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ABSTRACT. A mixed boundary value problem for Laplace’s
equation involving a higher order boundary condition, asso-
ciated with scattering (radiation) of capillary-gravity waves
in deep water by submerged as well as surface piercing verti-
cal barrier (wave-maker) is considered for its complete solu-
tion. Utilizing recently developed mode-coupling relations for
eigenfunctions in the expansion formula of the potential func-
tion, the boundary value problem has been reduced to solv-
ing dual integral equations with kernels comprised of trigono-
metric functions. A fully analytical solution is derived by
the aid of a weakly singular integral equation whose solution
has bounded behavior at the end points. The reflection and
transmission coefficients, for an incident wave, have been ob-
tained analytically in terms of modified Bessel functions. Nu-
merical results are computed and presented graphically for a
surface tension parameter, plotted against a non-dimensional
wave parameter. The present method of solution is essentially
an extension of the reduction method originally described by
Williams [20].

1. Introduction. Mixed boundary value problems occurring
in the theory of linear water waves involving vertical barriers have
been of interest to many research workers. A number of methods of
solution are explained for different barrier topographies by Ursell [18],
Williams [20], Evans [7] and others. One method of dealing with such
boundary value problems is to reduce them to solving dual integral
equations. These equations are often encountered in different branches
of mathematical physics, and they generally arise while solving a
boundary value problem with mixed boundary conditions (see Sneddon
[16]). Chakrabarti et al. ([1, 4]) studied water wave scattering by
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partial vertical barriers by reducing the corresponding boundary value
problem into a dual integral equations problem with a sine kernel.

The effect of surface tension brings out an altogether different kind
of mixed boundary value problem such as the higher order boundary
conditions for the Laplace or Poisson equation. These problems are
not well posed because of the nature of their boundary conditions, and
their solution method normally requires certain physical conditions or
edge conditions. Evans [7] initially investigated the surface tension
effect on the two-dimensional transmission problem of time-harmonic
water waves for partially immersed vertical barriers. The classical
wave-maker problems with surface tension effect in both cases of finite
and infinite depths were solved by Rhodes-Robinson ([13-15]). It was
necessary in these solutions to specify certain edge-slope constants or
functions a priori for the complete formal wave solution. In [15],
Rhodes-Robinson studied the influence of surface tension for two-
dimensional waves produced by partial vertical wave-makers in an
infinite depth of water. These problems involving the incomplete wave-
maker were solved analytically by reducing the boundary value problem
into a weakly singular integral equation with logarithmic kernel, a
method devised originally by Williams [20]. Utilizing its solution,
he obtained the analytical expressions for reflection and transmission
coeflicients in wave scattering by a fully submerged vertical barrier. For
the surface piercing barrier, Rhodes-Robinson derived these coefficients
in terms of certain edge-slope constants which, as pointed out by
Hocking [9], are presumed to be evaluated at the edges of the barrier
on the free surface.

In this present paper, a simple and straightforward method will be
demonstrated to solve the mixed boundary value problem associated
with the same problem of scattering (radiation) of linear surface waves
under surface tension by partial vertical barriers (wave-makers). A gen-
eral mixed boundary value problem formulation, its analytical solution
and the numerical results for a particular physical problem have been
derived. In the solution procedure, the mixed boundary value problem
has been reduced to the solution of a dual integral equations problem
with kernel composed of trigonometric functions. The behavior of one
of the integrals in these equations at a point, where the boundary con-
dition changes, plays a crucial role in determining their solution. The
reduced dual integral equations are solved by the aid of the bounded
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solution of a singular integral equation with a kernel of logarithmic type
(see [2, 6]). In fact, the physical problem requires its solution to be
bounded at both the end points and that brings out certain solvability
criteria to be satisfied by the forcing function of the integral equation.

The mathematical description of the mixed boundary value problem
is given in Section 2. The reduction of the general boundary value
problem to dual integral equations and their solution procedure are
described in Section 3 and its subsections 3.1 and 3.2 for each specific
barrier configuration. The numerical results for the reflection and
transmission coefficients for the scattering of an incident wave by
both immersed as well as surface piercing barriers are discussed in
subsection 3.3.

