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ABSTRACT. In this paper, we study the nonlocal Cauchy
problems of fractional evolution equations with Riemann-
Liouville derivative by considering an integral equation which
is given in terms of probability density. By using the theory
of Hausdorff measure of noncompactness, we establish various
existence theorems of mild solutions for the Cauchy problems
in the cases Cp semigroup is compact or noncompact.

1. Introduction. In this paper, we assume that X is a Banach
space with the norm |-|. Let a € R*, J = [0,a] and J' = (0,q].
Denote C(J, X) as the Banach space of continuous functions from J
into X with the norm [|z| = sup;c( o [2(t)|, where z € C(J, X), and
B(X) are the spaces of all bounded linear operators from X to X with
the norm ||Q||p(x) = sup{|Q(z)| : |z| = 1}, where Q@ € B(X) and
reX.

Consider the following nonlocal Cauchy problem of fractional evolu-
tion equation with Riemann-Liouville derivative
(“Di, z)(t) = Az(t) + (Fz)(t) almost all ¢ € [0, q],

O 1)) + g(e) = w0,

where “D{, is the Riemann-Liouville derivative of order g, Iy, is
the Riemann-Liouville integral of order 1 — ¢, 0 < g < 1, A is the
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infinitesimal generator of a strongly continuous semigroup of bounded
linear operators (i.e., Cp semigroup) {Q(¢)}:>0 in Banach space X,
F:C(J,X)— L(J,X) is a given (non-linear) operator, g : C(J, X) —
L(J,X) is a given operator satisfying some assumptions and z( is an
element of the Banach space X.

Problem (1) can be viewed as a generalization of the following
problem

@) { (“DE, x)(t) = Az(t) + f(t,2(t)), almost all ¢t € [0,al,
(Ip3"2)(0) + g(x) = =0,

where f: J x X — X is a given function satisfying some assumptions.
Indeed, under suitable conditions, the following operator

(Fx)(t) = f(t,x(t)), forte]0,aqa)
maps C(J, X) into L(J, X). Thus, problem (1) reads as (2).

The existence of mild solutions for fractional evolution equations with
Caputo derivative has been considered in several recent papers (for
instance, see [6, 8, 10, 15, 18, 19] and the references therein), much
less is known about the fractional evolution equations with Riemann-
Liouville derivative. In most of the existing articles (see for instance
[6, 8, 15, 18, 19] and the references therein), Schauder’s fixed point
theorem, Schaefer’s fixed point theorem, Krasnoselskii’s fixed point
theorem, Darbo’s fixed point theorem, or the Kuratowski measure of
noncompactness are employed to obtain fixed points of the solution
operator of problem (1) under some restrictive conditions.

In this paper, by using the theory of Hausdorff measure of noncom-
pactness, we study nonlocal Cauchy problem (1) in the case where
Q(t) is compact or noncompact. The next section introduces some no-
tations and useful concepts from fractional calculus and the theory of
measure of noncompactness. In Section 3, we obtain the appropriate
definition on mild solutions of problem (1) by considering an integral
equation which is given in terms of probability density. Section 4 is
devoted to the study of various existence theorems of mild solutions for
problem (1). Finally, an example is given for demonstration.

2. Preliminaries. In this section, we introduce preliminary facts
which are used throughout this paper.
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First, we recall some basic definitions and properties of the fractional
calculus. For more details, see Kilbas, Srivastava and Trujillo [7].

Definition 2.1 [7]. The fractional integral Ij, f of order ¢ for a
function f € AC|0,00) is defined as

(12, )(t) = F(lq) /0 7 f(;))lq ds, t>0,0<g<1,

provided the right side is point-wise defined on [0, o), where I'(+) is the
gamma function.

Definition 2.2 [7]. Riemann-Liouville derivative “D§, f of order ¢
for a function f € AC[0,00) can be written as

_ 1 d ot fs)
("DE_f)(t) = F(l_Q)E/O ) ds, t>0,0<gqg<1.

If f is an abstract function with values in X, then integrals which
appear in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Next, we recall some definitions and properties of the measure of
noncompactness.

The measure of noncompactness « is said to be:

(i) Monotone if, for all bounded subsets By, B2 of X, By C By
implies a(B1) < a(B2);

(ii) Nonsingular if a({z} U B) = a(B) for every x € X and every
nonempty subset B C X;

(iii) Regular a(B) = 0 if and only if B is relatively compact in X.

One of the most important examples of measure of noncompactness is
the Hausdorff measure of noncompactness a defined on each bounded
subset B of X by

a(B) = inf{a >0:BC U B.(x;) where z; € X}a

Jj=1

where B (z;) is a ball of radius < ¢ centered at z;, j =1,2,... ,m.
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It is well known that the Hausdorff measure of noncompactness «
enjoys the above properties (i)—(iii) and other properties (see [1, 3, 5,
9]).

(iv) a(B1 4+ B2) < a(B1) + a(Bs), where B1 + Bo = {x +y: x €
By, Yy e BQ};

(v) a(B1 U Bg) < max{«a(Bi),a(B2)};
(vi)a(AB) < |[A|a(B) for any A € R;
For any W C C(J, X), we define

/OtW(S)dS = {/Otu(s)ds tu € W}, for t € [0, a),

where W(s) = {u(s) € X :u € W}.

