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STABILITY FOR A CLASS OF FRACTIONAL PARTIAL
INTEGRO-DIFFERENTIAL EQUATIONS

NGUYEN MINH CHUONG, TRAN DINH KE AND NGUYEN NHU QUAN
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ABSTRACT. In this paper, we deal with a class of fractional
integro-differential equations involving impulsive effects and
nonlocal conditions, whose principal part is of diffusion-wave
type. Our aim is to establish some existence and stability
results for integral solutions to the problem at hand by use of
the fixed point approach.

1. Introduction. In this paper, we study the existence and stability
of solutions to the following problem in a Banach space X :

(1.1)
u′(t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s) ds+ f(t, u(t), ut),

t > 0, t �= tk, k ∈ Λ,

u(t+k )− u(t−k ) = Ik(u(tk)), k ∈ Λ,(1.2)

u(s) + g(u)(s) = ϕ(s), s ∈ [−h, 0],(1.3)

where A is a closed, linear and unbounded operator, and f , g and Ik
are the functions which will be specified in Section 3. Here α ∈ (1, 2)
and Λ ⊂ N is an index set. By u(t+k ) and u(t−k ) we mean the right and
left limit of u at tk, respectively; ut stands for the history of the state
function up to the time t, i.e., ut(s) = u(t+s), s ∈ [−h, 0]. It is obvious
that the principal part

u′(t) =
∫ t

0

(t− s)α−2

Γ(α− 1)
Au(s) ds
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can be viewed as

(1.4) u(t) =

∫ t

0

(t− s)α−1

Γ(α)
Au(s) ds+ u(0).

The last equation in the case A is the Laplace operator was studied in
[13, 14]. As discussed in these papers, (1.4) is intermediate between
the diffusion (α = 1) and the wave (α = 2) equation. In addition, it is
known that the following prototype of (1.1),

∂u

∂t
(x, t) =

1

Γ(α− 1)

∫ t

0

(t− s)α−2Δxu(x, s) ds+ F (x, t, u(x, t)),

describes the anomalous diffusion processes and wave propagations in
viscoelastic materials (see, e.g., [18, 29 31]).

The generalized Cauchy problem involving nonlocal and/or impulsive
conditions has been an active subject for many investigations in recent
years. It is known that nonlocal conditions give a better description
for real models than classical initial ones, e.g., the condition

u(s) +

M∑
i=1

ciu(τi + s) = ϕ(s),

allows taking additional measurements instead of solely initial datum.
The first result and physical meaning for nonlocal problems go back to
the work of Byszewski [6]. It then has aroused an increasing interest in
various nonlocal problems involving integer order differential equations
and inclusions. For some remarkable solvability results, we quote
here the works in [8, 17, 20, 23, 26 28, 39]. On the other hand,
impulsive conditions have been used to describe the dynamical systems
having abrupt changes. A comprehensive investigation for impulsive
differential equations can be found in [25]. Evidently, generalized
Cauchy problems with nonlocal conditions and impulsive effects play
an important role in describing many real world problems. Due to the
application of fractional derivatives in modeling and the development
of fractional calculus (see, e.g., [3, 24, 32, 34]), the integer order
differential systems have been generalized to many models involving
fractional differential equations. In this direction, we refer to [15, 19,
37, 38] for some typical existence results.
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Recently, some authors have drawn attention to the Cauchy prob-
lems driven by fractional integro-differential equations as in (1.1). The
results on asymptotically periodic solutions were obtained in [2, 10,
11]. Considering a fractional integro-differential equation in neutral
form, the authors in [7] showed the existence of asymptotically almost
automorphic solutions. Let us take note that, in these works, the mod-
els under investigation have neither nonlocal nor impulsive condition.
We are also concerned with the existence results in [36], in which the
model considered involved a nonlocal condition. It should be noted
that, in the above-mentioned works, no attempt has been made to con-
sider stability problems. This is the main motivation for our study in
the present paper.

Regarding stability for differential equations, the Lyapunov func-
tional method is an effective tool for problems in finite-dimensional
spaces (see [12, 16]). However, it is not easily done for fractional
integro-differential equations in Banach spaces. In this work, we will
employ the fixed point approach initiated by Burton and Furumochi for
ordinary/functional differential equations [4, 5]. The main idea of this
method is to construct a stable subset, in which the solution operator
has a unique fixed point. By this approach, we will prove that the zero
solution for (1.1) (1.3) is BI-asymptotically stable, that is, u(t) → 0 as
t → +∞ for all bounded initial data ϕ. In addition, we show that, if
#Λ < ∞, a better estimate will be obtained, namely ‖u(t)‖ = O(t−α)
as t → +∞. It should be noted that, if a solution to (1.1) (1.3) is
BI-asymptotically stable, then it is also S-asymptotically ω-periodic,
so the result obtained in this paper is stronger than those in [2, 10,
11].

The remainder of our work is as follows. In the next section, we
recall some notions and facts related to fractional resolvent operators,
measures of noncompactness and the fixed point theory for condensing
maps. Section 3 is devoted to the existence result under a general
setting via measures of noncompactness, which extends the one in [36]
for the non-impulsive case. Section 4 shows the stability result under
Lipschitz conditions imposed on nonlinearities. The last section gives
an example, which demonstrates the results obtained in a model of
fractional integro-partial differential equations.
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2. Preliminaries.