The method of solution presented here for the mixed boundary value
problem arising in the scattering (radiation) of capillary-gravity water
waves, propagating in deep water, by partial barriers (wave-makers) is
exact and straightforward. In the limiting case where 8 = MK? —
0, when the capillary effect is diminishing, numerical values for the
quantities of practical importance are discussed and compared with
known exact values.

2. Mathematical formulation. In the context of the present
study, a general mixed boundary value problem for capillary-gravity
wave scattering (radiation), in deep water, by partial vertical barriers
(wave-makers) is formulated under the assumptions of linearized water
wave theory. A two-dimensional Cartesian coordinate system is used in
which the y-axis is taken vertically downward so that y > 0, x € R is
the region occupied by the fluid. Considering the irrotational motion of
an incompressible inviscid fluid under the action of gravity and surface
tension, the two dimensional time-harmonic motion is described by a
velocity potential ®(z,y,t) = Re {¢(z,y)e~**}, and the surface eleva-
tion n(z,t) = Re {n(z)e ™!} with w(> 0) denoting angular frequency
and t denoting the time. Also, it is assumed that the wave-maker is
oscillating harmonically in time, i.e., U(y,t) = Re{U(y)e~*!}. The
time-dependent factor e~ ™! is suppressed throughout the analysis.
Then ¢(x,y) satisfies

0%¢  9%¢
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which is a consequence of the equation of continuity: Divd = 0, @
(= Grad ¢), denoting the velocity vector (see Stoker [17]).

The linearized surface boundary condition may be derived (see [12,
19]) by balancing the hydrodynamic pressure with the net pressure on
the free surface of the fluid under surface tension, as

¢ 09
(2.2) Ma—ya—i-a—y—i—Kqﬁ:O, ony=0, z €R,
where M = ~/(pg) with =, p, g representing surface tension constant,

density of water and acceleration due to gravity, respectively, and
K =w?/g.

On the rigid vertical structure occupied at z = 0,y € (b, 00) or (0,b)
with b > 0, ¢ satisfies the Neumann boundary condition

o _

(2.3) =

U(y)s

where U(y) — 0 as y — oco. Note that, when U(y) = 0, the structure
represents a vertical barrier and the condition of vanishing normal
velocity.

Also, since the fluid flow is continuous across the gap x = 0, y € (0, b),
or (b, 00), the velocity potential ¢(z,y) satisfies

(2.4) ¢(07,y) = ¢(07,y),
in the usual notation, and that

¢ 0¢
(2.5) o, 3 9y — Oas y — 00,

representing no motion at large depth.

The behavior of ¢(z,y) at the extremities in the horizontal direction
is given by
ApeM— M L R e~ AY a9 1 5 0

T ==y as r — oo,

26)  oe,y) » {

representing progressive waves. R and 71" are two unknown complex
constants, known as the reflection and transmission coefficients in wave
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scattering, to be determined (see Stoker [17]), and A is the positive real
root of the polynomial equation Mx?® + z — K = 0.

The constant Aj is assumed to be known and takes the value of
either 0 or 1 depending upon the particular physical problem under
consideration. For the wave-maker problem, Ay = 0 and, in this case,
R and T represent the radiation constants for waves on both sides of an
incomplete vertical wave-maker. Further, when Ay = 1 and U(y) = 0,
the resulting case is for the scattering of an incident wave by a vertical
barrier.

The edge conditions, as required for the energy to be finite in the
neighborhood of all edges associated with the flow (see [11, subsection
2.4]), are given by

0
(27) %0 0m)~ Olly —11772) asy 1,

Oz
where t = b~ or bT, the edge point of the thin vertical structure under
consideration.