Proposition 2.1. If W C C(J,X) is bounded and equicontinuous,
then coW C C(J, X) is also bounded and equicontinuous.

Proposition 2.2 [12]. If W C C(J, X)) is bounded and equicontinu-
ous, then t — a(W (t)) is continuous on J, and

a(W) = maxa(W (1)),

teJ

a(/ot W (s) ds) < /Ot a(W(s))ds, fortel0,al.

Proposition 2.3 [13]. Let {u,}2, be a sequence of Bochner
integrable functions from J into X with ||u,(t)]| < m(t) for almost
all t € J and every n > 1, where m € L(J,R™Y). Then the function
P(t) = al{un(t)}32 ) belongs to L(J,RT) and satisfies

a<{/0tun<s>ds;n>1}) <2/Ot¢(s)ds.

The map T : By CY — Y is said to be an «-contraction if there
exists a positive constant k < 1 such that o(F(B)) < ka(B) for any
bounded closed subset B C By.
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To prove our main results, we need the following lemmas associated
with Hausdorff measure of noncompactness.

Lemma 2.1. Let B be a closed and convez subset of a Banach space
Y. Suppose T : B — B is a continuous operator and J(B) is bounded.
For each bounded subset By C B, set

TY(Bo) = Z(Bo), 7"(Bo) = 7(@(7" (By))), n=2,3,....

If there exist a constant 0 < k < 1 and a positive integer ny such that,
for any bounded subset By C B,

a(T™(By)) < ka(By),
then there exists a D C B such that a(7(D)) = 0.

The proof of Lemma 2.1 is similar to that of Lemma 2.4 in [11], and
it is thus omitted.

Lemma 2.2 (Darbo-Sadovskii’s fixed point theorem) [1]. If B is
a bounded, closed and convexr subset of a Banach space Y, and the
continuous map 7: B — B is an «-contraction, then the map 7 has
at least one fixed point in B.

3. Definition of mild solutions.

Definition 3.1 [12]. The Wright function M,(g) is defined by

Mq(g)an1 (n—(1_)!gr);1_qn)’ 0<g<l, 0eC.

It is known that M,(p) satisfies the following equality (see [17])

501 B (1+5) S
/ 0° M, (0)do = (1+ ) for 6 > 0.

Lemma 3.1 [16]. (i) Let &,n € R be such that n > —1. Ift > 0, then

e 8" ()T (E+n+1)  if E4nFEn
(I‘”P( ))w_{o fesgo—n "N
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(ii) Let £ > 0 and ¢ € L((0,a), X). Define
Ge(t) =I5, ¢, for t € (0,a).
Then

(Ig,.Ge)(t) = (Igincp)(t), 1 > 0, almost all ¢ € [0, a].

Lemma 3.2. Assume that the operator F : C(J',X) — L(J, X)
is continuous. The nonlocal Cauchy problem (1) is equivalent to the
integral equation

z(t) = m(ﬂfo —g(z))
1

+ /0 (t — )91 [Ax(s) + (Fz)(s)]ds, for t € (0,a].

Proof. Suppose (3) is true. Then

(B 0)0) = (1[0 = o)
1 Ss_qul (T ) dr
+F(q>/o< )7 [Aa(r) + (Fa)( )]d])(t),

and applying Lemma 3.1 we obtain that
t
(Ié;qx)(t) =1z0—g(x) +/ [Az(s)+ (Fz)(s)]ds, almost all t € [0, a].
0

This proves that (I&;qx)(t) is absolutely continuous on [0,a]. Since
F € L(J', X), then we have

(“D ., 2)(t) = %(I&;qx)(t) = Az(t) + (Fz)(t), almost all ¢t € [0, a]
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and
(Ip3"2)(0) + g(z) = 0.
The proof of the converse is given as follows.

Suppose (1) is true. Then

(18 (- D8,) ) () = (12 (Aa(s) + (Fa) () ().

Since
a1

(18 (D)) () = 2(0) = s (Lo ")(0)

a1
=xz(t) — =——(x0 — g(x)), forte (0,al,
(1)~ gy (0 ~ 9@) (0,4]
then we have

a1

(1) = Frz7 (o0 — 9(0) + (157 (An(s) + (Fa)())) 0
! I 1
= m(wo —g(@)) + W/o (t — )" [Az(s) + (Fx)(s)] ds,
for ¢t € (0, al.
The proof is complete. o

Before giving the definition of the mild solution of (1), we firstly prove
the following lemma.

Lemma 3.3. If

a (1) = (0 ~ o)
1 t 1
+W/O (t = )7 [Ax(s) + (Fz)(s)]ds, fort >0

holds, then we have

x(t) = tqfqu(t)(xo—g(x))-i—/o (t—s)1" 1 P,(t—s)(Fz)(s)ds, fort>0,
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where

Rt) = [ aoM,(0)Q('8)db.
0
Proof. Let A > 0. Applying the Laplace transform
v(\) = / e Mx(s)ds and w(\) = / e ¥ (Fz)(s)ds, for A >0
0 0

to (4), we have

v(A) = %(aﬁo —9(x)) + %AVO‘) + % w(d)
= (AT — A) (2o — g(2)) + (AT — A) " w(N)
(5) _ /0 e Q(s)(x0 — g(x)) ds

+ /Oo e Q(s)w(N) ds,

0

provided that the integrals in (5) exist, where I is the identity operator
defined on X.

