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ABSTRACT. We show that a method of embedding for a
class of non-linear Volterra equations can be used in a novel
fashion to obtain variation of parameters formulas for Volterra
integral equations subjected to a general type of variation of
the equation. The approach is of intrinsic interest. Our vari-
ation of parameters formulas generalize classical formulas for
ordinary differential equations (due to Alekseev) and for linear
Volterra integral equations (based on resolvents). Illustrative
examples are related to known results.

1. Prologue. Our starting point is the n-dimensional systems
(n ∈ {1, 2, 3, . . .}) of conventional, in general non-linear, Volterra
integral equations (VIEs) of the type:

(1)
x(t) = g(t) +

∫ t

t0

k(t, s,x(s)) ds

(t0 ≤ t ≤ T ; −∞ < t0 <∞).

The book [12] gives a comprehensive theoretical treatment of such
equations; [21] gives a compact review of some essentials, and [8]
includes background in a very useful and accessible form.

Vectors or vector-valued functions appear in bold font lower case,
and matrices and matrix-valued functions in bold font upper case. The
function x is the unknown function whose existence and properties
(at least continuity is required) follow from properties of g and k, see
below.
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To anticipate, the embedding referred to in the title and the abstract
is associated with the definition, in terms of a solution x of (1), of a
function x̂ satisfying

(2) x̂(t, u) := g(u) +

∫ t

t0

k(u, s,x(s)) ds, t0 ≤ t ≤ u ≤ T.

Use of this embedding is a novelty of the paper, and generalizations of
(2) and further details appear below in Section 4 and following. For (1)
we seek, as an outcome, to establish a relationship between a solution
x(t) of (1) and a solution y(t) of a perturbed equation of the form

(3a) y(t) = g(t) +

∫ t

t0

k(t, s,y(s)) ds + ξ(t)

where ξ(t) depends on t and values y(s) with t0 ≤ s ≤ t. We write

(3b) ξ(t) ≡ ξ(t,yt) where yt denotes the restriction of y to [t0, t].

Results similar to these appear in the literature for specific choices of
perturbation ξ(t) and specific forms of (1), such as that obtained by
integrating x′(t) = kkk(t,x(t)). See also, e.g., [5]. When k(·, ·, ·) is linear
in its third argument, we write k(t, s, z) in the form K(t, s)z. We
use the convention k(t, s, z) = 0 (and, likewise, ψ(t, s, z) = 0) when
s > t (t, s ∈ [t0, T ], z ∈ Rn). We require continuity conditions (our
conditions on ξ are given in Assumptions 1.3):

Assumption 1.1. We assume that, for z ∈ Rn and for t0 ≤ s ≤ t,
t ∈ [t0, T ], as appropriate,

(a) g(t), k(t, s, z), v(t, s, z), K(t, s), kkk(t, z), etc., are continuous
unless otherwise stated;

(b) in addition, the derivatives with respect to s and t (t0 ≤ s ≤ t ≤ T )
and the Jacobians with respect to z of k(t, s, z), v(t, s, z), ϕ(t, z),
kkk(t, z), etc., exist and are continuous.

Definition 1.2. The notation x and y refers to any pair of solutions
of (1) and (3), respectively, that exist and are defined on [t0, T ]. (If
x or y does not exist, then the corresponding statement is vacuous.)
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C ⊆ C[t0, T ] denotes a class of continuous vector-valued functions on
[t0, T ], chosen so that given solutions x, y lie in C.

Finding an apposite choice of C may require additional investigation,
which is not pursued here. Under certain conditions, C ⊆ C1[t0, T ].
In some cases, T ∈ [t0,∞) is finite but arbitrary. In other cases, it
may be determined by the maximal interval on which both x and y
exist. When [t0, T ] is bounded, we can exploit uniform continuity of
continuous functions. The discussion suggests that, with additional
restrictions on k, we may be able to consider [t0,∞) and to unify our
notation; we interpret [t0, T ] as [t0,∞) if T is infinite.

Assumption 1.3 a. For all z ∈ C ⊆ C[t0, T ], ξ(t, zt) is continuous
for t ∈ [t0, T ].

b. For all z ∈ C ⊆ C[t0, T ], ξ(t0,zt0 ) = 0.

c. For all z ∈ C∩C1[t0, T ], (d/dt)ξ(t, zt) is continuous for t ∈ [t0, T ].

With this class of perturbations, (3) will be a Volterra equation such
equations are also called causal equations or non-anticipative equations
but will not necessarily be a conventional Volterra integral equation like
(1). The following statement previews the outcome of our theory.

Theorem 1.4. Suppose x(t) and y(t) are solutions of (1) and (3),
on [t0, T ], where T < ∞, suppose I is the matrix identity and, given
Assumptions 1.1 1.3, let

(4) U(t, t0,x0) = I+

∫ t

t0

H(t, s,x(s))U(s, t0,x0) ds (t ∈ [t0, T ])

where H(t, s,x(s)) = (∂/∂z)K(t, s, z)|z=x(s) for t0 ≤ s ≤ t ≤ T . Then
x(t) and y(t) are related by

(5) y(t) − x(t) =

∫ t

t0

U(t, s,y(s))

{
d

ds
ξ(s,ys)

}
ds (t ∈ [t0, T ]).

We recall and refine this result in Theorem 5.2 and give a rigorous
and detailed proof. The mathematical detail is given (at the risk of



162 EPHRAIM O. AGYINGI AND CHRISTOPHER T.H. BAKER

pedantry) to provide clarity and to enable the validity of our arguments
to be checked. We rely, when required, on Assumptions 1.1 and 1.3,
but we note the following remark.

Remark 1.5. Assumptions 1.3 hold for all z ∈ C, and we may be able
to relax them, for example, in those results where no explicit mention
is made of (d/dt)ξ(t, zt),

2. Introductory material. We recall some background material.
For additional reading we refer to the books [14, subsection 1.14], [12],
[17, Sections 2, 5-2, 6], and to [9, 10, 16, 18].

2.1. Some illustrations. In general, we suppose Assumptions 1.3
hold. Of interest in the context of classical results mentioned in the
abstract, we have the example ξ(t) = ξ�(t,yt) where, given a suitable
ψ = ψ(·, ·, ·),

(6) ξ�(t, z) =

∫ t

t0

ψ(t, σ, z(σ)) dσ, for z ∈ C[t0, t],

and where the integral in (6) is interpreted as a Riemann integral. Now,
(3) becomes

(7) y(t) = g(t) +

∫ t

t0

k(t, s,y(s)) ds +

∫ t

t0

ψ(t, σ,y(σ)) dσ

(see [7]) and (5) becomes

(8) y(t)− x(t) =

∫ t

t0

U(t, s,y(s))

{
d

ds

∫ s

t0

ψ(s, σ,y(σ)) dσ

}
ds.

If ψ(t, s,y) = ϕ(s,y) is independent of t, then y(t) − x(t) =∫ t

t0
U(t, s,y(s))ϕ(s,y(s)) ds (t ∈ [t0, T ]). Also, following Beesack [5]

(who [ibid, page 197] suppresses t0), we can consider

(9) y(t) = g(t) +

∫ t

t0

K(t, s)y(s) ds + h
(
t,y(t),

∫ t

t0

ψ
(
t, s,y(s)

)
ds
)

as a perturbed form of the linear equation x(t)=g(t)+
∫ t

t0
K(t, s)x(s)ds.
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Example 2.1. (i) The choice in (6) provides an example that we
may generalize. Suppose that α(t) ≤ β(t) ∈ [t0, t] for t ∈ [t0, T ], that α
and β have continuous derivatives on [t0, T ], and α(t0) = β(t0). Then

the choice ξ(t, zt) =
∫ β(t)

α(t)
ψ(t, σ, z(σ)) dσ provides a generalization.

(ii) Suppose that, for w = [w1, w2, . . . , wn]
T the notation exp (w)

denotes [exp(w1), exp(w2), . . . , exp(wn)]
T . We can define ξ(t, zt) :=

exp {ν ∫ t

t0
ψ(t, σ, z(σ)) dσ} − eT , for ν ∈ R, where e := [1, 1, . . . , 1].