3. The method of solution. It can be shown (Manam et al. [10])
that the unknown velocity potentials ¢(z,y) in two regions z > 0 and
x < 0, are expanded as
(3.1)

T e== + [ B(¢)

[€(1 — ME?)cos€y — K siny] e 6% d¢ z >0,
Aoei)\zf)\y +R efi)\zf)\y

+ [T A(E) [E(1 — ME?) cos€y — K siny] ef”dé z <0,

o(z,y) =

where A(£) and B(¢) are unknown functions to be determined, along
with the unknown constants R and 7 which are the reflected and
transmitted parts of the incident wave Age** =AY,

The above potential function ¢ automatically satisfies the partial
differential equation (2.1) and conditions (2.2), (2.5) and (2.6) for
an appropriate choice of the functions A(¢) and B(¢), which will be
determined.

3.1. Submerged wave-maker or barrier. The definition sketch
of the problem in this case is shown in Figure 1 (a). Since the horizontal
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'\

FIGURE 1. Schematic diagram for membrane covered surface with (a) submerged,
(b) surface piercing vertical barrier.

¥

velocity component is continuous across the positive y-axis, it may be
shown that

| e1a© + B s - 22 cosey — Ksiney] de
=iMNT+R— Ag) e, fory>0.

The functions [£(1 — M¢2) coséy — Ksinéy, £,y > 0 and e~ are
orthogonal with respect to the mode-coupling relation(see Manam et
al. [10])

e M
(f.9)= [ fw)atw)dy+ G 0 0)
0
where ’ denotes the derivative, and hence we find that
T =A - R; A(§) = —B(§).

Conditions (2.3) and (2.4) along with relations (3.1) give rise to a pair
of integral equations given by

/ T A() [6(1— Me?)cosy — Ksinéylde = —R e, ony e (0,b),
0

| €A fe(1 - 22 cosy — K sin gy de
= —iXAg—R) e +U(y), ony e (boo),
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and these can be rewritten as
(3.2)
,C/oo A(€) sinéydé = —R e, onye (0,b)
(3.3) ’
E/OOO EA(E) sinfydé = —iN(Ag— R) e +U(y), ony e (b,oo),

@B d
E—(Md—ya%—@—K).

The above ordinary differential equations (3.2) and (3.3) can be easily
solved to give the following dual integral equations:

where

Re v

Q)

/ A(€) sinéyde = CreM? + Che™V + Cye™V +
(3.4) 0

= f(y), forye (0,b)

and
(3.5)

h EA(€) sin€ydé = DieMY + Dgexly
0
A4 — R)
Q(A)
= h(y)a for y € (b, OO),

+ Dye + e+ L7 U(y)]

where Cy, Co,C3, D1, Do, D3 are arbitrary constants, £ 1[U(y)] is the
particular integral of U(y) with _respect to the differential operator L,
Q(A\) = AM(1+MM?*)+ K and Ay, \; are complex roots of Ma®+2— K =
0.

Accommodating zero and infinity along the positive y-axis, the ar-
bitrary constant D3 in (3.5) must be taken as zero. Also, since
fly) = fooo A(¢) sin&ydg, for y € (0,b) is the solution of the third
order differential equation (3.2), one must have f(0) = f”(0) = 0.

That is,

1
(3.6) CI+CZ+C3+WR_O
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and
2 2 12 A’
Now we define
(3.8) | ea©singyds = 9w, fory < 0.)
0

where g(y) is an unknown function to be determined.

Relations (3.5) and (3.8), as an application of the Fourier sine trans-
form, yield

(3.9) ao-% | " P(y) sinéydy,

where
_ [g(y) forye(0,b),
P()_{h(y) for y € (b, 00).

Putting A(§) into equation (3.4) and, after utilizing the standard
integral (see Gradshteyn and Ryzhik [8, equation 3.741 (1)])

/oo siny sin &t it — —llog y—
0 3 2 y+t
the unknown function g(y) satisfies the weakly singular integral equa-
tion

? for y7t 6 (07 Cx})’

1 [t u+x
(3.10) ;/0 g(u) logn du = fi(z), forz € (0,b),

where

™

filz) = f(z) — 1 /boo h(t) log ‘i—ﬂf‘ dt.

