(∇)Gα.

Note that the Fourier transform ĝα of gα is a C∞(Rn) function. To
study the behavior of ĝα = ĝα(ξ) as |ξ| → ∞, we write

ĝα(ξ) =

∫
Rn

e−ix·ξ

|x|α−2
dx−

∫
Rn

e−ix·ξ

|x|α−2
[1− χ(|x|)] dx

=
cn,α

|ξ|n+2−α
−

∫
|x|≥R

e−ix·ξ

|x|α−2
[1− χ(|x|)] dx.

Note that

e−ix·ξ = − 1

|ξ|2
∆xe

−ix·ξ.

Hence, using Green’s formula, we have that

ĝα(ξ) =
cn,α

|ξ|n+2−α
− (−1)

|ξ|2

∫
|x|≥R

e−ix·ξ∆x
1− χ(|x|)
|x|α−2

dx.
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Repeating this process m times we obtain

ĝα(ξ) =
cn,α

|ξ|n+2−α
− (−1)m

|ξ|2m

∫
|x|≥R

e−ix·ξ∆m
x

1− χ(|x|)
|x|α−2

dx.

Note that, for |x| > 2R, all derivatives of χ = χ(x) vanish. Thus,

ĝα(ξ) =
cn,α

|ξ|n+2−α
− (−1)m

|ξ|2m

∫
R≤|x|≤2R

e−ix·ξ∆m
x

1− χ(|x|)
|x|α−2

dx

− bm,α

|ξ|2m

∫
|x|≥2R

e−ix·ξ 1

|x|α−2+2m
dx.

Now it is clear that, for |ξ| ≥ 1 and for any multiindex µ with |µ| ≤ n,
we have

Dµ
ξ ĝα(ξ) =

O(1)

|ξ|n+2−α+|µ| .

Taking into account the fact that ĝα and all its derivatives are bounded
in Rn, we get

|Dµ
ξ ĝα(ξ)| ≤

C

(1 + |ξ|)n+2−α+|µ| , ξ ∈ Rn, |µ| ≤ n.

Set
mα(ξ) = ĝα(ξ) · (1 + |ξ|2)(n+2−α)/2.

It is easy to see that

|Dµ
ξmα(ξ)| ≤ const (1 + |ξ|)−|µ|.

Hence, mα is a multiplier from Lp(R
n) to Lp(R

n) for p > 1 (see [9]).
Therefore,

ĝα(ξ) =
mα(ξ)

(1 + |ξ|2)(n+2−α)/2

is a multiplier from Lp(R
n) to Sobolev space Ln+2−α

p (Rn). This means

that Gα is a continuous operator from Lp(Ω) to L
n+2−α
p (Rn).

Since Lα(∇) is a second order differential operator, we conclude that
A = Lα(∇)Gα is a continuous operator from Lp(Ω) to L

n−α
p (Rn). �

Corollary 2.4. Let 0 < α < n and α ̸= 2. Then for any p > 1, A is
bounded from Lp(Ω) to Lp(Ω).



308 ALIMOV, CAO AND ILHAN

Define operator B by

(2.8) Bu(x, t) =

∫ t

0

(t− s)[A− Λ(x)]u(x, s) ds, x ∈ Ω, t > 0,

and set
M = ∥(A− Λ)∥Lp(Ω)→Lp(Ω).

We say that u ∈ C[R+ → Lp(Ω)] if u(·, t) continuously depends on t for

t ≥ 0 in the Lp(Ω) norm and u ∈ C[R+ → Lβ
p (Ω)] if u(·, t) continuously

depends on t for t ≥ 0 in the Lβ
p (Ω) norm. For u ∈ C[R+ → Lp(Ω)],

define

(2.9) ∥u∥t = sup
0≤s≤t

∥u(x, s)∥Lp(Ω).

Proposition 2.5. Let u ∈ C[R+ → Lp(Ω)]. Then, for any m ≥ 1, the
following holds:

(2.10) ∥Bmu∥t ≤
Mmt2m

(2m− 1)!!
∥u∥t,

where (2m− 1)!! = Πm
k=1(2k − 1).