2.1. Fractional calculus. We first recall some notions and results
related to fractional resolvent operators.

Definition 2.1. Let A be a closed and linear operator with domain
D(A) on a Banach space X . We say that A is the generator of an
α-resolvent if there exist ω ∈ R and a strongly continuous function
Sα : R+ → L(X) such that {λα : Reλ > ω} ⊂ ρ(A) and

λα−1(λαI − A)−1x =

∫ ∞

0

e−λtSα(t)x dt, Reλ > ω, x ∈ X.

It is known that, in the case α = 1, Sα(·) = S1(·) is a C0-semigroup
while, if α = 2, we have a cosine family S2(·). By the subordination
principle (see [3]), if A generates a β-resolvent with β > α, then it also
generates an α-resolvent. In particular, if A is the generator of a cosine
family, there exists an α-resolvent generated by A with α ∈ (1, 2).

Another case ensuring the existence of α-resolvent was discussed in
[9]. Specifically, let A be a closed and densely defined operator. Assume
that A is a sectorial of type (ω, θ), that is, there exist ω ∈ R, θ ∈
(0, (π/2)), M > 0 such that its resolvent set lies in C\Σω,θ and

‖(λI −A)−1‖ ≤ M

|λ− ω| , λ /∈ Σω,θ;

here

Σω,θ = {ω + λ : λ ∈ C, |arg (−λ)| < θ}.
In the case 0 ≤ θ < π(1 − α/2), Sα(·) exists and has the following
formula:

Sα(t) =
1

2πi

∫
γ

etλλα−1(λαI −A)−1 dλ, t ≥ 0,

where γ is a suitable path lying outside Σω,θ. Furthermore, we have
the following assertion for the behavior of Sα(·).
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Theorem 2.1. Let A : D(A) ⊂ X → X be a sectorial operator
of type (ω, θ) with 0 ≤ θ < π(1 − α/2). Then there exists C > 0
independent of t such that

||Sα(t)|| ≤
⎧⎨⎩C(1 + ω tα)eω

1/αt ω ≥ 0,
C

1 + |ω|tα ω < 0,

for t ≥ 0.

We now look for a suitable concept of integral solutions to (1.1) (1.3)
in the form of a variation-of-constants formula. Denote by L the
Laplace transform for X-valued functions acting on R+. Putting
η(t) = f(t, u(t), ut) and applying the Laplace transform to (1.1) (1.3),
we have:

λL[u](λ) − u(0)−
∑
k∈Λ

e−λtkIk =
1

λα−1
AL[u](λ) + L[η](λ).

Then

(λαI −A)L[u](λ) = λα−1u(0) +
∑
k∈Λ

e−λtkλα−1Ik + λα−1L[η](λ).

So
L[u](λ) = λα−1(λαI −A)−1[ϕ(0)− g(u)(0)]

+
∑
k∈Λ

e−λtkλα−1(λαI −A)−1Ik

+ λα−1(λαI −A)−1L[η](λ),
for all λ such that Reλ > 0, λα ∈ ρ(A) (the resolvent set of A). Let
Sα(·) be an α-resolvent generated by A. Then

(2.1)

L[u](λ) = L[Sα](λ)[ϕ(0) − g(u)(0)]

+
∑
k∈Λ

e−λtkL[Sα](λ)Ik

+ L[Sα](λ)L[η](λ).
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Using the second translation and convolution theorems of the Laplace
transform for the inversion of (2.1), one gets

(2.2)

u(t) = Sα(t)[ϕ(0)− g(u)(0)] +
∑

0<tk≤t

Sα(t− tk)Ik(u(tk))

+

∫ t

0

Sα(t− s)f(s, u(s), us) ds, t ≥ 0.

Given T > 0, we denote by PC([−h, T ];X) the space of functions
u : [−h, T ] → X such that u is continuous on [−h, T ]\{tk : k ∈ Λ}
and, for each tk, k ∈ Λ, there exist

u(t−k ) = lim
t→t−

k

u(t); u(t+k ) = lim
t→t+

k

u(t)

and u(tk) = u(t−k ). Then PC([−h, T ];X) is a Banach space endowed
with the norm

‖u‖PC := sup
t∈[−h,T ]

‖u(t)‖.

Motivated by (2.2), we adopt the following definition of integral solu-
tions for (1.1) (1.3).

Definition 2.2. A function u ∈ PC([−h, T ];X) is said to be an
integral solution of problem (1.1) (1.3) on the interval [−h, T ] if and
only if u(t) = g(u)(t) + ϕ(t) for t ∈ [−h, 0], and

u(t) = Sα(t)[ϕ(0) − g(u)(0)] +
∑

0<tk<t

Sα(t− tk)Ik(u(tk))

+

∫ t

0

Sα(t− s)f(s, u(s), us) ds,

for any t ∈ [0, T ].