Set ,
Vq(0) = WMZI(G_‘I),

whose Laplace transform is given by

(6) /0 e M, (0)do = e=>",  where g € (0,1).

= /OOO /)DO qd}q(g)e*()\t@)Q(tQ)tqfl(xo_g(x)) d0 dt
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/ / atba (0 AtQ(gq)tq l(xo— (z))de dt
/ { / Val ( q)tq@ql(xo—g(m))de dt,

— /Oo /DQ /°° qhg(0)e= M Q(t)e 1 (F)(s) db ds dt
o Jo Jo

ta—1

:/OOO /Ooo /OOO e (9)e>‘(t+5)Q(2—Z) —(F)(s) o ds dt
- [Q// ()

t—s
7 )()d@ds}d

According to (7) and (8), we have

/ { / Va(0 ( q)tqql(xo—g(a:))de

-1

+q// V(6 (t_qs )(t_;q)q (Fa:)(s)d@ds}dt.

Now we can invert the last Laplace transform to get

—q/ 0t M, (0)Q(t70) (xo — g(x)) dO

+ q/ / Ot — )1 M, (0)Q((t — 5)10)(Fx)(s) df ds
= t17 Py (t) (w0 — g())
+ /0 (t— )T Pyt — s)(Fx)(s) ds.
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The proof is complete. O

Due to Lemma 3.3, we give the following definition of the mild
solution of (1).

Definition 3.2. By the mild solution of the nonlocal Cauchy
problem (1), we mean that the function = € C(J’, X), which satisfies

w(t) = 177" Py(t) (w0 — g(2)) + /O (t = 8)17 Py (t — 5)(Fa)(s) ds,

for ¢t € (0, al.

Suppose that A is the infinitesimal generator of a strongly continuous
semigroup of bounded linear operators (i.e., Cp semigroup) {Q(t)}+>0
in Banach space X. This means that there exists M > 1 such that

M = sup;e(g o) Q)] Bx) < .

Proposition 3.1 [19]. For any fized t > 0, {Py(t)}+>0 is linear and
bounded operator, i.e., for any x € X

M
|Py(t)a] < mlxl-

Proposition 3.2 [19]. Operator {P,(t)}i>0 is strongly continuous,
which means that, for allz € X and 0 <t <" < a, we have

|P,(t"x — Py(t)z] — 0 as. t" =t

Proposition 3.3 [19]. Assume that {Q(t)}1>0 is a compact operator.
Then {P,(t)}1>0 is also a compact operator.

4. Existence results. Define

XD = {a: eC(J,X): th%1+ t1792(t) exists and is ﬁnite}.
—
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For any z € X(9(J'), let the norm || - ||, be defined by

lzllq = sup {t'""z()]}.
te(0,a]

Then (X(@(J'), | -|,) is a Banach space.
For r > 0, define a closed subset B\? (J') ¢ X@(J') as follows:
BW(J') = {z € XD(J): ||y < r}.

Thus, (Bﬁq) (J'), 1I-lq) is a bounded, closed and convex subset of X (.J").

Let B(J) be the closed ball of the space C(J, X) with radius r and
center at 0, that is,

B(J) = {ye (. X): Iyl <.

Thus B(J) is a bounded, closed and convex subset of C'(J, X).
We introduce the following hypotheses.

(Ho) Q(t)(t > 0) is equicontinuous, i.e., Q(t) is continuous in the
uniform operator topology for ¢t > 0.

(Hy) The operator F : C(J', X) — L(J', X) is continuous.
(H2) There exists a function m € L(J,R™) such that

II,me C(J \RT), lm t'7YI§ m)(t) =0,

t—0+

and

|(Fz)(t)] <m(t) for all z € B (J') and almost all ¢ € [0, a].

(H3) There exists a constant L € (0, (T'(q)/M)), the operator g :
C(J', X) — L(J', X) satisfies

lg(z1) — g(xo)| < Ll|lzy — x2|q, for z1, 22 € B (J).

(H4) There exists a constant r > 0 such that

rrrz (tel #1001+ s {i10 [0t as}) <
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(Hs)' The operator g : C(J', X) — L(J',X) is a continuous and
compact map, and there exist positive constants L1, Lo such that
Ly € (0,(T(q)/M)) and |g(z)| < Ly ||z|lq + Ly for all 2 € B (J").

(H4)' There exists a constant r > 0 such that

M t
————— | |xo| + Lo+ sup {th/ t—38) (s ds}) <.
I'(q) — ML, <| o ? te(0,a] 0 ( ) (#)

For any z € Bﬁq)(J' ), define an operator T' as follows
(T)(t) = (Thz) () + (Toz)(D),
where
(T12)(t) = t97 Py(t) (20 — g(x)), for t € (0, a],

(Tox)(t) = /0 (t —8)7 ' P,(t — s)(Fx)(s)ds, fort e (0,al.

It is easy to see that lim; o4 t'1=9(Tx)(t) = (zo — g(x))/(T(q)). For
any y € B(J), set

x(t) =t y(t), fort € (0,al.
Then, z € Bﬁq)(J’). Define .7 as follows:

(FY)(#) = (Z1y)(8) + (F2y) (1),

where " on
(T (), for t € (0, a],
Ty)(t) =
e { (zo — 9(x))/(I'(q)), fort=0,
_ t1=9(Tyx)(t), fort € (0,al,
(Z2y)(t) = { 0. for t = 0.