(iii) We can define ξ(t, zt) := ε{z(t) − z(t0)}. Assumptions 1.3a c
are satisfied in the above examples. In the case ξ(t, zt) = h(t, z(t),∫ t

t0
ψ(t, s, z(s)) ds), compare (9), h and ψ must satisfy appropriate

conditions to satisfy Assumptions 1.3.

2.2. Existence of solutions of (1) and (3). Some discussions of
(1) and (3), in particular, in case (3), explicitly assume both existence
and uniqueness of a solution of the perturbed and unperturbed prob-
lem. Our convention for interpreting x and y (Definition 1.2) allows us
to restrict our remarks on existence and uniqueness results for x and y
to a brief discussion: we can satisfy ourselves that our results are not in
general vacuous by referring to the literature. With our assumptions,
both (1) and (3) are Volterra or causal equations, for which general
theory may be applied; see, e.g., [9]. We have already cited [12] as a
source of results for (1), see also [10, 18], and the following result is
stated without proof.

Theorem 2.2. If Assumptions 1.1 and 1.3 hold, then x(t) and
y(t) in (1) and (7) exist for t ∈ [t0, T ] and x and y are continuously
differentiable on [t0, T ]. Thus, the class C of solutions of (1) and (3)
can be taken as a subset of C1[t0, T ], i.e., C ⊆ C1[t0, T ].

2.3. Variation of parameters formulas. We recall results
for ODEs and VIEs to provide background and orientation, and to
reveal patterns. Many discussions of variation of parameters formulas
(VoPF), sometimes termed variation of constants formulas, commence
with a result associated with a theorem of Alekseev for ordinary
differential equations (ODEs), originally published [3] in Russian with
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an English summary. We can deduce results for

(10) x(t) = x0 +

∫ t

t0

kkk(s,x(s)) ds,

cf. Theorem 3.2. As examples of (1), it is also convenient to consider
linear Volterra integral equations. Here, the properties of resolvent
kernels (see (26) and related kernels (see, e.g., (28)) sometimes col-
lectively termed solvent kernels have a role in VoPF that is also well
known. Some results for VIEs have been obtained by differentiating
the VIE to obtain a Volterra integro-differential equation (VIDE) and
using a VoPF for the VIDE. For example, (3) yields (on differentiating,
if this is valid; in particular, if ξ(t,yt) is differentiable),

(11) y′(t) = g′(t) + k(t, t,y(t)) +

∫ t

t0

∂

∂t
k(t, s,y(s)) ds+

d

dt
{ξ(t,yt)}.

Compare with the integro-differential equation in Hu et al. [15, equa-
tion (1.11)].

2.4. Further notation. When discussing solutions of (1) and of
perturbed forms of (1), we seek solutions that are functions of one
variable (t ∈ [t0, T ], say). We shall (using a systematic embedding see
the further detail in subsection 4.1) relate such functions {z = z(·)}
of one variable to a class {ẑ = ẑ(·, ·)} of functions of two variables.
Equation (2) provides an illustration. It suffices to define ẑ(t, u) for all
(t, u) ∈ Dt0 (or (t, u) ∈ Dtε with tε > t0) where

(12) Dt� := {t� ≤ t ≤ u ≤ T } (for t� ∈ R, with t� < T ).

Definition 2.3. (a) Given any ŵ(t, u), continuous for (t, u) ∈ Dt0 ,
w(t) denotes ŵ(t, t) for t0 ≤ t ≤ T <∞, and w is called the section of
ŵ.

(b) Given w(t) for t0 ≤ t ≤ T <∞, any function ŵ : Dt0 ⊂ [t0, T ]×
[t0, T ] → Rn with ŵ(t, u) continuous for (t, u) ∈ Dt0 , generated from
w by a prescribed rule for embedding, and satisfying ŵ(t, t) = w(t), is
an extension of w.
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Remark 2.4. (a) We shall be concerned with the extension x̂ of x
obtained from an equation (1) and ŷ of y obtained from (3) in each
case through a process of embedding clarified in subsection 4.1.

(b) When z(t) ≡ z(t; t0, γ), z has two parameters t0 and γ, and ẑ
inherits them; thus, ẑ(t, u) ≡ ẑ(t, u; t0, γ).

2.5. Notation for derivatives. Suppose that, for each t ≥ t0,
b(s, t;σ,β) ∈ Rn depends on s, t, σ ∈ R and β = [β1, β2, . . . , βn]

T ∈
Rn. For differentiable b(·, ·; ·, ·),

(13)
∂

∂β
b(t, u;σ,β)

:=

[
∂

∂β1
b(t, u;σ,β),

∂

∂β2
b(t, u;σ,β), . . . ,

∂

∂βn
b(t, u;σ,β)

]
∈ Rn×n.

Without care, the partial derivatives that we use could lead to confusion
in the detailed manipulation. For a compact notation for derivatives of
functions, a positive integer suffix 	 ∈ {1, 2, 3, . . .} denotes a first-order
partial derivative, with respect to the 	th variable. When using the
subscript notation, a Jacobian matrix is designated in a bold capital
font; for example, B4(t, u; t0,α) := (∂/∂β)b(t, u;σ,β)|σ=t0,β=α. (As
an aid to the reader, we recall our notation in the text.) For clarification
only, we state the following.

Definition 2.5. Given a function z of scalar-valued variables
u, u1, u2, . . . , vector-valued variables v1,v2, . . . and vector-valued func-
tions w1,w2, . . . that depend on one or more of u, u1, u2, . . . , dz/du
denotes the total derivative with respect to u, e.g.,

dz

du
(u, u1, u2,v1,v2,w1(u),w2(u1))

:= lim
δu→0

z(u + δu, u1, u2,v1,v2,w1(u+ δu),w2(u1))

δu

− z(u, u1, u2,v1,v2,w1(u),w2(u1))

δu
.

We shall use the following result concerning Jacobians.
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Lemma 2.6. Suppose that f : Rn → Rn and that, for a given
u0 ∈ Rn and arbitrary δ ∈ Rn,

(14) f(u0 + εδ) = f(u0) + εJu0δ + o(ε) as ε↘ 0,

where Ju0 is independent of ε and δ but depends on u0. Then Ju0 is
the Jacobian of f at u0.

The existence of Ju0 that depends upon u0 but is independent of δ
and satisfies (14) corresponds to the definition of a classical Frechet
derivative where Ju0 is its unique representation as a matrix of partial
derivatives. Indeed, if f(u0 + εδ) = f(u0)+ ε

[
F1(u0)

]
δ+ o(ε) for every

δ it follows (by selecting the vectors δ to be successive columns of I
and taking limits) that F1(u0) = Ju0 . There is an analogous result for
the t-dependent Jacobian of f(t,u), namely Ju0(t) := F2(t,u0).

3. Some known results concerning VoPF. Results for ODEs
and for linear Volterra integral equations appear in the literature, and
we recall some of these results here before addressing our main result.

3.1. Variation of parameters formulas for ODEs. Amongst the
variation of parameters formulas in the literature is that of Alekseev
[3], for ODEs, which we shall state (in a modified form) to further
orientate the reader and for comparison later.

Remark 3.1. A number of writers associate the names of both
Alekseev [3] and Gröbner [13] with variation of parameters formulas for
ordinary differential equations. In an illuminating paper, Wanner and
Reitberger [22] discuss the connection between their formulas, slightly
generalize them, and discuss applications.

We endeavor to use a notation in our later results that is evocative
of the theory for ODEs. An absolutely continuous solution1 of (10)
satisfies

(15) x′(t) = kkk(t,x(t)) (for almost all t ∈ [t0, T ]) with x(t0) = x0.

The converse also holds, and we can consider differentiable perturba-
tions of (10) in lieu of (15). To denote the dependence of the solution
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of (15) on the initial conditions, we write x(t) := x(t; t0,x0). We shall
compare our results with results relating the solution x of (15) to a
solution of

(16a) y′(t) = kkk(t,y(t)) +ϕ(t,y(t)) (for almost all t ∈ [t0, T ]),

with a suitable perturbation ϕ(t,y(t)) and with the unperturbed initial
condition

(16b) y(t0) = x0.