Let F : PC([−h, T ];X) → PC([−h, T ];X), where

F(u)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ(t) + g(u)(t) t ∈ [−h, 0],

Sα(t)[ϕ(0) − g(u)(0)]

+
∑

0<tk<t Sα(t− tk)Ik(u(tk))

+
∫ t

0
Sα(t− s)f(s, u(s), us) ds t ∈ [0, T ].
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Then u is an integral solution of (1.1) (1.3) if it is a fixed point of the
solution operator F .

2.2. Fixed point theory for condensing operators. Denote by
B(X) the collection of nonempty bounded subsets of X . We will use
the following definition of measure of noncompactness.

Definition 2.3. A function β : B(X) → R+ is called a measure of
noncompactness (MNC) in X if

β(coΩ) = β(Ω) for every Ω ∈ B(X),

where coΩ is the closure of the convex hull of Ω. An MNC β is called

i) monotone if Ω0,Ω1 ∈ B(X), Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1);

ii) nonsingular if β({a} ∪ Ω) = β(Ω) for any a ∈ X,Ω ∈ B(X);

iii) invariant with respect to union with the compact set if β(K∪Ω) =
β(Ω) for every relatively compact set K ⊂ X and Ω ∈ B(X);

iv) algebraically semi-additive if β(Ω0+Ω1) ≤ β(Ω0)+β(Ω1) for any
Ω0,Ω1 ∈ B(X);

v) regular if β(Ω) = 0 is equivalent to the relative compactness of
Ω.

An important example of MNC is the Hausdorff MNC χ(·), which is
defined as follows

χ(Ω) = inf{ε : Ω has a finite ε-net}.
It should be mentioned that the Hausdorff MNC also has the following
additional properties:

• semi-homogeneity: χ(tΩ) ≤ |t|χ(Ω) for any Ω ∈ B(X) and t ∈ R;

• in a separable Banach space X ,

χ(Ω) = lim
m→∞ sup

x∈Ω
d(x,Xm),

where {Xm} is a sequence of finite-dimensional subspaces of X such
that Xm ⊂ Xm+1,m = 1, 2, . . . and

∞⋃
m=1

Xm = X.
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Based on the Hausdorff MNC χ in X , one can define the sequential
MNC χ0 as follows:

(2.3) χ0(Ω) = sup{χ(D) : D ∈ Δ(Ω)},
where Δ(Ω) is the collection of all at-most-countable subsets of Ω (see
[1]). We know that

(2.4)
1

2
χ(Ω) ≤ χ0(Ω) ≤ χ(Ω),

for all bounded sets Ω ⊂ X . Then the following property is evident.

Proposition 2.2. Let χ be the Hausdorff MNC in X and Ω ⊂ X a
bounded set. Then, for every ε > 0, there exists a sequence {xn} ⊂ Ω
such that

χ(Ω) ≤ 2χ({xn}) + ε.

We need the following assertion, whose proof can be found in [22].

Proposition 2.3. If {wn} ⊂ L1(0, T ;X) such that

‖wn(t)‖X ≤ ν(t), for a.e. t ∈ [0, T ],

for some ν ∈ L1(0, T ), then we have

χ

({∫ t

0

wn(s) ds

})
≤ 2

∫ t

0

χ({wn(s)}) ds

for t ∈ [0, T ].

Let χPC be the Hausdorff MNC in PC([−h, T ];X). We recall the
following facts (see [21]), which will be used later. For each bounded
set D ⊂ PC([−h, T ];X), one has

• χ(D(t)) ≤ χPC(D), for all t ∈ [−h, T ], where D(t) := {x(t) : x ∈
D}.
• If D is an equicontinuous set on each interval (tk, tk+1] ⊂ [−h, T ],

then
χPC(D) = sup

t∈[−h,T ]

χ(D(t)).
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Definition 2.4. Let E be a Banach space. A continuous map
F : Z ⊆ E → E is said to be condensing with respect to an MNC
β (β-condensing) if, for any bounded set Ω ⊂ Z, the relation

β(Ω) ≤ β(F(Ω))

implies the relative compactness of Ω.

Let β be a monotone nonsingular MNC in E. The application of the
topological degree theory for condensing maps (see, e.g., [2, 22]) yields
the following fixed point principle.

Theorem 2.4. [22, Corollary 3.3.1]. Let M be a bounded convex
closed subset of E, and let F : M → M be a β-condensing map. Then
Fix (F) := {x ∈ E : x = F(x)} is a non-empty compact set.

3. Existence results. Let Ch = C([−h, 0];X) and χh be the
Hausdorff MNC in Ch. Concerning problem (1.1) (1.3), we give the
following assumptions.

(A) The operator A is sectorial of type (ω, θ) with 0 ≤ θ < π(1−α/2)
so that the α-resolvent Sα(·) generated by A is norm continuous for
t > 0.

(F) The nonlinear function f : R+ ×X × Ch → X satisfies:

(i) f(·, v, w) is measurable for each (v, w) ∈ X × Ch, f(t, ·, ·) is
continuous for almost every t ∈ [0, T ] and

‖f(t, v, w)‖X ≤ k(t)Ψf (‖v‖X + ‖w‖Ch
),

for all (v, w) ∈ X × Ch, where k ∈ L1
loc(R

+), Ψf is a real-valued,
continuous and nondecreasing function;

(ii) there exists a functionm : R2
+ → R+ such thatm(t, ·) ∈ L1(0, t),

t > 0, and for all bounded subsets V ⊂ X , W ⊂ Ch,
χ(Sα(t− s)f(s, V,W )) ≤ m(t, s)[χ(V ) + χh(W )],

for almost every t, s ∈ [0, T ], s ≤ t.