Obviously, z is a mild solution of (1) in By(,q)(J’) if and only if the

operator equation = T'z has a solution = € Bf(,q)(.] "). Before giving
the main results, we firstly prove the following lemmas.
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Lemma 4.1. Assume that there exists a constant r > 0, such that
the conditions (Hy)—(Hy4) are satisfied. Then T maps By(,q)(,]’) into
Bf(,q)(J’), and T is continuous in Bﬁq)(J’).

Proof. Step 1. T maps Bﬁq)(J') into Bﬁq)(J’). For any = € Bﬁq)(J’)
and ¢ € (0, al], by using (Hy)-(H4), we have

t179(Ta) ()] < [Py (t) (w0 — g(2))]

+ il /0 (t— )T P, (t — )(Fa)(s) ds

M
< = (ol + Lijz = 0llq + [9(0)])

(9)
+%t1’q/o (t — )71 (Fa)(s)| ds
M
<o (|xo| T Lr +1g(0)]

t
+ sup {th/ (t—s)qlm(s)ds})
t€(0,a] 0

<nr.

Hence, ||Tz||, < r for any € B{Y (.J").

Step II. T is continuous in Bﬁq)(J’). For any z,,, « € Bﬁq)(J'),
m=1,2,..., with lim, o ||Zm — z||q = 0, we get

lim ¢, (t) = t'"92(t), fort € (0,al.

m—r o0

Then by condition (H;)

s {tl_q|(Fxm)(t) - (Fx)(t)|} —50 asm — oo
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On the other hand, for ¢ € (0, q],

79 (Tn ) () — (T2)(1)]
< [Py(t)(g9(@m) — g(x))]

ol /0 (t = )T Pyt — ) ((Farm)(s) — (Fz)(s)) ds
I T
Mtt—a [t a—lga=1l=a|( e V() — (Fz)(s)| ds
W/o(t_S) s17 s T (Fay,)(s) — (Fx)(s)| d
ML, o M@)o e V) — (Fa)(s
< Fglom = e+ g se@‘,’a]{ (Fam)(s) = (Fo)(s)]}.

which implies
| T2 —Tx||q — 0 as m — oo.

This means that 7" is continuous in B{? (J'). The proof is complete. O

Lemma 4.2. Assume that there exists a constant r > 0 such that
the conditions (Hy)—(Ha) are satisfied. Then 5 maps B(J) into B(J)
and J is continuous in B(J).

Proof. Step 1. 95 maps B(J) into B(J). For any y € B(J), we have

(Zy)t)|=0<r, fort=0

and

M 1 t —5)1 Im(s)ds <r, for a
()0 < 7t /0@ Y Um(s)ds <r, for t € (0,].

Hence, || %2yl < r, for any y € B(J).

Step I1. F4 is continuous in B(J). For any y,,,y € B(J), m =1,2,...,
set oy (t) = t97 y,(t) and z(t) = t9'y(t) for t € (0,a]. Thus,
T, T € Bf(,q)(J). When lim,,— oo [|[ym — yllB = 0, we get

li_r>n ym(t) = y(t), fort e [0,al,
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then

lim ¢, (t) = t'"92(t), fort € (0,al.

m—0o0
Hence,

nmsw{ﬁwn%wyuﬁmwzo

M0 te(0,a]
On the other hand, for ¢ € [0, d]

19| (Tyz ) (t) — (Toz)(t)], for ¢ € (0,d],

(Zim)0) ~ ()0 = { | for ¢ — 0.

Therefore,

| Z2ym — Pyllp = 0 as m — oo.

This means that 5 is continuous on B(J). The proof is complete. O

Lemma 4.3. Assume that (Ho)—(Hy4) hold. Then {2y, y € B(J)}
18 equicontinuous.

Proof. For any y € B(J), for t; =0, 0 < to < a, then, we get

[(Z2y)(t2) — (F2y)(0)]

éﬂﬂurwﬂﬂ@—wMMMs

M g [* 1
< =t 7'1/ (ta — )7 *m(s)ds — 0 as ta — 0.
L'(q) 2 0
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For 0 < t1 < ty < a, we have

[(Z2y)(t2) — (F2y)(t1)]

gﬂﬂﬁﬂm—w*aw—@wmww

'*.Altéﬂa2—sw*Uza2—sxex$ds

‘AVWm—w*aw—ﬂmme

+ /0 t, Uty — 8)T Py(ta — s)(F)(s) ds

= % /t 2 ty Utz — 5)7 tm(s) ds
Frig [0 G m) s
+ /0 ! t} Uty — s)? 1[Pq(t2 — 8)(Fx)(s) — Py(t; — s)(Fx)(s)] ds

<ILi+ 1+ I3,

where
- A ” =g, — )1 Im(s) ds
Il_p(q) /0 ty Y(t2 —s) (s)d
- /0 1 1yt — 5)7  m(s) ds|,
2M " -4 q— —q g—
bzﬁ@A (677 = )" = 457 (1 — )7 (s ds,
Is = /0 ! ty 9t — 8)T [Py (ty — 5) — Py(t1 — )| (Fz)(s)ds|.