Proof. The proof follows from mathematical induction:

∥Bm+1u(x, t)∥ ≤M

∫ t

0

(t− s)∥Bmu(x, s)∥ ds

≤ Mt

∫ t

0

Mms2m

(2m− 1)!!
∥u∥s ds

≤Mt∥u∥t
Mmt2m+1

(2m+ 1)!!
=
Mm+1t2(m+1)

(2m+ 1)!!
∥u∥t. �

Now consider the equation

(2.11) (I −B)u = F.

Proposition 2.6. For any F ∈ C[R+ → Lp(Ω)], equation (2.11) has

a solution u ∈ C[R+ → Lp(Ω)]. Moreover,

(2.12) ∥u− F∥t ≤
(
eMt2 − 1

)
∥F∥t.
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Proof. It follows from Proposition 2.5 that the Neumann series

u(x, t) = F (x, t) +
∞∑
k=1

BkF (x, t)

converges in Lp(Ω) uniformly with respect to t for any compact set of
t. It is clear that u is the solution to (2.11):

(I −B)u =

(
F +

∞∑
k=1

BkF

)
−
(
BF +B

∞∑
k=1

BkF

)
= F.

The required estimate (2.12) follows from (2.10):

∥u− F∥t ≤
∞∑
k=1

∥BkF∥t ≤
∞∑
k=1

Mkt2k

(2k − 1)!!
∥F∥t

≤ ∥F∥t
∞∑
k=1

Mkt2k

k!
=

(
eMt2 − 1

)
∥F∥t. �

Proposition 2.7. The solution of (2.11) is unique.

Proof. Indeed, if (I −B)v = 0, then, according to (2.10),

v = Bv = B2v = · · · = Bmv −→ 0, m→ ∞,

and consequently v = 0. �

Now we are ready to prove the existence, uniqueness and regularity
of the solution to problem (1.1). We say that f ∈ Lβ

p (Ω) if there

exists a function f∗ ∈ Lβ
p (R

n) such that f(x) = f∗(x) for x ∈ Ω. The
corresponding norm is defined as

∥f∥Lβ
p (Ω) = inf

f∗
∥f∗∥Lβ

p (Rn).

Also, we say that u ∈ C2[R+ → Lp(Ω)] if u
′′
tt ∈ C[R+ → Lp(Ω)].

Theorem 2.8. Let p > 1, 0 < α < n, α ̸= 2 and 0 ≤ β ≤ n − α.
Assume that ϕ ∈ Lβ

p (Ω), ψ ∈ Lβ
p (Ω) and f ∈ C[R+ → Lβ

p (Ω)]. Then

problem (1.1) has a unique solution in C2[R+ → Lβ
p (Ω)].
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Proof. It follows from Propositions 2.6 and 2.7 that the solution u
of (2.3) exists, is unique and belongs to C[R+ → Lp(Ω)]. Directly

from this equation, one can see that u ∈ C2[R+ → Lp(Ω)] and u is the
unique solution to problem (1.1).

To prove that u ∈ C[R+ → Lβ
p (Ω)], we use the following representa-

tion of the solution of (1.1) (see Appendix A):

u(x, t) =

∫ t

0

1√
Λ(x)

sin(
√
Λ(x)(t− s))Au(x, s) ds(2.13)

+ F1(x, t)

where

F1(x, t) = cos
√
Λ(x)t ϕ(x) +

sin
√
Λ(x)t√

Λ(x)
ψ(x)(2.14)

+
1√
Λ(x)

∫ t

0

sin
(√

Λ(x)(t− s)
)
f(x, s) ds.