(I) The impulsive function Ik : X → X , k ∈ Λ, satisfies:
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(i) Ik is continuous, and there exists lk ≥ 0 verifying that

‖Ik(x)‖ ≤ lkΨI(‖x‖),

where ΨI is a real-valued, continuous and nondecreasing function;

(2) there is a number μk ≥ 0 such that

χ(Ik(V ) ≤ μkχ(V ),

for all bounded sets V ⊂ X .

(G) The nonlocal function g : PC([−h, T ];X) → Ch obeys the
following conditions:

(i) g is continuous and

‖g(u)‖Ch
≤ Ψg(||u||PC),

for all u ∈ PC, where Ψg is a continuous and nondecreasing function
on R+;

(ii) there exists η ≥ 0 such that, for any bounded set D ⊂
PC([−h, T ];X),

χh(g(D)) ≤ ηχPC(D).

Remark 3.1. Let us give some comments on assumptions (F) (ii),
(G) (ii) and (I) (ii).

(1) If f(t, ·, ·) satisfies the Lipschitz condition, i.e.,

‖f(t, v1, w1)− f(t, v2, w2)‖X ≤ kf (t)(‖v1 − v2‖X + ‖w1 − w2‖Ch
),

for some kf ∈ Lp
loc(R

+), then (F)(ii) holds for k(t, s) = ‖Sα(t −
s)‖kf (s). On the other hand, if Sα(t), t > 0, is compact or f(t, ·, ·)
is completely continuous (for each fixed t) then (F )(ii) is obviously
fulfilled with k = 0.

(2) Regarding (G) (ii), if g is Lipschitzian, that is,

‖g(u)− g(v)‖Ch
≤ η‖u− v‖PC ,

then (G) (ii) takes place. This condition is also satisfied with η = 0 if
g is completely continuous.
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(3) Similarly for (I) (ii), if Ik is Lipschitzian, that is,

‖Ik(x)− Ik(y)‖ ≤ μk‖x− y‖, for all x, y ∈ X,

then (I) (ii) takes place. Obviously, (I) (ii) is also fulfilled with μk = 0
if Ik is completely continuous.

It should be mentioned that, since f , I and g may not be Lipschitzian,
the existence of integral solutions of (1.1) (1.3) cannot be obtained by
the Banach contraction principle. In this paper, we deploy the fixed
point theory for condensing maps by establishing the so called MNC-
estimate (i.e., estimate via MNCs) to prove the condensivity of F .

We need the following result, which was proved in [35, Lemma 1].

Lemma 3.1. Let Φ(t, s) be a family of bounded linear operators on X
for t, s ∈ [0, T ], s ≤ t. Assume that Φ satisfies the following conditions:

(Φ1) there exists a function ρ ∈ Lq(0, T ), q ≥ 1, such that ‖Φ(t, s)‖ ≤
ρ(t− s) for all t, s ∈ [0, T ], s ≤ t;

(Φ2) ‖Φ(t, s)−Φ(r, s)‖ ≤ ε for 0 ≤ s ≤ r− ε, r < t = r+ h ≤ T with
ε = ε(h) → 0 as h → 0.

Then the operator S : Lq′(0, T ;X) → C([0, T ];X) defined by

(Sg)(t) :=

∫ t

0

Φ(t, s)g(s) ds

sends any bounded set to an equicontinuous one, where q′ is the conju-
gate of q (q′ = +∞ if q = 1).

Now we prove the condensivity of the solution operator.

Lemma 3.2. Let the hypotheses (A), (F ), (G) and (I) hold. Then
the solution operator F satisfies

χPC(F(D)) ≤
[(

η +
∑

tk∈[0,T ]

μk

)
ST
α + 8 sup

t∈[0,T ]

∫ t

0

m(t, s) ds

]
χPC(D),

for all bounded sets D ⊂ PC([−h, T ];X), here ST
α = supt∈[0,T ] ‖Sα(t)‖.
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Proof. Let D ⊂ PC([−h, T ];X) be a bounded set. Then we have

F(D) = F1(D) + F2(D) + F3(D),

where

F1(u)(t) =

{
Sα(t)[ϕ(0) − g(u)(0)] t ∈ [0, T ],

ϕ(t)− g(u)(t) t ∈ [−h, 0];

F2(u)(t) =

⎧⎨⎩
∑

0<tk<t
Sα(t− tk)Ik(u(tk)) t ∈ [0, T ],

0 t ∈ [−h, 0];

F3(u)(t) =

{∫ t

0 Sα(t− s)f(s, u(s), us) ds t ∈ [0, T ],

0 t ∈ [−h, 0].

From the algebraically semi-additive property of χPC , we have

χPC(F(D)) ≤ χPC(F1(D)) + χPC(F2(D)) + χPC(F3(D)).