One can deduce that limg, ¢, I; = 0, since I, m € C(J',R*). Noting
that

{t%*q(tl — )17 =ty Uty — 5)7 7 m(s) <t Ut — 5)7 Pm(s),
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and ftl ;79(t; — 5)97 1m(s) ds exists (s € [0,%1]), then by the Lebesgue
dommated convergence theorem, we have

t1
/ [tifq(tl — )t — t;q(tg - s)q_l}m(s) ds — 0 asty — t1,
0

and one can deduce that lim;, 4, Io = 0.

In order for € > 0 to be small enough, we have
t1—e 1
I < / 79t = )| Py(ta — 5) — Pylts — )l ox) [(Fa)(s)] ds
0
t1
+/ 87t — 8)77 [ Py(ta — 5) = Pylts — 8) || pox) [(F)(s)| ds
t1—e

t1
< t%fq/ (t1 — 5)7 ' m(s)ds
0

X sup ||Pq(t2_5)_Pq(t1_S)HB(X)

s€[0,t1—¢]
2M /tl 1 .
+ = t; Ut —8)7 "m(s)ds
F(q) t1—e !
< I3y + I32 + Iss,
where
rI
I3 = @) sup || Py(t2 — s) — Py(ts — )l p(x)
M s€[0,t1—¢]
OM | [
I3 = — / t;7 Ut — 8)T 'm(s) ds
L(q) | Jo !
t1—e
—/ (ty — &) 79ty — e — 5)7 " 'm(s) ds|,
0
oM [ - i .
Iy = 5 /0 (= )9t — 2 — )" — 17ty - 5)Vm(s) ds.

By (Hyp), it is easy to see that Isy — 0 as to — t;. Similar to the
proof that I; and Iy tend to zero, we get I3 — 0 and I33 — 0 as
¢ — 0. Thus, I3 tends to zero independently of y € B(J) as ta — t1,
e — 0. Therefore, |(Fay)(t2) — (F2y)(t1)| tends to zero independently
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of y € B(J) as t2 — t1, which means that {5y, y € B(J)} is
equicontinuous. The proof is complete. ]

Lemma 4.4. Assume that there exists a constant r > 0 such that
the conditions (Hy), (Hz), (Hs)" and (Hy)' are satisfied. Then T maps

ng)(J/) into Bﬁq)(J'), and T is continuous in Bﬁq)(J’),

Proof. For any x € Bﬁq)(,]’), by using (H1), (Hz2), (H3) and (Hy)',
we have

t179(Ta) ()] < [Py (t) (w0 — g(2))]

/0 (t —8)7 1P, (t — s)(Fx)(s)ds

+t17a

M
< ——(Jzo| + Lir + L2)

I'(q)

# M [ ol
< % <|xo| + Lir + Lo

+ tesg);;} {th /Ot(t =) m(s) ds})
<.

Hence, ||Tz|q < r for any x € Bﬁq)(.]’). Using a similar argument to

that used in the proof of Lemma 4.1, we know that T is continuous in
Bﬁq)(J’), by (H1) and (Hy)". The proof is complete. o

Lemma 4.5. Assume that there exists a constant r > 0 such that
the conditions (Hy), (Hz), (Hs)" and (Hy)' are satisfied. Then 7 maps
B(J) into B(J), and T is continuous in B(J).

Proof. For any y € B(J), we have

|xo| + Lir + Lo

(Tl < Fg

<r, fort=0
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and

[(Fy) (O] =t~ (Tx)(t)] <7, fort e (0,a].

Hence, || Zyllp < r, for any y € B(J). Clearly, 2 is continuous in
B(J), by (Hs)'. Using a similar argument to that used in the proof
of Lemma 4.2, we know that 7 is continuous in B(J). The proof is
complete. ]

Lemma 4.6. Assume that there exists a constant v > 0 such
that the conditions (Ho)—(Hsz), (Hs)" and (Hy)' are satisfied. Then
{Sy,y € B(J)} is equicontinuous.

Proof. For any y € B(J), for t1 =0, 0 < t3 < a, we get
Py(t2)(x0 — gla)) — 29
I'(q)

fl-a /0 (ts — )P, (t2 — ) (Fz)(s) ds

[(Fy)(t2) = (FY)(0)] <

+

< |Py(ta) (o — gla)) — 290

['(q)
M

+ mt{q/o (ta — s)¥ 'm(s)ds

— 0 asty — 0.

For any y € B(J) and 0 < #; < t3 < a, we get

[(Fy)(t2) — (Fy)(t1)] < [(F1y)(t2) — (F1y)(t1)]
+ [(Z2y)(t2) — (Z2y)(t1)]
< |(Py(t2) = Py(ta)) (o — g(@))]
+ I + 1 + I3,

where I, I> and I3 are defined as in the proof of Lemma 4.3. According
to Proposition 3.2, we know that [(Jy)(t2) — (Fy)(t1)| tends to zero
independently of y € B(J) as ta — t1, which means that {Jy, y €
B(J)} is equicontinuous. The proof is complete. O
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4.1. The case where Q(¢) is compact. In the following,
we suppose that the operator A generates a compact Cp-semigroup
{Q(t)}+>0 on X, that is, for any ¢ > 0, the operator Q(t) is compact.