Thus, y(t) := y(t; t0,x0) and, formally, (16) yields

(17) y(t) = x0 +

∫ t

t0

kkk(s,y(s)) ds +

∫ t

t0

ϕ(s,y(s)) ds (t0 ≤ t ≤ T ),

and this equation provides a special case of (7) and serves to illustrate
our results. Our general result, Theorem 5.2, will provide a result when
(17) is replaced by

(18)
y(t) = x0 +

∫ t

t0

kkk(s,y(s)) ds + ξ(t,yt)

(where yt(s) ≡ y(s; t0,y0) for t0 ≤ s ≤ t ≤ T ).

We write
(19)

KKK2(t, z) :=
∂

∂w
kkk(t,w)

∣∣∣
w=z

, X3(t, t0,x0) :=
∂

∂z
x(t; t0, z)

∣∣∣
z=x0

.

Given that kkk, ϕ ∈ C[[t0,∞)×Rn,Rn], and the JacobianKKK2(t, z) exists
and is continuous on [t0,∞) × Rn, there exists a unique continuous
solution x(t; t0,x0) of (15) for t ≥ t0.

Theorem 3.2 (Alekseev). If x(t; t0,x0) satisfies (15) and y(t) ≡
y(t; t0,x0) is a solution of (16) (with y(t0) = x0), and UUU(t, t0,x0) =
X3(t, t0,x0), then y(t; t0,x0) satisfies the integral equation
(20)
y(t; t0,x0) = x(t; t0,x0)

+

∫ t

t0

UUU(t, s,y(s; t0,x0))ϕ(s,y(s; t0,x0)) ds for t ≥ t0.
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For the generalization (18), our own theory (Theorem 5.2) yields,
where y(t) = y(t; t0,x0),

(21) y(t) = x(t; t0,x0) +

∫ t

t0

UUU(t, s,y(s))
d

ds
ξ(s,ys) ds for t ∈ [t0, T ] .

Remark 3.3. For the replacement of x0 by y0 in (20), our results
can be supplemented on observing that x(t, t0;y0) = x(t, t0;x0) +∫ 1

0 X3(t, t0;x0 + σ[y0 − x0])[y0 − x0] dσ, or

(22) x(t, t0;y0) = x(t, t0;x0)+

∫ 1

0

UUU(t, s,x0+σ[y0−x0])[y0−x0] dσ.

3.1.1. A lemma that can be used to establish Theorem 3.2.
Lemma 3.4, below, has been used (see, e.g., [16], [17, page 78])
to prove Theorem 3.2. We again write KKK2(t,w) := (∂/∂w)kkk(t,w),
X3(t, t0,x0) := (∂/∂x0)x(t; t0,x0) and also x2(t; t0,x0) := (∂/∂t0)x(t;
t0,x0).

Lemma 3.4. (‘U-H’ and ‘v-H’ equations for (10)). Denote
KKK2(t,x(t; t0,x0)) by HHH(t; t0,x0). Then:

(i) X3(t, t0,x0) exists and UUU(t, t0,x0) = X3(t, t0,x0) is the solution
of the equation
(23)

∂

∂t
UUU(t, t0,x0) =HHH(t, t0,x0)UUU(t, t0,x0) such that UUU(t0, t0,x0) = I;

(ii) x2(t; t0,x0) := (∂/∂t0)x(t; t0,x0) exists and is the solution
(v(t) ≡ x2(t; t0,x0)) of the equation
(24)

v′(t) =HHH(t, t0,x0)v(t) (for t ≥ t0) with v(t0; t0, x0) = −kkk(t0, x0).

Remark 3.5. (a) We seek a similar result to Theorem 3.2, but for
perturbations of an integral equation (1). In establishing Theorem 5.2
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(our main theorem on VoPF), we adapt an approach found (cf., e.g.,
[17]) in some proofs of Lemma 3.4.

3.2. Resolvents for linear VIEs. Properties of resolvents for the
linear version of (1),

(25) x(t) = g(t) +

∫ t

t0

K(t, s)x(s) ds (t0 ≤ t ≤ T ),

are easily found in the literature (cf. [9, page 25 et seq.], [12, 18], etc.)
and will not be proved here. Such properties lead to known variation
of parameters formulas, and they will be exploited in our section on
perturbation theory in subsection 4.3. Results from subsection 4.3 are,
in turn, used later in the discussion in subsection 4.6 concerning an
interchange of the order of differentiation.

Corresponding to K(t, s) (where K(t, s) = 0 if s > t) is the resolvent
kernel R(t, s), which satisfies R(t, s) = 0 for t0 ≤ t < s ≤ T and is
continuous for t0 ≤ s ≤ t ≤ T and satisfies

(26)

R(t, s) = K(t, s) +

∫ t

s

K(t, σ)R(σ, s) dσ

= K(t, s) +

∫ t

t0

K(t, σ)R(σ, s) dσ.

Lemma 3.6. (a) If T <∞, then supt0≤s≤t≤T ‖R(t, s)‖ is finite.

(b) The solution of (25) can be expressed as

(27) x(t) = g(t) +

∫ t

t0

R(t, s)g(s) ds (t ∈ [t0, T ]).

As an alternative to the use of R(t, s) (satisfying (26)) we may
follow Bownds and Cushing (see [6], [8, pages 58 60]) and use U(t, s)
satisfying

(28) U(t, s) = I+

∫ t

s

R(t, σ) dσ (t0 ≤ s ≤ t ≤ T ),
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with U(t, σ) = 0 for σ > t and U(t, t) = I. From equation (28), we
obtain

(29)
∂

∂s
U(t, s) = −R(t, s) (t0 ≤ s ≤ t ≤ T ), U(t, t) = I.

When substituted into equation (27), this yields (30), and integration
by parts gives (31) in:

Theorem 3.7. With the given continuity assumptions on K and on
g,

(30) x(t) = g(t)−
∫ t

t0

{
∂

∂s
U(t, s)

}
g(s) ds (t ∈ [t0, T ]).

If g′(t) exists and is continuous,

(31) x(t) = U(t, t0)g(t0) +

∫ t

t0

U(t, s)g′(s) ds (t ∈ [t0, T ]).

Observe the following result.

Lemma 3.8 (The ‘K-U’ equation for (25)). For t0 ≤ s ≤ t ≤ T ,

(32)

U(t, s) = I+

∫ t

s

K(t, σ)U(σ, s) dσ

= I+

∫ t

t0

K(t, σ)U(σ, s) dσ, with U(t, s) = 0 if s > t.

3.3. Variation of parameters formulas based upon resol-
vents, for linear VIEs. From (27), the relation between the solution
x(t) of (25) and any solution y(t) of an equation

(33) y(t) = g(t) +

∫ t

t0

K(t, s)y(s) ds + ξ(t,yt) (t0 ≤ t ≤ T ),
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is given by

(34) y(t) − x(t) = ξ(t,yt) +

∫ t

t0

R(t, s)ξ(s,ys) ds (t0 ≤ t ≤ T ).

Given x, (34) is to be satisfied by y but need not define y unless y
exists and is unique.

Remark 3.9. As special cases,

(i) (33) and (34) hold if ξ(t,yt) =
∫ t

t0
ψ(t, s,y(s)) ds, and

(ii) if ξ(t,yt) =
∫ t

t0
K(t, s)ϕ(s,y(s)) ds in (33), then (34) becomes

y(t) = x(t)+
∫ t

t0
R(t, s)ϕ(s,y(s)) ds. These cases are examples of VoPF

for linear Volterra integral equations found in the literature.

There are corresponding results to (31) but expressed in terms of U.
We arrive at the following variation of parameters formulas (which do
not require Assumption 1.3 (b) to hold).