For z1, z2 ∈ F1(D), there exist u1, u2 ∈ D such that

z1(t) =

{
Sα(t)[ϕ(0)− g(u1)(0)] t ∈ [0, T ],

ϕ(t) − g(u1)(t) t ∈ [−h, 0]

z2(t) =

{
Sα(t)[ϕ(0)− g(u2)(0)] t ∈ [0, T ],

ϕ(t) − g(u2)(t) t ∈ [−h, 0].

Then

‖z1(t)− z2(t)‖ ≤
{ ‖Sα(t)‖‖g(u1)− g(u2)‖Ch

t ∈ [0, T ],

‖g(u1)− g(u2)‖Ch
t ∈ [−h, 0].

Therefore,

||z1 − z2||PC ≤ ST
α ‖g(u1)− g(u2)‖Ch

,

thanks to the fact that ST
α ≥ 1. This implies

χPC(F1(D)) ≤ ST
α
χh(g(D)).
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Employing (G) (ii), we have

(3.1) χPC(F1(D)) ≤ ηST
α
χPC(D).

Now, letting z1, z2 ∈ F2(D), one can find u1, u2 ∈ D such that

‖z1(t)− z2(t)‖ =
∑

0<tk<t

Sα(t− tk)[Ik(u1(tk))− Ik(u2(tk))].

Hence,

‖z1 − z2‖PC ≤ ST
α

∑
tk∈[0,T ]

‖Ik(u1(tk))− Ik(u2(tk))‖.

This inequality deduces that

(3.2)

χPC(F2(D)) ≤ ST
α

∑
tk∈[0,T ]

χ(Ik(D(tk)))

≤ ST
α

∑
tk∈[0,T ]

μkχ(D(tk))

≤
(
ST
α

∑
tk∈[0,T ]

μk

)
χPC(D),

thanks to (I) (ii).

Regarding F3(D), for ε > 0, one can choose a sequence {un} ⊂ D
such that

(3.3) χPC(F3(D)) ≤ 2χPC(F3({un})) + ε.

It follows from assumption (A) that Φ(t, s) = Sα(t− s) verifies (Φ1)−
(Φ2) in Lemma 3.1. Then we get that F3({un}) is an equicontinuous
set in C([0, T ];X). This leads to

χPC(F3({un})) = sup
t∈[0,T ]

χ(F3({un})(t))

≤ 2 sup
t∈[0,T ]

∫ t

0

χ
(
Sα(t− s)f(s, un(s), (un)s)

)
ds
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≤ 2 sup
t∈[0,T ]

∫ t

0

m(t, s)[χ({un(s)})

+ sup
τ∈[−h,0]

χ({un(s+ τ)})] ds

≤ 4χPC({un}) sup
t∈[0,T ]

∫ t

0

m(t, s) ds

≤ 4χPC(D) sup
t∈[0,T ]

∫ t

0

m(t, s) ds;

here we have used Proposition 2.3. In view of (3.3), one has

(3.4) χPC(F3(D)) ≤ 8χPC(D) sup
t∈[0,T ]

∫ t

0

m(t, s) ds,

since ε > 0 can be chosen arbitrarily.

Combining (3.1), (3.2) and (3.4), we arrive at

χPC(F(D)) ≤
[
ηST

α + ST
α

∑
tk∈[0,T ]

μk + 8 sup
t∈[0,T ]

∫ t

0

m(t, s) ds

]
χPC(D).

The proof is complete.

Theorem 3.3. Assume that the hypotheses of Lemma 3.2 hold.
Then the problem (1.1) (1.3) has at least one integral solution in
PC([−h, T ];X), provided that

(3.5)

(
η +

∑
tk∈[0,T ]

μk

)
ST
α + 8 sup

t∈[0,T ]

∫ t

0

m(t, s) ds < 1,

and

(3.6) lim inf
r→∞

1

r

[(
Ψg(r) + ΨI(r)

∑
tk∈[0,T ]

lk

)
ST
α

+Ψf(2r) sup
t∈[0,T ]

∫ t

0

‖Sα(t− s)‖k(s) ds
]
< 1,

where ST
α is given in Lemma 3.2.
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Proof. By (3.5), we obtain the χPC-condensing property for F thanks
to Lemma 3.2. Indeed, let D ⊂ PC([−h, T ];X) be a bounded set
satisfying χPC(D) ≤ χPC(F(D)). Then, by Lemma 3.2, we have

χPC(D) ≤ χPC(F(D)) ≤ � χPC(D),

where

� =

(
η +

∑
tk∈[0,T ]

μk

)
ST
α + 8 sup

t∈[0,T ]

∫ t

0

m(t, s) ds < 1.

This implies that χPC(D) = 0. By the regularity of χPC , one gets that
D is relatively compact.

In order to apply Theorem 2.4, it remains to show that F(BR) ⊂ BR

for some R > 0, where BR is the closed ball in PC([−h, T ];X) centered
at 0 with radius R.