Theorem 4.1. Assume that Q(t)(t > 0) is compact. Further-
more, assume that there exists a constant r > 0 such that conditions
(H1)—(H4) are satisfied. Then the nonlocal Cauchy problem (1) has at

least one mild solution in Br(,q)(J’).

Proof. Since Q(t)(t > 0) is compact, from [14, Theorem 2.3.2], Q(¢)
(t > 0) is equicontinuous, which implies that (Hy) is satisfied.

For any z1, 22 € BL? (J'), according to (Hz), we have

19T ) (1) — (Trea) (1)) < %mm) — g(z)|
ML
T(q)

which implies that ||Ty21 — Thzallq < (ML/T(q))||z1 — 22l Thus, we
obtain that

< lz1 — 2|45

(9) a(T1(BO(J)) < Z~a(BY(J).

Next, we will show that, for any t € [0,a], V(t) = {(Dy)(t),y €
B(J)} is relatively compact in X. Obviously, V'(0) is relatively compact
in X. Let t € (0,a] be fixed. For all € € (0,t) and for all 6 > 0, define
an operator .7 s on B(J) by the formula

(Z2sy)(t) = qt' ™1
/ / Ot — 5)7~ 1 M, (0)Q((t — )70)(Fx)(s) d ds
=qt'™ 1Q(e19)

X / N 9(t—s)q*IMq(H)Q((t—s)qﬁ—sqé)(Fx)(s) db ds,
o Js

where z € Bﬁq)(J’). Then from the compactness of Q(c?0)(e?d > 0),
we obtain that the set V;5(t) = {(Zsy)(t),y € B(J)} is relatively
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compact in X for all € € (0,¢) and for all 6 > 0. Moreover, for every
y € B(J), we have

t 4
(T (1) — (Zean)(t)] < \qth | [ oe-s

X My()Q((t — s5)10)(Fx)(s)db ds

t [e%}
+ ‘qth/ / O(t — )91
t—e J o

x My(0)Q((t — 5)10)(Fx)(s) do ds

t
ngtl_q/(t—s ds/ OM,(
0
t
—|—th1_‘1/ (t—s)~ ds/ OM,(
t—e
t
Sthl_q/(t—s ds/ OM,(
0
M o
+ ==t q/ t —s)7 'm(s)ds
gt e

—0ase—0, 6 = 0.

Therefore, there are relatively compact sets arbitrarily close to the set
V(t), t > 0. Hence, the set V(t), ¢ > 0 is also relatively compact
in X. Therefore, {(Zy)(t), y € B(J)} is relatively compact by the
Ascoli-Arzela theorem.

For any {x,,} C B{Y(.J"), set
ti=ag,(t), ifte (0,al,
= {0 < 0
yn(04), ift=0.

Then {y,} C B(J). We can find at least one sequence {Zayn,, }oo_,
which is convergent. Hence,

lim t'7Y(Thx,,, )(t) = li_r>n (Fayn,,)(t), fort e (0,al.

m—o0

This means that {7z, }5°_; is convergent in Bﬁq)(J’). There-
fore, {(Tox)(t),z € Bﬁq)(.]’)} is relatively compact. Thus, we have
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a(To(BI (J"))) = 0. By (9), we have

oT(BIP () < (T3 (B (J') + a(Ta(B(J')))
ﬁa (@) (g
< Frg B )

Thus, the operator 7' is an a-contraction in Bﬁq)(J'). By Lemma 4.1,
we know that T is continuous. Hence, Lemma 2.2 shows that T has
a fixed point in Bﬁq)(J’ ). Therefore, the nonlocal Cauchy problem (1)

has a mild solution in B{? (J'). The proof is complete. O

Theorem 4.2. Assume that Q(t)(t > 0) is compact. Furthermore,
assume that there exists a constant r > 0 such that the conditions (Hy),
(H2), (H3) and (Hy)' are satisfied. Then the nonlocal Cauchy problem

(1) has at least one mild solution in Br(,q)(J’).

Proof. Since Q(t)(t > 0) is compact, from [14, Theorem 2.3.2], Q(¢)
(t > 0) is equicontinuous, which implies that (Hy) is satisfied. Then,
by Lemmas 4.4 and 4.5, we know that T : BY(J) — B(J') is
bounded and continuous, 7 : B(J) — B(J) is bounded, continuous
and {Jy,y € B(J)} is equicontinuous.

According to the argument of Theorem 4.1, we only need to prove
that, for any ¢ € J, the set V1(t) = {(Zy)(t),y € B(J)} is relatively
compact in X. Obviously, V;(0) is relatively compact in X. Let
0 < t < a be fixed. For all § > 0, define an operator .7 on B(J)
by the formula

(TEy)(t) = g /5 00, (0)Q(10) (0 — g(x)) do

— Q) [ 00, (0)Q(196 — 195) (o — g(x)) db,

where x € Bﬁq)(.]). From the compactness of Q(t45)(t?6 > 0), we
obtain that the set V) (t) = {(Zy)(t),y € B(J)} is relatively compact
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in X for all 4 > 0. Moreover, for any y € B(J), we have

4
(Zi2)(t) — (Fx)(t)] = ‘Q/O OMy(0)Q(t96) (o —g(x))cw‘
< gM(|xo| + Lir + La) /(S OM,4(6)db.
0