Theorem 3.10. Solutions x and y of (25) and (33), respectively,
are related by the equation

(35) y(t)−x(t) = ξ(t,yt)−
∫ t

t0

{
∂

∂s
U(t, s)

}
ξ(s,ys) ds (t ∈ [t0, T ]).

Further, if the total derivative (d/ds)ξ(s,ys) exists and is continuous
(for s ∈ [t0, t] ⊂ [t0, T ]), then
(36)

y(t) = x(t) +U(t; t0)ξ(t0,yt0) +

∫ t

t0

U(t, s)
d

ds
ξ(s,ys) ds, t ∈ [t0, T ].

3.4. Previous work on VoPF for non-linear Volterra equa-
tions. Research into VoPF for perturbed non-linear Volterra integral
equations, in particular (1) and the perturbed form (7), i.e.,

(37) y(t) = g(t) +

∫ t

t0

k(t, s,y(s)) ds + ξ�(t,yt) (t0 ≤ t ≤ T ),
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where ξ�(t,yt) is given by (6), has an interesting history. (See Math-
ematical Reviews [4], in particular [4, Review MR0430715, Review
MR0430716 and Review MR1227001].) The authoritative paper by
Beesack [5] includes a useful summary, which we quoted in [2, Ap-
pendix]. Sheng and Agarwal [20] extend the result of Beesack and give
analogues for discrete equations. See also [15].

Remark 3.11. The history of the subject indicates the need to check
the manipulative detail in mathematical arguments, which is the reason
we include much of the detail presented here.

4. Embedding, and its properties required in the context of
VoPF. We prove Theorem 1.4 (refined and restated in Theorem 5.2)
towards the end of the paper, as a consequence of results we obtain
using an embedding technique made precise in subsection 4.1.

4.1. Towards a proof by embedding techniques. The starting
points for our analysis are (1) and (3), which we recall in:

x(t) = g(t) +

∫ t

t0

k(t, s,x(s)) ds (t0 ≤ t ≤ T ),(38)

y(t) = g(t) +

∫ t

t0

k(t, s,y(s)) ds + ξ(t,yt)(39)

where (Assumption 1.1) g : [t0,∞) → Rn, and k ∈ C[Dt0 ×Rn → Rn],
k(t, s, z) possesses continuous first-order partial derivatives with respect
to t and z. As in Assumption 1.3 (b), we suppose that

(40) ξ(t0,yt0) = 0.

Given (38) and (39), we borrow a strategy employed in another context
by Pouzet [19], and define

x̂(t, u) = g(u) +

∫ t

t0

k(u, σ,x(σ)) dσ, t0 ≤ t ≤ u ≤ T,

(41)

ŷ(t, u) = g(u) +

∫ t

t0

k(u, σ,y(σ)) dσ + ξ(t,yt), t0 ≤ t ≤ u ≤ T.

(42)
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From (41) and (42),

(43) (a) x̂(t, t) = x(t) and (b) ŷ(t, t) = y(t).

Therefore, (41) and (42) can be written, respectively, as

x̂(t, u) = g(u) +

∫ t

t0

k(u, σ, x̂(σ, σ)) dσ, t0 ≤ t ≤ u ≤ T,

(44)

ŷ(t, u) = g(u) +

∫ t

t0

k(u, σ, ŷ(σ, σ)) dσ + ξ(t,yt), t0 ≤ t ≤ u ≤ T.

(45)

Definition 4.1. In view of (43), we say that (41) is embedded in
(44) while (42) is embedded in (45) and that x̂(t, u) and ŷ(t, u) are
extensions by embedding of x(t) and y(t), respectively.

Remark 4.2. Note that we have chosen not to define ŷ(t, u) as

g(u) +
∫ t

t0
k(u, σ, ŷ(σ, σ)) dσ + ξ(u,yt), which might be considered a

plausible alternative to (45). From the preceding remark and the
definitions above, an extension through embedding is to be defined
by a specific modification of a Volterra integral equation and/or its
perturbation. The mapping of any ẑ(t, u) to z(t) is simpler and merely
involves setting u = t.

4.2. Related non-linear partial differential equations. We
continue with Assumptions 1.1 and 1.3. Given solutions x of (1)
and y of (3), there exist continuous functions x̂ and ŷ satisfying (44)
and (45), respectively. From our assumptions, we may differentiate
the embedding equations (44) and (45) with respect to t, to obtain,
respectively,

∂

∂t
x̂(t, u) = k(u, t,x̂(t, t)), t0 ≤ t ≤ u ≤ T,(46a)

x̂(t0, u) = g(u),(46b)
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a non-linear partial differential equation (compare the case g = 0 in
[19, formula (F)]), and the perturbed version

∂

∂t
ŷ(t, u) = k(u, t,ŷ(t, t)) +

d

dt
ξ(t,yt), t0 ≤ t ≤ u ≤ T,(47a)

ŷ(t0, u) = g(u),(47b)

wherein yt(s) is synonymous with ŷ(s, s) = y(s) for s ∈ [t0, t],
t ∈ [t0, T ]. If we choose as perturbation (6), namely ξ�(t,yt) =∫ t

t0
ψ(t, σ,y(σ)) dσ, then (d/dt)ξ�(t,yt) = ψ(t, t,y(t)) +

∫ t

t0
ψ1(t, σ,

y(σ)) dσ.

Theorem 4.3. To every solution x ∈ C[t0, T ] of (38) (respectively
y ∈ C[t0, T ] of (39)) there corresponds a solution x̂ ∈ C(Dt0) of (46)
(respectively ŷ ∈ C(Dt0) of (47)) and vice-versa. If there is a unique
solution x ∈ C[t0, T ] of (41), there is a unique solution x̂ ∈ C(Dt0) of
(46) and vice-versa, and likewise for y and ŷ.

Proof. The one-to-one correspondence between (41) and (46) is
established through (44) and the identification in statement (a) of (43).
Given a continuous solution x(t), it is clear from (44) that x̂ exists
and is continuous on Dt0 , and (44) reduces to (46). The steps in this
argument are reversible. Uniqueness properties are then immediate.
The arguments carry over to y and ŷ.

4.3. Asymptotic perturbation theory with resolvents. Here,
we consider asymptotic perturbation theory for solutions and their
extensions, in the case of Volterra integral equations that are linear.
The results in this subsection are used in subsection 4.6.

Suppose that ε ≥ 0, Δt0 > 0, and t0 + |εΔt0| ≤ t ≤ T < ∞. Let
ΔKε(t, s) ∈ C(Dt0 → Rn×n), Δgε(t) ∈ C([t0, T ] → Rn) depend on ε.
Define

(48)

tε = t0 + |εΔt0|,
Kε(t, s) = K(t, s) + ΔKε(t, s), and

gε(t) = g(t) + Δgε(t).

Trivially, |tε − t0| = O(ε) as ε↘ 0, and we suppose that

(49) sup
t∈[t0,T ]

‖Δgε(t)‖ = O(ε) and sup
(s,t)∈Dtε

‖ΔKε(t, s)‖ = O(ε),
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as ε↘ 0. We consider, for ε ≥ 0,

zε(t) = gε(t) +

∫ t

tε

Kε(t, s)zε(s) ds (t0 ≤ t ≤ T ),

(50a)

ẑε(t, u) = gε(u) +

∫ t

tε

Kε(u, σ)zε(σ) dσ (t0 ≤ t ≤ u ≤ T ).

(50b)

In particular, z0(t) = g0(t)+
∫ t

t0
K0(t, s)z0(s) ds, there is a correspond-

ing equation for ẑ0(t, u) and we seek a result relating zε to z0 and ẑε
to ẑ0 as ε↘ 0. Theorem 4.4 suffices:

Theorem 4.4. Assume (49) holds where zε(t) satisfies (50a),
and ẑε(t, u) satisfies (50b). If T < ∞ (or, more generally, if
limε↘0 sup(s,t)∈Dtε

‖Rε(t, s)‖ is bounded), we have

lim
ε↘0

sup
t∈[tε,T ]

‖zε(t)− z0(t)‖ = 0(51a)

and

lim
ε↘0

sup
(t,u)∈Dtε

‖ẑε(t, u)− ẑ0(t, u)‖ = 0.(51b)

Proof. We have (50) for ε ≥ 0 and establish (51). The result (51b)
is an almost immediate consequence of (51a), which we therefore prove
first. Let Δzε(t) = zε(t) − z0(t). Clearly, for t ∈ [tε, T ] (interpreted,
by our convention, as t ∈ [tε,∞) if T is not finite),

(52)

Δzε(t)−
∫ t

tε

Kε(t, s)Δzε(s) ds = ηε(t) where

ηε(t) := Δgε(t) +

∫ tε

t0

K(t, s)z0(s) ds.