According to Theorem 2.3, Λ ∈ Ln−α
p (Ω). Furthermore, if u ∈

C[R+ → Lp(Ω)], then, according to the same theorem, Au ∈ C[R+ →
Ln−α
p (Ω)]. Therefore, if F1 ∈ C[R+ → Lβ

p (Ω)] for β ≤ n − α, then

it follows from (2.13) that u ∈ C[R+ → Lβ
p (Ω)]. Using again the

representation (2.13), we conclude that u ∈ C2[R+ → Lβ
p (Ω)]. �

Remark 2.9. The representation (2.13) can also be used to study other
properties of the solution to (1.1), such as smoothness and oscillatory
behaviors.

3. Existence and regularity for α = n. In this section, we
assume that n ≥ 3. The case when α = n is an important one
since it represents a more suitable nonlocal continuum model for the
corresponding material under consideration (see [14, page 1761]).
However, this case is much more complicated since it is difficult to
find a Hilbert space H such that operator A : H → H is bounded. To
overcome this difficulty, we shall modify the operator A and introduce a
sequence of Hilbert spaces in which A is a bounded operator. We start
with the following proposition which can be proved through simple
computations.
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Proposition 3.1. For n ≥ 3 and x ̸= y, the following holds:

(3.1)

(∇⊗∇)
1

|x− y|n−2
−∇2 ln |x− y|

|x− y|n−2
= n(n− 2)

(x− y)⊗ (x− y)

|x− y|n+2
.

The following lemma is needed to prove Propositions 3.3 and 3.4.

Lemma 3.2. For ξ ∈ Rn, the following holds:∫
|x|=r

e−iξxds = (2π)n/2rn−1 Jn/2−1(r|ξ|)
(r|ξ|)n/2−1

,

where ds denotes the surface integral on {x; |x| = r} ⊂ Rn.

Proof. Let ψ(x) = e−iξx, x, ξ ∈ Rn. Notice that ψ satisfies the
following partial differential equation

∆ψ(x) + |ξ|2ψ(x) = 0, x ∈ Rn.

By (18.2.1) (with q = 0 and λn = |ξ|2) and (18.3.4) (with u=0) of [12]
we have that (after a change from area integral to angular integral)∫

|x|=r

e−ixξ ds = (2π)n/2rn−1ψ(0)
Jn/2−1(r|ξ|)
(r|ξ|)n/2−1

= (2π)n/2rn−1 Jn/2−1(r|ξ|)
(r|ξ|)n/2−1

.

�

The next proposition shows the difficulty of studying the integral
equation (2.11) in its current form.

Proposition 3.3. Operator A0 : L2(R
n) → L2(R

n) defined by

A0u(x) =

∫
Rn

u(y)

|x− y|n
dy

is not bounded in the domain D(A0) = S(Rn).
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Proof. 1) First, we consider the case n > 3. Define a kernel function
K∗ as

K∗(x) =
ln |x|
|x|n−2

, x ∈ Rn,

and assume that K̂∗ is its Fourier transform. By Lemma 3.2, we have
that

K̂∗(ξ) =

∫
Rn

K∗(x)e
−ix·ξ dx

=

∫
Rn

ln |x|
|x|n−2

e−ix·ξ dx

= (2π)n/2
∫ ∞

0

Jn/2−1(r|ξ|)
(r|ξ|)n/2−1

ln r

rn−2
rn−1 dr

= (2π)n/2|ξ|1−n/2

∫ ∞

0

Jn/2−1(r|ξ|) ln r r2−n/2 dr

=
(2π)n

|ξ|2

∫ ∞

0

Jn/2−1(t) ln t t
2−n/2 dt

− (2π)n/2

|ξ|2
ln |ξ|

∫ ∞

0

Jn/2−1(t) t
2−n/2 dt.

Hence,

K̂∗(ξ) =
a1
|ξ|2

− a2
ln |ξ|
|ξ|2

,

where

a1 =

∫ ∞

0

Jn/2−1(t) ln t t
2−n/2dt,

a2 = (2π)n
∫ ∞

0

Jn/2−1(t) t
2−n/2dt

are constants (see [13, 13.24(1)]). This implies that

∆̂K∗(ξ) = a2 ln |ξ| − a1.