Therefore, there are relatively compact sets arbitrarily close to the
set Vi(t), t > 0. Hence, the set Vi(t), t > 0, is also relatively
compact in X. Moreover, {Zy,y € B(J)} is uniformly bound by
Lemma 4.5. Therefore, {(Fy)(t),y € B(J)} is relatively compact
by Ascoli-Arzela theorem. Using a similar method as in the proof
of Theorem 4.1, we get {(Tz)(t),z € B (J')} is relatively compact.
Thus, o(T(B(J))) = 0. Hence, Lemma 2.2 shows that 7" has a fixed
point in Bﬁq)(.] ), which means that the nonlocal Cauchy problem (1)
has a mild solution. The proof is complete. ]

Remark 4.1. If g is not a compact map, we use another method given
in [20] to consider the following integral equations

z(t) =t P, <t + %) (xo —g(z))
+ / (t — )T P,(t — s)(Fx)(s)ds, te€(0,a).
0

For any n € N, noticing that the operator Q(1/n) is compact, one
can easily derive the relative compactness of V(0) and V(¢)(t > 0).
Then, (10) has one mild solution in Bf(,q)(,] ). By passing the limit, as
n — 00, one obtains a mild solution of the nonlocal Cauchy problem
(1). However, because Q(t) is replaced by Q(1/n), one needs a more
restrictive condition than (Hy)’, such as

(H4)" There exists a constant » > 0 such that

M ¢
= <|$0| + Lyr + Ly + sup {th/ (t —s)9"tm(s) ds}) <r,
['(q) t€(0,a) 0

where M. = sup,¢(o o+ |Q(t)]B(x), € is a small constant.



580 YONG ZHOU, LU ZHANG and XIAO HUI SHEN

Now, we consider the nonlocal Cauchy problem (2) and introduce the
following hypotheses.

(h1) For each t € J', the function f(¢,-) : X — X is continuous
and, for each x € C(J’, X), the function f(-,x) : J* — X is strongly
measurable.

(hg) There exists a function m € L(J,R™) such that
q ! + : 1—q/719 —
Ig,m e C(J',R™), tgr&t (Ig,m)(t) =0

and

|f(t,z)] <m(t) for all z € B (J')and almost all ¢ € [0, a].

Corollary 4.1. Assume that Q(t)(t > 0) is compact. Furthermore,
assume that there exists a constant r > 0 such that the conditions (hi),
(ha), (Hs) and (Hy) are satisfied. Then the nonlocal Cauchy problem
(2) has at least one mild solution in Bﬁq)(J’),

Proof. Let (Fx)(t) = f(t,z). According to (h1) and (hs), f(t,z) is
Lebesgue integrable. From Bochner’s theorem, it follows that f(¢,x)
is Bochner integrable. Thus, F : C(J’, X) — L(J', X) is continuous.
By Theorem 4.1, the conclusion of Corollary 4.1 holds. The proof is
complete. u]

Similarly, we have the following corollary.

Corollary 4.2. Assume that Q(t)(t > 0) is compact. Furthermore,
assume that there exists a constant r > 0 such that the conditions (hi),
(ha), (H3)" and (Hy)" are satisfied. Then the nonlocal Cauchy problem

(2) has at least one mild solution in Br(,q)(J’).

Remark 4.2. Condition (h2) of Corollaries 4.1 and 4.2 can be replaced
by the following condition.

(hg)’ There exist a constant ¢; € (0,¢) and m € LY/9(J,R*) such
that

|f(t, )] <m(t), forallz e B (J') and almost all t € [0, a].
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In fact, if (h2)" holds, by using the Holder inequality, we know that
(h2) holds.

4.2. The case where Q(t) is not compact. If Q(t) is noncompact,
we give an assumption as follows.

(Hs) There exists £ € L(J,R") such that I, ¢ exists and, for any
bounded D C X,

a(F(D)) < L(t)a(D), for almost every t € [0, a].

Theorem 4.3. Assume that there exists a constant r > 0 such
that the conditions (Ho)—(Hs) are satisfied. Then the nonlocal Cauchy

problem (1) has at least one mild solution in Bﬁq)(J’).

Proof. By Lemmas 4.2 and 4.3, we know that % : B(J) — B(J) is
bounded, continuous and {Z2y,y € B(J)} is equicontinuous. Next, we
will show that 7 is compact in a subset of B(J).

For each bounded subset By C B(J), set
T (Bo) = J(By), T™"(Bo) = Z (0(7" H(By))), n=2,3,...
Similar to [17], there exists a k € (0, 1) such that
(T (Bo(t))) < ka(Bo).

Then, we know from Proposition 2.1, Z"(By(t)) is bounded and
equicontinuous. Thus, from Proposition 2.2, we have

a(7™(Bo)) = max o(F"(Bo(t)))-

t€(0,a]

Hence, )
a(T"(By)) < ka(By).

Furthermore, by Lemma 2.1, there exists a D C B such that

o(F(D)) = 0.
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Define
BW(J)={zeC(J,X): () =t"""y(t),t € (0,a],y € D},
with the norm || - ||, defined by

|zllg = sup {t"9|=(t)[}.
t€(0,a]

Then, ||lz|, = |lyllz < r, which implies B (J) € B (J'). Since

(D) is compact, using a similar method as in the proof of Theo-

rem 4.1, we get To(B'?(J")) is compact, i.e.,

(11) oTo(BL(J")) = 0.