Using the resolvent kernel for Kε(t, s), Δzε(t) = ηε(t) +
∫ t

tε
Rε(t, s)

ηε(s)ds. From the definition of tε, limε↘0 supt∈[tε,T ] ‖ηε(t)‖ = 0. The
required result limε↘0 supt∈[tε,T ] ‖Δzε(t)‖ = 0 follows when

(53) lim
ε↘0

sup
(s,t)∈Dtε

‖Rε(t, s)‖ is bounded.
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For T <∞, (53) follows from Lemma 3.6 (a). Picking ε = 0 and ε > 0
in (50b) and differencing,
(54)

Δẑε(t, u) = Δgε(u) +

∫ tε

t0

{K(u, σ)z0(σ) dσ} +
∫ t

tε

Kε(u, σ)Δzε(σ) dσ.

Hence, ‖Δẑε(t, u)‖ ≤ ‖Δgε(u)‖+‖ ∫ tε
t0
{K(u, σ)z0(σ)dσ}‖+‖ ∫ t

tε
Kε(u, σ)

Δzε(σ) dσ‖ and, by our assumptions, and citing the result (51a) estab-
lished for Δzε, (51b) follows immediately.

Remark 4.5. In applications of Theorem 4.4, Kε(t, s) or gε(t) can
depend on additional variables ν1, ν2, . . . , νk; if the convergence condi-
tions (49) as ε↘ 0 hold uniformly for (ν1, ν2, . . . , νk) ∈ V, then so do
the conclusions in (51).

4.4. Extensions of the results in subsection 4.3. There are
extensions of the results in subsection 4.3. We give one, Theorem 4.6,
which is used later.

Theorem 4.6. Suppose that (for t0 ≤ t ≤ u ≤ T < ∞ and for
0 ≤ ε ≤ ε�)

(55)

Zε(t) = Gε(t) +

∫ t

tε

Kε(t, s)Zε(s) ds,

Ẑε(t, t) = Zε(t),

Ẑε(t, u) = Gε(u) +

∫ t

tε

Kε(u, σ)Zε(σ) dσ,

and that supt∈[t0,T ] ‖ΔGε(t)‖ = O(ε) and sup(s,t)∈Dtε
‖ΔKε(t, s)‖ =

O(ε), as ε↘ 0, where

(56) ΔGε(t) = Gε(t)−G0(t) and ΔKε(t, s) = Kε(t, s)−K0(t, s).

Then limε↘0 supt∈[tε,T ] ‖Zε(t)−Z0(t)‖ = 0 and limε↘0 sup(t,u)∈Dtε
‖Ẑε

(t, u)− Ẑ0(t, u)‖ = 0.

Proof. Apply Theorem 4.4, taking gε(t) to be each of the columns of
Gε(t) in turn.
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Remark 4.7. Theorem 4.6 has an analogue when Zε(t, s) = Γε(t, s) +∫ t

tε
Kε(t, σ)Zε(σ, s) dσ, etc. We indicate only part of this analogue: If

sup
(s,t)∈Dtε

‖ΔKε(t, s)‖ = O(ε), as ε↘ 0

and

sup
(s,t)∈Dtε

‖ΔΓε(t, s)‖ = O(ε), as ε↘ 0

where ΔΓε(t, s) = Γε(t, s)−Γ0(t, s) and ΔKε(t, s) = Kε(t, s)−K0(t, s),
then it follows that sup(s,t)∈Dtε

‖ΔZε(t, s)‖ = O(ε) as ε ↘ 0. A
systematic perturbation analysis could be based on this result. When
Γε(t, s) = Kε(t, s) then Zε(t, s) = Rε(t, s) (if we prove this special
case, all the other results follow). When Γε(t, s) = I for s ≤ t,
Zε(t, s) = Uε(t, s). See (32).

4.5. Parameterized versions of equations. Let u ∈ [t0, T ].
Consider, for the given u and for t0 ∈ R, γ ∈ Rn, the parameterized
versions of (46) and (47):

∂

∂t
x̂(t, u; t0,γ) = k(u, t, x̂(t, t; t0,γ)), (t ∈ [t0, u]),

(57a)

x̂(t0, u; t0,γ) = γ,(57b)

and, where yt(s) ≡ ŷ(s, s; t0,γ) for t0 ≤ s ≤ t,

∂

∂t
ŷ(t, u; t0,γ) = k(u, t, ŷ(t, t; t0,γ)) +

d

dt
ξ(t,yt) (t ∈ [t0, u]),

(58a)

ŷ(t0, u; t0,γ) = γ.(58b)

When the solutions of (57) and (58) for an arbitrary chosen u ∈ [t0, T ]
are x̂(t, u; t0,γ) and ŷ(t, u; t0,γ), respectively, we have

(i) x̂(t, u; t0,g(u)) is the solution x̂(t, u) of (46) for t ∈ [t0, u],
u ∈ [t0, T ];
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(ii) ŷ(t, u; t0,g(u)) is the solution ŷ(t, u) of (47) for t ∈ [t0, u],
u ∈ [t0, T ].

Indeed, from (57), we have

(59) x̂(t, u; t0,γ) = γ+

∫ t

t0

k(u, σ, x̂(σ, σ; t0,γ)) dσ (t0 ≤ t ≤ u ≤ T )

(compare (44) and see Remark 4.2), and the solution of (1) is x(t) =
x̂(t, t; t0,g(t)).

Remark 4.8. We recall that, with our standard notational conven-
tions,

x̂3(t, u; t0,γ) :=
∂

∂σ
x̂(t, u;σ,γ|σ=t0 ,

X̂4(t, u, t0,γ) =
∂

∂z
x̂(t, u; t0, z)|z=γ

and K3(t, s,w) := (∂/∂z)k(t, s, z)|z=w (t0 ≤ s ≤ t ≤ u ≤ T ), and we
exploit Assumption 1.1. Derivatives of the type (∂/∂σ)x̂(t, u;σ,γ)|σ=t0

are right-hand derivatives; for clarification:
(60)
∂

∂σ
x̂(t, u;σ,γ)|σ=t0 := lim

ε→0

1

|εΔt0| {x̂(t, u; t0+ |εΔt0|,γ)−x̂(t, u; t0,γ)}.

(Δt0 
= 0 is fixed and is included only to preserve a pattern later.)

4.6. A further preliminary. For u ∈ (t0, T ], (57) is an evolution-
ary problem with t ∈ [t0, u]. We have the following lemma, which is
required for a mathematically precise discussion, and it is deduced by
appealing to the asymptotic perturbation theory given in subsection 4.3
above.

Lemma 4.9 (A lemma on partial derivatives). Suppose T < ∞.
Then, for t ∈ [t0, u],

(a) (∂/∂t0)x̂(t, u; t0,γ) = x̂3(t, u; t0,γ) exists and satisfies

(61)

x̂3(t, u; t0,γ) = −k(u, t0,γ)

+

∫ t

t0

K3(u, σ, x̂(σ, σ; t0,γ))x̂3(σ, σ; t0,γ) dσ;
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(b) (∂/∂γ)x̂(t, u; t0,γ) = X̂4(t, u; t0,γ) exists and satisfies

(62) X̂4(t, u; t0,γ) = I+

∫ t

t0

K3(u, σ,x(σ; t0,γ))X̂4(σ, σ; t0,γ) dσ

(c) (∂/∂t0)(∂/∂γ)x̂(t, u; t0,γ) = (∂/∂t0)X̂4(t, u; t0,γ) exists and is
continuous with respect to (t0,γ);

(d) further,

(63)
∂

∂t0

∂

∂γ
x̂(t, u; t0,γ) =

∂

∂γ

∂

∂t0
x̂(t, u; t0,γ) (t0 ≤ t ≤ u ≤ T ),

that is, the order of differentiation may be reversed.