The dual integral equations (3.4) and (3.5) can be differentiated twice
as they satisfy a third order differential equation, and hence

2

af
d—yQ, fOI'yE (O,b)

i) [ @A) sneyde= -
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and - )
| ea© singyde =55, fory e .00)
0 Y
Also, since
o0 Qg
| ea© smeyds =35, torye 0.0),
0 Y
it is clear that
2 [ d?
12 A = —= —— i )
(3.12) §7A(E) ) N sin §y dy

Inserting £2A(€) from relation (3.12) into relation (3.11), it is found
that gy = d%g/dy? also satisfies the weakly singular integral equation

1 b
(3.13) —/ gr(w)log | “F 8 du = fo(w), for = € (0,b),
™ Jo u—=
where 2/ 2h
1 [ T+t
e dt.
f2() dz2  w [, dt? o8 w—t‘

It may be noted that the logarithmic singular integral equation (3.10) or
(3.13) has many forms of solution depending upon its solution behavior
at the endpoints. Here, the behavior of g(u) at the endpoint u = b is
investigated by letting

200.0) = Fly), Torye (0,0)
Then, we have from relation (3.1) that
(3.14)

& d = , )
<M@ T4 —K> /0 € A(E) sinéydé = —iA(Ag — R) e
+ F(y), forye (0,b).

Clearly, relation (2.7) gives the behavior of F(y) at y = b and relation
(3.14) makes the functions g(y) and d?g/dy? bounded at the endpoint
y = b with a behavior as described by

d?g

a2~ O(ly —t|*?) asy—b.
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Therefore, the bounded solution of integral equation (3.10) is given
by (see Chakrabarti et al. [2])

W= 7 )
(3.15)  g(u) = —uvb \/j( ) dt, € (0,b),

with the condition on the forcing function that

b
@)
(3.16) - dt = 0.

Also, the bounded solution g; (u) of integral equation (3.13) is
(3.17)

g1(u) = =— = —u\/ b2 —

du2 —t*)dt, wue€(0,b),

° ),

provided that

b 4

f5(t)
3.18 ———dt =0
(3.18) NV
Equating A(§) in the relations (3.9) and (3.12), one may derive by
integration by parts that the following conditions must be satisfied by
the functions g and h: h(b) =0, i.e.,
(3.19)

A1b by, A _ A —Xb_ p—1

e"’Dy + e Dy Q()\)e = AOQ()\)e L7 U(y)] v
and
(3.20) g (b) = ' (b).

The following integrals (see [8, 3.387 (5, 6)]) are used to express
conditions (3.16) and (3.18) in terms of the unknown constants:
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(3.21) (i) /b dt = T for z > b
' o VB2 —12(z2 —12) 2xvz2 — b2’ ’
b et T
(ll) Jl (LU) = o \/ﬁ dt = 5 I:I()(b.’lf) + Lo(bﬁ)],
b 2t 2
(111) JQ(:E) = o \/ﬁ dt = bT [Io(bw) + Lo(bm)]

b

o [Il (bz) + Ll(ba:)],

(iv) Ko(=bz), Re(z) <0,

e} xt
_ e —
L@ = [P s Yk
(V) 4(%): b 2 _ b2 ——E 1(— a:)
+ b*Ky(—bzx), Re(z) <0,

where Ky, K1, Iy and I; are the modified Bessel functions and Lg, L
are the Struve functions.

Then, relations (3.16) and (3.18) become

(3.22) AJq ()\)Cl + M Jq ()\1)02 + Xlg]l (Xl)C:g
A A

@+ ot

— Jg(xl)Dg = Jg(—)\)Ao

Js(=)\)|R = J5(A1) Dy
A
Q)

1

> —1
+ /b L)y i

and
(3.23)
AT N)CL 4+ A3 T (A1) Ca + Ny (W) Cs
§ EAE
Q(\) Q(N)
— X2J3(A\1) D1 — A J3(A)De

Js(=\)|R
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o
QW)

T /boo j—;{c—lw(t)]}ﬁ dt.