On the other hand, for any x1, x5 € Eﬁq)(.]’) and ¢ € (0, a], according

to (Hs), we have

179 (T ) (1) — (Tyaea) (1)) < %mm) — g(z2)]

< ML) )
= F(q) 1 21lg>»

which implies that ||Thx1 — Thza|q < (ML/T(q))||z1 — z2llq- Thus, we
obtain that

Bla)( ML =) g
(12) a(Ty(BW(J"))) < ma(Bﬁ ().

By (11) and (12), we have

oT(B(J))) < a(T1(BY(J) + a(T2(BP(J)))

ﬁa B ('
< B,

Thus, operator T is an a-contraction in B\ﬁq)(J'). By Lemma 4.1, we
know that T is continuous. Hence, Lemma 2.2 shows that T" has a fixed

point in BL? (J') ¢ B (J). Therefore, the nonlocal Cauchy problem

(1) has a mild solution in Bﬁq)(,] "). The proof is complete. O
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Theorem 4.4. Assume that there exists a constant r > 0 such that
the conditions (Ho)—(Hsz), (Hs)', (Hs)' and (Hs) are satisfied. Then the
nonlocal Cauchy problem (1) has at least one mild solution in Bﬁq)(,]’).

Proof. Since g(x) is compact and P,(t) is bounded, {(Z1y)(t),y €
B(J)} is relatively compact. For any {z,} C B{?(J’), set

tt=ag,(t), iftec(0,qa],
it = {0 1€ 0
yn(0+), ift=0.

Then {y,} C B(J). We can find at least one sequence where
{PAyYn,, }52_, is convergent. Hence,

lim ¢'79(Than,,)(t) = lim (Fiyn,)(t), fort € (0,a].
This means that {Tiz,, }>°_; is convergent in Bﬁq)(J’). There-
fore, {(Thz)(t),z € Bﬁq)(J')} is relatively compact. Thus, we have
o(Ty(BI(J"))) = 0.

By the proof of Theorem 4.3, we know that there exists a B\ (J) c
B9 (.J") such that To(B'? (J)) is relatively compact, i.e., a(To(BLY(J")
= 0. Hence, we have

a(T(BI(T)) < a(Ti(BP(]))) + a(Ta(B(J))) = 0.

Therefore, Lemma 2.2 shows that 7' has a fixed point in B (J') C
BY(J'). Therefore, the nonlocal Cauchy problem (1) has a mild
solution in Bﬁq)(J'). The proof is complete. O

Corollary 4.3. Assume that there exists a constant r > 0 such that
the conditions (Hy), (h1), (ha) and (Hs)—(Hs) are satisfied. Then the
nonlocal Cauchy problem (2) has at least one mild solution in Bﬁq)(,]’).

Corollary 4.4. Assume that there exists a constant r > 0 such that
the conditions (Hyp), (h1), (ha), (H3), (Hs) and (Hs) are satisfied.
Then the nonlocal Cauchy problem (2) has at least one mild solution in
BY ().
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5. An example. Let X = L?([0,n],R). Consider the following
fractional partial differential equations.

Ofu(t, z) = O*ul(t, z) + 0.G(t,u(t, 2)), z €[0,7], t € (0,q],
u(t,0) = u(t,m) =0, t € (0,qal,

u(0,2) + ;/0 E(z,y)u(ti,y) dy = uo(z), =z €[0,7],

where 9 is a Riemann-Liouville fractional partial derivative of order
0 <qg<1 a>0,Gis a given function, n is a positive integer,
0<ty<ts < - <ty <a, ulz) € X =L*[0,7,R), k(z,y) €
L2([0, 7] x [0, 7], RT).

We define an operator A by Av = v with the domain

D(A) ={v(-) € X : v,v" absolutely continuous,
v € X, v(0) =v(m) = 0}.

Then A generates a strongly continuous semigroup {Q(t)}+>0 which
is compact, analytic and self-adjoint. Clearly, the nonlocal Cauchy
problem (2) and (hq) are satisfied.

System (13) can be reformulated as the following nonlocal Cauchy
problem in X

{ LDax(t) = Ax(t) + f(t,z(t)), almost all t € [0, a],
(I "2)(0) + g(x) = o,

where z(t) = u(t,-), that is, z(t)(z) = u(t, 2), t € (0,qa], z € [0,7]. The
function f :J' x X — X is given by

[t 2(t)(2) = 0:G(t, u(t, 2)),
and the operator g : C(J', X) — L(J’, X) is given by

where
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for ve X = L([0,7],R), z € [0, 7].
We can take ¢ = 1/3 and f(t,z(t)) = t~*/*sinz(t), and choose

m(t) =t L=(n+ 1)</07r /0” k2 (z,y) dy dZ> N

and

oM ATELEERA)

T T(1/3)— ML <|x°| 90+ =)

Then, (h1), (he), (Hs) and (Hy) are satisfied (noting that K, : X — X
is completely continuous). According to Corollary 4.1, system (13) has
a mild solution in Bﬁl/B)((O, a)), provided that (M L/T'(1/3)) < 1.
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