Obviously ∆̂K∗ is not a multiplier since it is unbounded. According to
the equation

∆K∗(x− y) = − n− 2

|x− y|n
,

the operator A0 is also unbounded.
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2) We now consider the case n = 3. Write

ln |x|
|x|

=
ln |x|
|x|

χ(|x|) + ln |x|
|x|

[1− χ(|x|)]

:= K1(x) +K2(x),

where χ ∈ C∞
0 (R) such that

χ(r) =

{
1 for r ≤ 1,

0 for r ≥ 2,

and 0 ≤ χ(r) ≤ 1 for r ∈ R.

It is clear that the function ∆[∆K2(x)] is integrable over R
3. Hence,

its Fourier transform is bounded, and therefore

|ξ|2|∆̂K2(ξ)| ≤ const,

which implies that ∆̂K2(ξ) is bounded for |ξ| ≥ 1.

Next, we consider the Fourier transform of K1 given by

K̂1(ξ) =

∫
R3

ln |x|
|x|

χ(|x|) e−ix·ξ dx

= (2π)3
∫ ∞

0

J1/2(r|ξ|)
(r|ξ|)1/2

ln r

r
χ(r) r2 dr

=
(2π)3

|ξ|2

∫ ∞

0

√
tJ1/2(t) ln t χ

(
t

|ξ|

)
dt

− (2π)3

|ξ|2
ln |ξ|

∫ ∞

0

√
tJ1/2(t)χ

(
t

|ξ|

)
dt.

Set

I(ξ) =

∫ ∞

0

√
tJ1/2(t)χ

(
t

|ξ|

)
dt =

√
2

π

∞∫
0

sin t · χ
(
t

|ξ|

)
dt.

Then √
π

2
I(ξ) = − cos t · χ

(
t

|ξ|

)∣∣∣∣t=∞

t=0

+
1

|ξ|

∫ ∞

0

cos t · χ′
(
t

|ξ|

)
dt
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= 1− 1

|ξ|2

∫ ∞

0

sin t · χ′′
(
t

|ξ|

)
dt

= 1 +
O(1)

|ξ|
.

Hence, for |ξ| → ∞,

K̂1(ξ) = c0
ln |ξ|
|ξ|2

+
O(1)

|ξ|2
, c0 > 0.

Consequently,

K̂∗(ξ) = ∆̂K1(ξ) + ∆̂K2(ξ) = c0 ln |ξ|+O(1),

|ξ| → ∞,

which show that K̂∗ is not a multiplier from L2(R
3) to L2(R

3). �

Remark. Note a the similar singular operator Aj defined as

A(j)u(x) =

∫
Rn

u(y)

|x− y|n
cosϕj(x, y) dy, x ∈ Rn,

where cosϕj(x, y) = (xj − yj)/|x − y|, according to the Calderon-
Zigmund theorem, is bounded and may be considered as a continuous
operator from L2(R

n) to L2(R
n).

Now we consider the modified kernel

(3.2) K∗∗(x) =
ln |x|
|x|n−2

χ(|x|).

Proposition 3.4. The Fourier transform of K∗∗ satisfies the following
estimate:

(3.3) |K̂∗∗(ξ)| ≤ C1
ln(e+ |ξ|)

|ξ|2
,

where C1 is a constant.
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Proof. Again, using Lemma 3.2, we have that

K̂∗∗(ξ) =

∫
Rn

K∗∗(x)e
−ix·ξ dx

=

∫
Rn

ln |x|
|x|n−2

χ(|x|) e−ix·ξ dx

= (2π)n/2
∫ 2

0

Jn/2−1(r|ξ|)
(r|ξ|)n/2−1

ln r

rn−2
χ(r) rn−1 dr.