Remark 4.10. The functions in Lemma 4.9 are continuous with
respect to their parameters and, for T < ∞, the continuity properties
imply uniform (or equi-) continuity for all (t, u) ∈ Dt0 .

4.7. Proof of Lemma 4.9. Here we provide the proofs of (a), (b),
(c), (d) in sequence; they have features in common with a heavy reliance
on Theorem 4.4. The details might be omitted on a preliminary first
reading.

• We commence with a proof of (a). If we make the assumption
that (59) may be differentiated, then we have (as we prove below) the
required result for (∂/∂t0)x̂(t, u; t0,γ) = x̂3(t, u; t0,γ), viz.,
(64a)

∂

∂t0
x̂(t, u; t0,γ) = −k(u, t0,γ)

+

∫ t

t0

K3(u, σ, x̂(σ, σ; t0,γ))
∂

∂t0
x̂(σ, σ; t0,γ) dσ

(t0 ≤ t ≤ u ≤ T ), and hence

(64b)
∂

∂t0
x̂(t0, u; t0,γ) = −k(u, t0,γ),
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where we have simplified the statements in (64) by setting

(65) x(t0; t0,γ) = γ

in the leading right-hand term k(u, t0,x(t0; t0,γ)). We prove this result
from first principles, by obtaining an equation for (60). (An alternative
would be to use the case n = 1 in Lemma 2.6.)

Let Δt0 > 0 be fixed. Using (65), writing (59) with tε := t0 + |εΔt0|
in place of t0 and differencing, we obtain, on setting Δx̂(t, u; t0,γ) :=
x̂(t, u; t0 + |εΔt0|,γ)− x̂(t, u; t0,γ), the equation

(66)
Δx̂(t, u; t0,γ)

|εΔt0| = −k(u, t0,γ) +

∫ t

t0+|εΔt0|
{k(u, σ, x̂(σ, σ; t0 + |εΔt0|,γ))− k(u, σ, x̂(σ, σ; t0,γ))}

|εΔt0| dσ.

We propose to deal with the last term by use of the mean-value theorem.
We use the shorthand

Kε(t, σ) := K3

(
u, σ, x̂ε(u, σ; t0,γ)

)
,

where

x̂ε(u, σ; t0,γ) = ϑx̂(u, σ; tε,γ) + (1− ϑ)x̂(u, σ; t0,γ),

for some ϑ ∈ [0, 1] that depends upon ε, σ; t0, and γ, i.e., ϑ ≡
ϑ(ε, σ; t0,γ). (Here, K0+(t, s) denotes limε↘0 Kε(t, s) which isK(t, s).)
The equation

(67)
Δx̂(t, u; t0,γ)

|εΔt0| = −k(u, t0,γ) +

∫ t

tε

Kε(t, σ)
Δx̂(σ, σ; t0,γ)

|εΔt0| dσ

follows. Since Δx(σ; t0,γ)) = Δx̂(σ, σ; t0,γ), we obtain, on setting
u = t, the Volterra integral equation

(68a)
Δx(t; t0,γ)

|εΔt0| = −k(t, t0,γ) +

∫ t

tε

Kε(t, σ)
Δx(σ; t0,γ)

|εΔt0| dσ.
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Further,

(68b)
Δx̂(t, u; t0,γ)

|εΔt0| = −k(u, t0,γ) +

∫ t

tε

Kε(t, σ)
Δx(σ; t0 ,γ)

|εΔt0| dσ.

To proceed, we shall employ Theorem 4.4; recalling the definition of
tε, and Kε, we write

(69) zε(t) =
Δx(t; t0,γ)

|εΔt0| , ẑε(t, u) =
Δx̂(t, u; t0,γ)

|εΔt0| ,

and (68a) and (68b) play the roles of (50a) and (50b). The function z0
is the solution of

(70)
z0(t) = −k(u, t0,γ) +

∫ t

t0

K0+(t, σ)z0(σ) dσ,

K0+(t, σ) = K3(t, σ, x̂(σ, σ; t0,γ))

(cf. (64a)). As T < ∞, an application of Theorem 4.4 establishes that
limε↘0 supt∈[tε,T ] ‖zε(t) − z0(t)‖ = 0 whence, since zε(t0) = z0(t0) for
all ε ≥ 0, we have (by virtue of (69))

(71a) z0(t) = lim
ε↘0

Δx(t; t0,γ)

|εΔt0| =
∂

∂t0
x̂(t; t0,γ) for all t ∈ [t0, T ]

satisfies (70) and, for the corresponding function ẑ0, we have
(71b)

ẑ0(t, u) = lim
ε↘0

Δx̂(t, u; t0,γ)

|εΔt0| =
∂

∂t0
x̂(t, u; t0,γ) for all (t, u) ∈ Dt0 .

For continuity with respect to t0, we consider the family of equations
obtained when t0 is replaced by tε, for 0 ≤ ε ≤ ε�, say, in (64a). We
write these equations as
(72)

x̂3(t, u; tε,γ) = −k(u, tε,γ)+

∫ t

tε

K3(u, σ, x̂(σ, σ; tε,γ))x̂3(σ, u; tε,γ) dσ.

We then apply Theorem 4.4 to establish that x̂3(t, u; tε,γ) → x̂3(t, u;
t0,γ) as ε ↘ 0, and this convergence is uniform for (t, u) ∈ Dt0 . The
proof of part (a) is now complete.
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• We continue, with a proof of part (b). If differentiation is justified,
we have the required result

(73)

∂

∂γ
x̂(t, u; t0,γ) = I+

∫ t

t0

K3(u, σ,x(σ; t0,γ))
∂

∂γ
x(σ; t0,γ) dσ

(t0 ≤ t≤ u ≤ T )

(bearing in mind that we have x̂(σ, σ; t0,γ) = x(σ; t0,γ)). We shall
establish this result.

Consider (59) which we rewrite with γ+ εδγ (with ε 
= 0) in place of
γ. We thus obtain, on writing δx̂ε(t, u; t0,γ) := x̂(t, u; t0,γ + εδγ) −
x̂(t, u; t0,γ) (for t0 ≤ t ≤ u ≤ T ), the equation

(74) δx̂ε(t, u; t0,γ)

= ε
{
δγ +

∫ t

t0

{
k(u, σ,x(σ; t0,γ + εδγ))− k(u, σ,x(σ; t0,γ))

}
dσ

}
.

Now, using the mean-value theorem and continuity properties,

k(u, σ,x(σ; t0,γ + εδγ))− k(u, σ,x(σ; t0,γ))

= ε

{∫ t

t0

K3(s, σ,x(σ; t0,γ)) dσ

}
δγ + o(ε)

uniformly for t0 ≤ σ ≤ t ≤ u ≤ T < ∞ and for any fixed γ, as ε ↘ 0.
Thus,

(75) δx̂ε(t, u; t0,γ) = ε

{
I+

∫ t

t0

K3(s, σ,x(σ; t0,γ)) dσ

}
δγ + o(ε),

where the final term is o(ε) uniformly for (t, u) ∈ Dt0 as ε ↘ 0.

The matrix
∫ t

t0
K3(s, σ,x(σ; t0,γ)) dσ is independent both of ε and

of δγ, and we therefore deduce (cf. Lemma 2.6) that the Jacobian
(∂/∂γ)x̂(t, u; t0,γ) exists and satisfies (73). We apply Theorem 4.4 to
the family of equations

(76a)
∂

∂γ
x(t; tε,γ) = I+

∫ t

tε

K3(t, σ,x(σ; tε,γ))
∂

∂γ
x(σ; tε,γ) dσ
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and then consider the corresponding functions X̂4(t, u; tε,γ):

(76b)
∂

∂γ
x̂(t, u; tε,γ) = I+

∫ t

tε

K3(u, σ,x(σ; tε,γ))
∂

∂γ
x(σ; tε,γ) dσ

(tε ≤ t ≤ T ) to establish, in analogy with the proof for part (a), that

X̂3(t, ; t0,γ) and X̂4(t, u; t0,γ) are continuous in t0, and this convergence
is uniform for t ∈ [t0, T ] or (t, u) ∈ Dt0 .