Assume to the contrary that a sequence {vn}⊂PC([−h, T ];X) exists
such that ‖vn‖PC ≤ n but ‖F(vn)‖PC > n. From the formulation of
F , we have

‖F(vn)(t)‖X ≤ sup
t∈[0,T ]

‖Sα(t)‖
(
‖ϕ‖Ch

+Ψg(‖vn‖PC)

+
∑

tk∈[0,T ]

‖Ik(vn(tk))‖
)

+

∫ t

0

‖Sα(t− s)‖‖f(s, vn(s), (vn)s)‖ ds

≤ ST
α

(
‖ϕ‖Ch

+Ψg(n) +
∑

tk∈[0,T ]

lkΨI(‖vn(tk)‖)
)

+

∫ t

0

‖Sα(t− s)‖ k(s)Ψf (‖vn(s)‖ + ||(vn)s||Ch
) ds

≤ ST
α

(
‖ϕ‖Ch

+Ψg(n) + ΨI(n)
∑

tk∈[0,T ]

lk

)

+Ψf(2n)

∫ t

0

‖Sα(t− s)‖ k(s) ds.
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Therefore,

n < ‖F(vn)‖PC ≤ ST
α

(
‖ϕ‖Ch

+Ψg(n) + ΨI(n)
∑

tk∈[0,T ]

lk

)

+Ψf(2n) sup
t∈[0,T ]

∫ t

0

‖Sα(t− s)‖ k(s) ds.

Then

1 <
1

n
‖F(vn)‖PC ≤ 1

n

[
ST
α

(
‖ϕ‖Ch

+Ψg(n) + ΨI(n)
∑

tk∈[0,T ]

lk

)

+Ψf (2n) sup
t∈[0,T ]

∫ t

0

‖Sα(t− s)‖ k(s) ds
]
.

Passing the last inequality into limits, one gets a contradiction. The
proof is now complete.

4. Stability results. In order to study the stability results for
problem (1.1) (1.3), we consider the function space

PC0 = {u ∈ PC([−h,+∞);X) : lim
t→∞u(t) = 0}

with the norm
‖u‖∞ = sup

t≥0
‖u(t)‖,

where PC([−h,∞);X) is defined similarly to PC([−h, T ];X) as T =
+∞.

Then PC0 is a Banach space. In this section, we replace assumptions
(A), (F), (G) and (I) by the following:

(A′) The operator A is sectorial of type (ω, θ) such that ω < 0 and
0 ≤ θ < π(1 − α/2).

(F′) f(·, v, w) is measurable for each v ∈ X,w ∈ Ch, f(t, ·, ·) is
continuous for almost every t ∈ R+, f(t, 0, 0) = 0, and there exists
k ∈ L1(R+), such that

‖f(t, v1, w1)− f(t, v2, w2)‖ ≤ k(t)(‖v1 − v2‖+ ‖w1 − w2‖Ch
), t ∈ R+,

for all v1, v2 ∈ X , w1, w2 ∈ Ch.
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(G′) g is a continuous function satisfying that g(0) = 0 and there is
a nonnegative number η such that

‖g(w1)− g(w2)‖Ch
≤ η‖w1 − w2‖PC ,

for all w1, w2 ∈ PC([−h, T ];X), with all T > 0.

(I′) Ik, k ∈ Λ, is continuous, Ik(0) = 0, and there exist a sequence
{μk}, k ∈ Λ, such that

∑
k∈Λ μk < ∞, and

‖Ik(x)− Ik(y)‖ ≤ μk‖x− y‖, for all x, y ∈ X.

Theorem 4.1. Let (A′), (F′), (G′) and (I′) hold. Then problem
(1.1) (1.3) has a unique solution u ∈ PC0, provided that

(4.1)

(
η +

∑
k∈Λ

μk

)
S∞
α + 2 sup

t≥0

∫ t

0

‖Sα(t− s)‖k(s) ds < 1,

where S∞
α = supt≥0 ‖Sα(t)‖.

Proof. In the context of this theorem, we make use of the contraction
mapping principle. We will show that the solution operator F maps
PC0 into itself, and it is a contraction map. Here we recall that

F(u)(t) =

⎧⎪⎪⎨⎪⎪⎩
Sα(t)[ϕ(0) − g(u)(0)] +

∑
0<tk<t

Sα(t− tk)Ik(u(tk))

+
∫ t

0
Sα(t− s)f(s, u(s), us) ds, t > 0,

ϕ(t)− g(u)(t), t ∈ [−h, 0].

Let u ∈ PC0 be such that R = ‖u‖∞ > 0. We first prove that
F(u) ∈ PC0, i.e., F(u)(t) → 0, as t → +∞.

Let ε > 0 be given. Then there exists T1 > 0 such that

‖u(t)‖ ≤ ε, for all t > T1,
(4.2)

‖ut‖Ch
= sup

τ∈[−h,0]

‖u(t+ τ)‖ ≤ ε, for all t > T1 + h.
(4.3)
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On the other hand, from the assumption that
∑

k∈Λ μk < +∞, there
exists N0 ∈ N such that ∑

k>N0

μk ≤ ε.