It is clear that this integral is bounded for |ξ| ≤ 1. Hence, it suffices to
prove estimate (3.3) for |ξ| > 1. To this end, we notice that

K̂∗∗(ξ) = (2π)n/2|ξ|1−n/2

∫ 2

0

Jn/2−1(r|ξ|)(ln r)χ(r) r2−n/2 dr

=
(2π)n/2

|ξ|2

∫ 2|ξ|

0

Jn/2−1(t)(ln t)χ

(
t

|ξ|

)
t2−n/2 dt

− (2π)n/2

|ξ|2
ln |ξ|

∫ 2|ξ|

0

Jn/2−1(t)χ

(
t

|ξ|

)
t2−n/2 dt.

The required estimate (3.3) then follows from the fact that both
integrals on the right hand side of the above are bounded with respect
to |ξ|. �

Set

(3.4) Kn(x) =
(x− y)⊗ (x− y)

|x− y|n+2
χ(|x− y|).

The following proposition follows directly from Propositions 3.1 and
3.3.

Proposition 3.5. The Fourier transform of Kn satisfies the following
estimate:

(3.5) |K̂n(ξ)| ≤ C1 ln(e+ |ξ|).

Next we introduce Banach spaces Hm, for m = 1, 2, . . ., defined by

Hm = {v; (2π)−n

∫
Rn

|v̂(ξ)|2 ln2m
√
e2 + |ξ|2 dξ <∞}
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with norm

∥v∥m =

(
(2π)−n

∫
Rn

|v̂(ξ)|2 ln2m
√
e2 + |ξ|2dξ

)1/2

.

Clearly, Hm ⊂ Hm+1, m = 1, 2, . . ., and

∥v∥m ≤ ∥v∥m+1, for all v ∈ Hm.

Proposition 3.6. Let W 1
2 (R

n) be the usual Sobolev space and f ∈
W 1

2 (R
n). Then f ∈ Hk for k = 1, 2, . . . . Moreover,

∥f∥k ≤ k! ∥f∥W 1
2
, k = 1, 2 . . . .

Proof. Note that, for a ≥ 1

ln a ≤ k
a1/k

e
.

Therefore,

ln2k a ≤
(
k

e

)2k

a2.

Thus,

∥f∥2k ≤
(
k

e

)2k

(2π)−n

∫
Rn

|f̂(ξ)|2(e2 + |ξ|2) dξ

≤ e2
(
k

e

)2k

(2π)−n

∫
Rn

|f̂(ξ)|2(1 + |ξ|2) dξ

= e2
(
k

e

)2k

∥f∥2W 1
2
,

which implies that

(3.6) ∥f∥k ≤ e

(
k

e

)k

∥f∥W 1
2
.

Note that

(3.7)

(
k

e

)k

≤ k!

e
.
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Indeed, set

ck =
1

k!

(
k

e

)k

.

Then
ck+1

ck
=

1

e

(
1 +

1

k

)k

< 1.

Hence,

ck+1 < ck ≤ c1 =
1

e
.

The desired estimate then follows from (3.6) and (3.7). �

For f : R+ → Hm, we set

∥f∥m,t = sup
0≤s≤t

∥f(s)∥m.

Define the integral operator An by

(3.8) Anv(x) =

∫
Rn

Kn(x, y)v(y) dy, x ∈ Rn,

where Kn is defined by (3.4). It is easy to see from (3.5) that An is a
bounded operator from Hm+1 to Hm, that is,

(3.9) ∥Anv∥m ≤M∥v∥m+1, for all v ∈ Hm, m = 0, 1, . . . ,

where M is a constant.

Next we introduce operator L defined by

(3.10) Lv(t) =

∫ t

0

(t− s)Anv(s) ds

and set

vk+1(t) = Lvk(t) =

∫ t

0

(t− s)Anvk(s) ds, v0(t) = f(t).

It is clear that vk(t) = Lkf(t).

Proposition 3.7. For f ∈ Hm, m = 1, 2, . . ., the following holds:

(3.11) ∥vk∥m,t ≤Mk∥f∥k+m,t
t2k

(2k − 1)!!
.
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In particular,

(3.12) ∥vk(t)∥ ≤Mk∥f∥k,t
t2k

(2k − 1)!!
.