• We now address part (c). The properties of (∂/∂t0)X̂4(t, u, t0,γ)
are established by an appeal to Theorem 4.6 (in the same manner
as Theorem 4.4 was used in part (a)) and by considering the family
(parametrized by ε) of equations
(77a){

∂

∂γ
x(t; tε,γ)

}
= I+

∫ t

tε

K3(t, σ,x(σ; tε,γ))

{
∂

∂γ
x(σ; tε,γ)

}
dσ

together with

(77b)

{
∂

∂γ
x̂(t, u; tε,γ)

}

= I+

∫ t

t0

K3(u, σ,x(σ; tε,γ))

{
∂

∂γ
x(σ; tε,γ)

}
dσ (tε ≤ t ≤ u ≤ T ).

• Finally, consider part (d). The validity of the interchange of
the order of differentiation follows (see, e.g., [11, page 11]) from the
continuity property established in (c).

We have further occasion to refer to the above results.

4.8. Echoes of Lemma 3.4. The statement and proof of
Lemma 4.9 assist us in establishing Lemma 4.12. This, in turn, is
instrumental in a proof of a result analogous to Alekseev’s result. (The
role of Lemma 4.12 may be compared with that of Lemma 3.4 in
the proof of Theorem 3.2.) We note the repeated occurrence, above,
of expressions of the form K3(u, t, x̂(t, t; tε,γ)) = K3(u, t,x(t; tε,γ))
((t, u) ∈ Dtε). Writing

(78) H(u, t,z) = K3(u, t,z), tε ≤ t ≤ u ≤ T, z ∈ Rn,
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then H(u, t, x̂(t, t; tε,γ)) = H(u, t,x(t; tε,γ)) which, by assumption, is
continuous for (t, u) ∈ Dtε .

We use the notation x̂3(t, u; t0,γ) ≡ (∂/∂t0)x̂(t, u; t0,γ) and X̂4(t, u, t0,
γ) ≡ (∂/∂γ)x̂(t, u; t0,γ), which exist for (t, u) ∈ Dt0 . For ease of ref-
erence, we restate some of the preceding results in:

Lemma 4.11 (‘v-H’ and ‘U-H’ results for extensions). (a) If
v̂(t, u; t0,γ) = x̂3(t, u; t0,γ), then
(79a)

v̂(t, u; t0,γ) = −k(u, t0,γ) +

∫ t

t0

H(u, σ, x̂(σ, σ; t0,γ))v̂(σ, σ; t0,γ) dσ.

Additionally, v̂ satisfies

∂

∂t
v̂(t, u, t0,γ) = H(u, t, x̂(t, t; t0,γ))v̂(t, t; t0,γ),(79b)

with

v̂(t0, u; t0,γ) = −k(u, t0,γ),

(b) Further, if Û(t, u, t0,γ) = X̂4(t, u, t0,γ), then
(80a)

Û(t, u, t0,γ) = I+

∫ t

t0

H(u, σ,x(σ; t0,γ))Û(σ, σ, t0,γ) dσ (t0 ≤ t≤ u ≤ T ).

Writing U(t, t0,γ) := Û(t, t, t0,γ), for any γ ∈ Rn and, for t0 ≤ t≤ u ≤
T ,

(80b) Û(t, u, t0,γ) = I+

∫ t

t0

H(u, σ,x(σ; t0,γ))U(σ, t0,γ) dσ,

and Û is the solution of
(81)
∂

∂t
Û(t, u, t0,γ) = H(u, t, x̂(t, t; t0,γ))Û(t, t, t0,γ), with Û(t0, u, t0,γ) = I.
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For t0 ≤ t ≤ u ≤ T , suppose (57) has the solution x̂(t, u; t0,γ). Then
equations (79) (81) hold and we also have the following result.

Lemma 4.12. For arbitrary γ, v̂(t, u; t0,γ) and Û(t, u, t0,γ) satisfy

(82) v̂(t, u; t0,γ) = −Û(t, u, t0,γ)k(u, t0,γ), for t ∈ [t0, u],

that is, x̂3(t, u; t0,γ) = −X̂4(t, u, t0, x̂(t0, u; t0,γ))k(u, t0,γ).

Proof. We regard t0 as a variable parameter and, whenever t0 ≤ σ ≤
t ≤ u ≤ T , we have

(83) x̂(t, u; t0,γ) = x̂(t, u;σ, x̂(σ, u; t0,γ)).

We differentiate (83) with respect to t0, and obtain for (∂/∂t0)x̂(t, u; t0,
γ) ≡ x̂3(t, u; t0,γ) the relation

(84) x̂3(t, u; t0,γ) = X̂4(t, u, σ, x̂(σ, u; t0,γ))x̂3(σ, u; t0,γ).

This result is valid whenever t0 ≤ σ ≤ t ≤ u ≤ T and therefore holds
when σ = t0, so

(85) x̂3(t, u; t0,γ) = X̂4(t, u, t0, x̂(t0, u; t0,γ))x̂3(t0, u; t0,γ).

In the notation of (82), this reads v̂(t, u; t0,γ) = Û(t, u, t0, x̂(t0, u; t0,γ))
v̂(t0, u; t0,γ) and substituting −k(u, t0,γ) for v̂(t0, u; t0,γ) gives the
stated result.

4.9. An Alekseev-type VoPF for nonlinear embedded equa-
tions. Motivated by Theorem 3.2, we now provide a VoPF for the
non-linear equations

∂

∂t
x̂(t, u) = k(u, t, x̂(t, t)), t ∈ [t0, T ],(86)

and

∂

∂t
ŷ(t, u) = k(u, t, ŷ(t, t)) +

d

dt
ξ(t,yt), t ∈ [t0, T ],(87)
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with the same initial condition x̂(t0, u) = ŷ(t0, u) = g(u), given
(Assumption 1.3 (c)) that (d/dt)ξ(t,yt) exists and is continuous. Of
course, x̂(t, t) = x(t) and ŷ(t, t) = ŷ(t) in (86) (87). We are aided by
Lemma 4.12. Theorem 4.13 may be compared with Theorem 3.2.

Theorem 4.13. For t0 ≤ t ≤ u ≤ T , let x̂(t, u; t0,γ) be a solution
of (57) with x̂(t0, u; t0,γ) = γ. Any solution ŷ(t, u; t0,γ) of (58), such
that ŷ(t0, u; t0,γ) = γ, satisfies for t ≥ t0
(88)

ŷ(t, u; t0,γ) = x̂(t, u; t0,γ)+

∫ t

t0

Û(t, u, σ, ŷ(σ, u; t0,γ))

{
d

dσ
ξ(σ,yσ)

}
dσ,

where Û(t, u, σ, z) = X̂4(t, u, σ, z).

Proof. For t0 ≤ t ≤ u ≤ T , consider x̂(t, u;σ, ŷ(σ, u; t0,γ)) as a
function of σ ∈ [t0, t]; its value on setting σ = t is ŷ(t, u; t0,γ), and its
value on setting σ = t0 is x̂(t, u; t0,γ). It follows that

(89) ŷ(t, u; t0,γ)− x̂(t, u; t0,γ) =

∫ t

t0

d

dσ
x̂(t, u;σ, ŷ(σ, u; t0,γ)) dσ.

The integrand in (89) is the total derivative with respect to σ, viz.,
(90)
d

dσ
x̂(t, u;σ, ŷ(σ, u; t0,γ)) = x̂3(t, u, σ, ŷ(σ, u; t0,γ))

+ X̂4(t, u, σ, ŷ(σ, u; t0,γ))ŷ1(σ, u; t0,γ).