Then, for t > 0,

‖F(u)(t)‖ ≤ ‖Sα(t)‖(‖ϕ‖Ch
+ ‖g(u)‖Ch

)

+
∑
k≤N0

‖Sα(t− tk)‖ ‖Ik(u(tk))‖

+
∑
k>N0

‖Sα(t− tk)‖ ‖Ik(u(tk))‖

+

∫ t

0

‖Sα(t− s)‖ ‖f(s, u(s), us)‖ ds
≤ ‖Sα(t)‖(‖ϕ‖Ch

+ ηR)

+R
∑
k≤N0

‖Sα(t− tk)‖μk +RS∞
α

∑
k>N0

μk

+

∫ t

0

‖Sα(t− s)‖ k(s) (‖u(s)‖+ ‖us‖Ch
) ds

= E1(t) + E2(t) + E3(t),

where

E1(t) = ‖Sα(t)‖(‖ϕ‖Ch
+ ηR),

E2(t) = R
∑
k≤N0

‖Sα(t− tk)||μk +RS∞
α

∑
k>N0

μk,

E3(t) =

∫ t

0

‖Sα(t− s)‖ k(s) (‖u(s)‖+ ‖us‖Ch
) ds.

Observing from Theorem 2.1 that there is T2 > 0 verifying

‖Sα(t)‖ ≤ ε, for all t > T2,

so

E1(t) ≤ (1 + η)Rε, for all t > T2.(4.4)
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In addition,

(4.5) E2(t) ≤
( ∑

k≤N0

μk + S∞
α

)
Rε, for all t > T2 + tN0 .

Concerning E3(t), for t > T1 + h one has

E3(t) =

(∫ T1+h

0

+

∫ t

T1+h

)
‖Sα(t− s)‖ k(s) (‖u(s)‖+ ‖us‖Ch

) ds

≤ 2R

∫ T1+h

0

||Sα(t− s)|| k(s) ds

+ 2ε

∫ t

T1+h

‖Sα(t− s)‖ k(s) ds

thanks to (4.2) (4.3). Therefore,

E3(t) ≤ 2Rε

∫ T1+h

0

k(s) ds+ 2ε

∫ t

T1+h

‖Sα(t− s)‖ k(s) ds,

for all t > T2 + T1 + h. Then

(4.6) E3(t) ≤ (2R‖k‖L1(R+) + 1)ε,

for all t > T2 + T1 + h. Here we use the fact that∫ t

T1+h

‖Sα(t− s)‖ k(s) ds < 1,

due to (4.1). Combining (4.4), (4.5) and (4.6), gives

‖F(u)(t)‖ ≤ Cε

for all t > max{T2 + T1 + h, T2 + tN0}, where

C = (1 + η)R +

(∑
k∈Λ

μk + S∞
α

)
R+ 2R‖k‖L1(R+) + 1.

This derives the claim that F(PC0) ⊂ PC0.
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It remains to show that F is contractive. Let u, v ∈ PC0. Then, by
using (F′), (G′) and (I′), we have

‖F(u)(t)−F(v)(t)‖ ≤ ‖Sα(t)‖ ‖g(u)− g(v)‖Ch

+
∑

0<tk<t

‖Sα(t− tk)‖ ‖Ik(u(tk)) − Ik(v(tk))‖

+

∫ t

0

‖Sα(t−s)‖‖f(s, u(s), us)−f(s, v(s), vs)‖ds

≤ S∞
α η‖u− v‖∞ +

(
S∞
α

∑
0<tk<t

μk

)
‖u− v‖∞

+

(
2

∫ t

0

‖Sα(t− s)‖ k(s) ds
)
‖u− v‖∞.

So

‖F(u)−F(v)‖∞ ≤ �‖u− v‖∞,

where

� =

(
η +

∑
k∈Λ

μk

)
S∞
α + 2 sup

t≥0

∫ t

0

‖Sα(t− s)‖k(s) ds < 1.

We get the desired conclusion.

We now consider the case #Λ < ∞, e.g., the number of impulsive
moments is finite. We will show that ‖u(t)‖ = O(t−α) as t → ∞.

Theorem 4.2. Let the hypotheses of Theorem 4.1 hold. Assume
further that #Λ < ∞. Then problem (1.1) (1.3) has a unique integral
solution u ∈ PC0 satisfying ‖u(t)‖ = O(t−α) as t → ∞.

Proof. Let PCα = {u ∈ PC([−h,∞);X) : ‖u(t)‖ = O(t−α) as t →
∞}. It is easily seen that PCα is a closed subspace of PC0. We have
to prove that the solution operator F is a contraction on PCα. As a
matter of fact, it suffices to verify that F(PCα) ⊂ PCα.
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We proceed similarly as in the proof of Theorem 4.1. Let u ∈ PCα

be such that ‖u‖∞ = R. Then

tα‖u(t)‖ ≤ M,
(4.7)

tα‖ut‖Ch
= tα sup

τ∈[−h,0]

‖u(t+ τ)‖ ≤ M, for all t > h,
(4.8)

for some M > 0.

Denote by E1(t) and E3(t) the notations as in the proof of Theo-
rem 4.1. Let Λ = {1, 2, . . . , N0} and E2(t) = R

∑
k≤N0

‖Sα(t− tk)‖μk.
Taking into account that

‖Sα(t)‖ ≤ C

1 + |ω|tα ,

we have

tαE1(t) = tα‖Sα(t)‖(‖ϕ‖Ch
+ ηR)

≤ Ctα

1 + |ω|tα (‖ϕ‖Ch
+ ηR) = O(1), as t → ∞.