Proof. Using (3.9) recursively, we have

∥vk+1∥m,t ≤
∫ t

0

(t− s)∥Avk(s)∥m ds

≤M

∫ t

0

(t− s)∥vk(s)∥m+1 ds

≤ · · · ≤Mk+1∥f∥k+m+1,t

∫ t

0

(t− s)
s2k

(2k − 1)!!
ds

≤Mk+1∥f∥k+m+1,tt

∫ t

0

s2k

(2k − 1)!!
ds

=Mk+1∥f∥k+m+1,t
t2k+2

(2k + 1)!!
. �

The following proposition is an immediate consequence of Proposi-
tions 3.6 and 3.7.

Proposition 3.8. Assume that f ∈W 1
2 . Then, for k = 0, 1, 2, . . ., the

estimate

(3.13) ∥Lkf(t)∥m ≤Mkt2k∥f(t)∥W 1
2
, t > 0.

is valid.

We are ready to prove the existence theorem for α = n.

Theorem 3.9. Let An be the integral operator defined in (3.8). There
exists T > 0 such that, for every f ∈ C([0, T ] →W 1

2 (R
n)), the solution

u ∈ C([0, T ] → L2(R
n)) of the equation

(3.14) u(x, t) = f(x, t) +

∫ t

0

(t− s)Anu(x, s) ds.

exists and is unique.
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Proof. Using the definition (3.10), we may rewrite (3.14) in the form

u(t) = f(t) + Lu(t).

Consider the Neumann series

u(t) =
∞∑
k=0

Lkf(t).

By Proposition 3.8, if T is chosen such that T < 1/
√
M where M is a

constant that appeared in (3.9), then this series converges uniformly in
C([0, T ] → L2(R

n)) with respect to t ∈ [0, T ], which gives the unique
solution to equation (3.14). �

Remark 3.10. Similar results may also be obtained for an arbitrary
domain Ω with piecewise smooth boundary. In this case, it is necessary
to add some boundary conditions.

Acknowledgments. The authors are grateful to anonymous refer-
ees for valuable remarks which helped the authors improve the content
and presentation of the paper.

APPENDIX

A. For any n× n matrix Λ, we define the matrices

(3.15) cos
√
Λ t =

∞∑
k=0

(−1)k
t2kΛk

(2k)!

and

(3.16)
sin

√
Λ t√
Λ

=

∞∑
k=0

(−1)k
t2k+1Λk

(2k + 1)!
.

It is clear that

d

dt
cos

√
Λ t =

∞∑
k=1

(−1)k2k
t2k−1 Λk

(2k)!

=
∞∑
k=0

(−1)k+1 t
2k+1 Λk+1

(2k + 1)!



320 ALIMOV, CAO AND ILHAN

= −Λ
∞∑
k=0

(−1)k
t2k+1Λk

(2k + 1)!

= −Λ · sin
√
Λ t√
Λ

.

Analogously,
d

dt

sin
√
Λ t√
Λ

= cos
√
Λ t.

Now it easy to check that the vector-function

u(t) = cos
√
Λ t ϕ+

sin
√
Λ t√
Λ

ψ(3.17)

+

∫ t

0

sin
√
Λ (t− s)√
Λ

F (s) ds

satisfies the differential equation of the second order

(3.18)
d2u

dt2
+ Λu(t) = F (t),

and initial conditions

(3.19) u(0) = ϕ, u′(0) = ψ.

Indeed,

u′(t) = −Λ
sin

√
Λ t√
Λ

ϕ+ cos
√
Λ t ψ +

∫ t

0

cos
√
Λ (t− s)F (s) ds

and

u′′(t) = −Λcos
√
Λtϕ− Λ

sin
√
Λt√

Λ
ψ

− Λ

∫ t

0

sin
√
Λ(t− s)√
Λ

F (s) ds+ F (t),

which coincides with (3.18).
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