Using Lemma 4.12, we obtain, on replacing γ by ŷ(σ, u; t0,γ),

(91)
d

dσ
x̂(t, u;σ, ŷ(σ, u; t0,γ))

= x̂3(t, u;σ, ŷ(σ, u; t0,γ))

+ Û(t, u;σ, ŷ(σ, u; t0,γ))ŷ1(σ, u; t0,γ))

= −Û(t, u, σ, ŷ(σ, u; t0,γ))k(u, σ, x̂(σ, σ; t0,γ))

+ Û(t, u, σ, ŷ(σ, u; t0,γ))ŷ1(σ, u; t0,γ).

Using (87), the derivative on the left-hand side of (91) reduces to

(92) Û(t, u, σ, ŷ(σ, u; t0,γ))

{
d

dσ
ξ(σ,yσ)

}
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wherein we substitute ŷ(s, s; t0,γ) = y(s; t0,γ) for y(s) (t0 ≤ s ≤ σ)
to obtain yσ(·). Applying (89), we obtain the relation (88). This
completes the proof.

Theorem 4.14 (A VoPF for the extensions x̂ and ŷ). Let x̂(t, u) be a
solution of (86) satisfying x̂(t0, u) = g(u) for t0 ≤ t ≤ u ≤ T . If ŷ(t, u)
is a solution of (87) satisfying ŷ(t0, u) = g(u) for t0 ≤ t ≤ u ≤ T , then

ŷ(t, u) = x̂(t, u) +

∫ t

t0

Û(t, u, σ, ŷ(σ, u))

{
d

dσ
ξ(σ,yσ)

}
dσ,

where Û(t, u, t0,y(t0, u)) = (∂/∂γ)x̂(t, u; t0,γ)�γ=g(u) = X̂4(t, u, t0,
g(u)).

Theorem 4.14 is a consequence of Theorem 4.13 (it results on setting
γ = y(t0, u)) and is a VoPF for the extensions x̂ and ŷ obtained by
embedding.

5. A VoPF for nonlinear Volterra integral equations. The
results in the last section were VoPF for the embedding problem
expressed in terms of Û(t, u, σ,y(σ, u; t0,γ)). In this section, we state a
VoPF for VIEs, obtained from Theorem 4.14. This result is expressed
in terms of the function U(t, t0, α) (for some α ∈ Rm).

Recall, from (80a) (and the discussion in Lemma 4.9, and Lemma 4.12)
that, for any α, γ ∈ Rn (possibly differing α and γ are introduced for

ease of exposition below), both U(t, t0, α) and Û(t, u, t0,γ) exist and
the results in Lemma 4.11 (b) hold.

Lemma 5.1 provides a further relation for specific, related, α and
γ between U(t, t0, α) and Û(t, t, t0,γ). This relation is needed to
deduce our final, refined, result.

Lemma 5.1. If the solution x̂(t, u; t0,γ) of (57) exists and is unique
for t0 ≤ t ≤ T , then

Û(u, u, t0,g(u)) ≡ U(u, t0,g(t0)).(93)

Equivalently,

Û(u, u, t0, x̂(t0, u)) ≡ U(u, t0,x(t0)).(94)
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Proof. The results follow from equation (80). For α = g(t0), we
obtain
(95)

U(u, t0,g(t0)) = I+

∫ u

t0

H(u, σ,x(σ))U(σ, t0,g(t0)) dσ, (u ≥ t0).

For t = u and γ = g(u) we obtain, since x(σ) = x̂(σ, σ; t0,g(u)),

(96) Û(u, u, t0,g(u)) = I+

∫ u

t0

H(u, σ,x(σ))Û(σ, σ, t0,g(u)) dσ.

From (95) and (96), we see that Û(u, u, t0,g(u)) ≡ U(u, t0,g(u)) =
U(u, t0,g(t0)). This completes the proof of (93), and (94) follows.

Now we can deduce from Theorem 4.14 our VoPF for non-linear VIEs,
stated in terms of U.

Theorem 5.2 (A VoPF for x and y). Suppose x is the unique

solution of (1), i.e., x(t) = g(t) +
∫ t

t0
k(t, s,x(s)) ds, and y(t) is any

solution of (3), i.e.,

(97) y(t) = g(t) +

∫ t

t0

k(t, s,y(s)) du + ξ(t,yt)

(both for t0 ≤ t ≤ T ). Suppose U to be defined as above (by (80)). Then

(98) y(t) = x(t) +

∫ t

t0

U(t, σ,y(σ))

{
d

dσ
ξ(σ,yσ)

}
dσ (t0 ≤ t ≤ T ).

Further, provided R(t, σ,y(σ)) := −d/dσU(t, σ,y(σ)) exists,

(99) y(t) = x(t)+ξ(t,yt)+

∫ t

t0

R(t, σ,y(σ))ξ(σ,yσ ) dσ (t0 ≤ t ≤ T ).

Proof. Setting u = t ∈ [t0, T ] in Theorem 4.14, we obtain

(100) ŷ(t, t) = x̂(t, t) +

∫ t

t0

Û(t, t, σ, ŷ(σ, t))

{
d

dσ
ξ(σ,yσ)

}
dσ.
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Here, ŷ(t, t) = y(t) and x̂(t, t) = x(t), respectively. From (93)

in Lemma 5.1, Û(t, t, σ, ŷ(σ, t)) ≡ U(t, σ,y(σ)) and equation (100)
becomes

(101) y(t) = x(t) +

∫ t

t0

U(t, σ,y(σ))

{
d

dσ
ξ(σ,yσ)

}
dσ (t0 ≤ t ≤ T ).

Integrating (101) by parts and noting that U(t, t,y(t)) = I, we obtain
(for t0 ≤ t ≤ T )

y(t) = x(t) + ξ(t,yt) +

∫ t

t0

R(t, σ,y(σ))ξ(σ,yσ ) dσ.

This establishes the relations (98) and (99), thus completing the
proof.

We mention some special cases. The reader may compare Theo-
rem 5.2 (which is valid under our general Assumptions) with the special
case corresponding to (6), in (8). With k(t, s, z) = K(t, s)fff(s, z), the
general form of the equations for U and R simplify. In this case, (98)
holds with

(102) U(t, t0,γ) = I+

∫ t

t0

{
K(t, σ)FFF 2

(
s,x(σ; t0,γ)

)}
U(σ, t0,γ) dσ

(compare Theorem 3.8, and see Theorem 1.4). We can recover The-
orem 3.2 (set K(t, σ) = I, fff(s, z) = k(s, z), and replace ξ(t,yt) with∫ t

t0
φ(s,y(s)) ds). If, instead, k(t, s, z) = K(t, s)z, (i.e., we retain the

general form K(t, s) but set f(s, z) = z), then (102) gives (32) as re-
quired in the VoPF for linear VIEs. Thus, (35) is a special case of (99)
and (36) is a special case of (98).

Remark 5.3. Assumption 1.3 requires that, for all z ∈ C ∩ C1[t0, T ],
(d/dt)ξ(t, zt) is continuous for t ∈ [t0, T ]. However, the result (99)
makes no reference to (d/dσ)ξ(σ,yσ). This raises the question whether
Assumption 1.3c is necessary. In response, we note that (99) requires
(d/dσ)U(t, σ,y(σ)) to exist, which in general requires that y′ exists and
y is expressed by (97) in terms of ξ(σ,yσ).
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6. Concluding comments. The motivation for this paper was
our interest in a rigorous proof, based on an embedding technique,
of a variation of parameters theorem under general conditions on the
perturbation. We established our objective by providing an analysis
of the embedding technique, including a related perturbation theory
and applying the results in a context where, apparently, they have not
previously been used. Theorem 5.2 is the main result, but we hope
that the method of proof will attract interest.

Acknowledgments. The authors thank the referees and the han-
dling editor Hermann Brunner for their comments on the presentation
of our results and for suggesting the inclusion of some additional cita-
tions.

ENDNOTES

1. An absolutely continuous function is differentiable almost every-
where.
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