Similarly, for t > tN0 ,

tαE2(t) = Rtα
∑
k≤N0

‖Sα(t− tk)‖μk

≤
∑
k≤N0

RCtα

1 + |ω|(t− tk)α
μk

≤ RCtα

1 + |ω|(t− tN0)
α

∑
k≤N0

μk = O(1), as t → ∞.

As for E3(t), for t > 0, one has

tαE3(t) = tα
(∫ t/2

0

+

∫ t

t/2

)
‖Sα(t− s)‖ k(s) (‖u(s)‖+ ‖us‖Ch

) ds

= tαE3a(t) + tαE3b(t);
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tαE3a(t) = tα
∫ t/2

0

‖Sα(t− s)|‖k(s)(‖u(s)‖+ ‖us‖Ch
) ds

≤ 2RCtα

1 + |ω|(t/2)α
∫ t/2

0

k(s) ds

≤ 2RCtα

1 + |ω|(t/2)α ‖k‖L1(R+) = O(1), as t → ∞,

tαE3b(t) = tα
∫ t

t/2

‖Sα(t− s)‖k(s)(‖u(s)‖+ ‖us‖Ch
) ds

=

∫ t

t/2

‖Sα(t− s)‖
(
t

s

)α

k(s)(sα‖u(s)‖+ sα‖us‖Ch
) ds

≤ 2MC

∫ t

t/2

(t/s)α

1 + |ω|(t− s)α
k(s) ds

≤ 2α+1MC

∫ t

t/2

k(s) ds

≤ 2α+1MC‖k‖L1(R+).

The above estimates yield

tα‖F(u)(t)‖ ≤ tα(E1(t) + E2(t) + E3(t))

= O(1), as t → ∞.

The proof is complete.

5. Example. We give an application to the abstract results. Let
Ω ⊂ Rn be a bounded domain with the smooth boundary ∂Ω. We
consider the following system:

∂u

∂t
(x, t) =

∫ t

0

(t− s)α−2

Γ(α− 1)
Lxu(x, s) ds+ k(t)f̃(x, u(x, t), u(x, t− h)),

(5.1)

α ∈ (1, 2), t ∈ R+\{t1, t2, . . . , tN}, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t ∈ R+,(5.2)

u(x, t+k ) = u(x, tk) + Ĩk(x, u(x, tk)),(5.3)

x ∈ Ω, 1 ≤ k ≤ N,

u(x, s) +
M∑
i=1

ciu(x, τi + s) = ϕ(s), s ∈ [−h, 0], x ∈ Ω,(5.4)
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where the operator

Lx =

n∑
i,j=1

aij
∂2

∂xi∂xj

has the property

n∑
i,j=1

aijξiξj ≥ θ|ξ|2, for all ξ ∈ Rn

with θ > 0. Let X = L2(Ω), A = Lx with D(A) = H2(Ω) ∩ H1
0 (Ω).

Then system (5.1) (5.4) is in the form of the abstract model (1.1) (1.3)
with

f(t, v, w)(x) = k(t)f̃(x, v(x), w(x,−h)), v ∈ X, w ∈ C([−h, 0];X),

Ik(v)(x) = Ĩk(x, v(x)), v ∈ X,

g(u)(s)(x) =

M∑
i=1

ciu(x, τi + s), u ∈ PC([−h,+∞);X).

It is known that (see [33]) A is a sectorial operator and it generates an
analytical semigroup in X . Moreover, one can check that A is sectorial
of type (λ1, 0) where λ1 < 0 is the first eigenvalue of A.

Assume that k ∈ L1(R) and f̃ : Ω×R ×R → R such that

|f̃(x, y1, z1)− f̃(x, y2, z2)| ≤ κ(x)(|y1 − y2|+ |z1 − z2|), κ ∈ X,

for all x ∈ Ω, y1, y2, z1, z2 ∈ R. Then we have

‖f(t, v1, w1)− f(t, v2, w2)‖
≤ k(t)‖κ‖(‖v1 − v2‖+ ‖w1(·,−h)− w2(·,−h)‖)
≤ k(t)‖κ‖(‖v1 − v2‖+ ‖w1 − w2‖Ch

),

for all v1, v2 ∈ X , w1, w2 ∈ Ch.
Let Ĩk : Ω×R → R be such that

|Ĩk(x, y1)− Ĩk(x, y2)| ≤ �k(x)|y1 − y2|, �k ∈ X,

for all x ∈ Ω, y1, y2 ∈ R. Then

‖Ik(v1)− Ik(v2)‖ ≤ ‖�k‖ ‖v1 − v2‖, for all v1, v2 ∈ X.
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Regarding the nonlocal function g, it is obvious that

‖g(u1)− g(u2)‖Ch
≤

( M∑
i=1

ci

)
‖u1 − u2‖PC,

for all u1, u2 ∈ PC([−h, T ];X), for all T > 0.

Under the above settings and applying Theorem 4.2, one can state
that problem (5.1) (5.4) has a unique integral solution in PCα, provided
that( M∑

i=1

ci +
N∑
i=1

‖�i‖
)
S∞
α + 2‖κ‖ sup

t≥0

∫ t

0

‖Sα(t− s)‖k(s) ds < 1.
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