At this stage, the unknown constants Cy, Cs, C3, Dy, Do and
R can be determined, in principle, from relations (3.6), (3.7) and
(3.19)—(3.23). However, condition (3.20) is not in a suitable form
for algebraic manipulation. Condition (3.20) can be modified into a
suitable form by integrating the relation (3.17) from 0 and b. This
results in

(3.24)
—bg'(b) =

J3(—=A)Ag

b t2f”/(t) dt_i 0 tQhH(t) 4
o V-2 m)y VE-g w,

upon utilizing the integrals

(vi) /0 eV -

dt = —1[2:1:2 — %], for0<az<b,

(12 — z2) 4
b 2
" t ™ T
(vii) o VB -2 dt:_f[ﬂ_l]’ for x > b.

Thus, we derive from equations (3.20) and (3.24) that

(3.25)
A3 [Jg()\) - %Jl(A)]Cl Y [Jg(xl) _ %Jl(xl)]ca
X {JZ(XI) - %JI(XI)]@, - [QA&) {Jg( A - 1JI(A)}

R R L

™°
_ Ag{%h(xlw—t}s(h }—b*leh < _%ﬂ
_ [xf{%h(m) + 5J3(A1) } - me( ﬂ
_ AO% [:2 Ja(=N) + %Js(—”}
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ib\2e—Ab 4
HEEINTPY (“F)

4 [ d* ., t2
+F/b LV} de

—b<1 - %)%{El[U(t)]}

where Jy(z), J2(z), J3(x) and Jy(x) are given in relation (3.21).

)
t=b

Hence, we have obtained the description of the analytical solution
for the general mixed boundary value problem posed in Section 2,
corresponding to the case of the submerged wave-maker or barrier.
Clearly, all the unknown constants in relations (3.4) and (3.5) can be
obtained from expressions (3.6), (3.7), (3.19), (3.22), (3.23) and (3.25).

3.2. Surface piercing wave-maker or barrier. Unlike in the
previous case, the normal component of the velocity is not continuous
at the intersection of the free surface and the rigid barrier. A schematic
diagram can be seen in Figure 1 (b). Writing the difference of the
velocity components on both sides of the barrier interface z = 0, it
may be obtained that

| €A + 5@ [e1 - Me)cosey - K singy] a

= (¢z(0_7y) - ¢I(0+7y))
+iMT + R — Ag) e, for y > 0.

Since the functions [£(1 — M&2) cos €y — K sin&yl, £,y > 0 and e~
are orthogonal with respect to the mode-coupling relation(see Manam
et al. [10]

(f9)= | e dy+ Z 0 0),
it can be obtained that
(3.26)

2iM (ut — p~
T— Ay Ry PME—pT),

1+3MX2

M (ut - o)
NG

where A(§) = €2(1 — M€?)? + K? and p* = ¢,,(0%,0) are the
prescribed edge slope constants.

B(£) = —A(6)
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In this case, the pair of integral equations resulting from conditions
(2.3) and (2.4) is
(3.27)

‘ / TEAE) sinéyde = XAy R) e M+ U(y), onye (0,b)
0
and

(3.28) E/O A(¢) sinéyd¢
M

_ Mo °°§(1—M§2)cos§y—Ksin§yd
5 (W~ )/0 NG 3
Mt — -
— [R— W R ) 1(—|{L3M/<t2 )] e, onye (b, 00).

Upon integrating the equations (3.27) and (3.28), the following dual
integral equations are obtained:

(3.29) / EA(E) sinfydé = CreY + Coe¥ + Cgexly
0

iX(Ag — R)

ooy e T UW)

= f(y), forye (0,b),

(3.30) / A(€) sinéydé = DieMY + DyeM¥ + DyeV
0

+ |:R_Z.M(H+/‘)]€)\y ML

_. [ sinéy
1+ 3M)2 Q(A)_T(“ ) NG| de

= h(y), fory € (b,o0),

where C1, Cs, C3, Dy, Dy and D3 are arbitrary constants and

ay [ U@)Wa(y)
e / W(y) o

Ny [ U@)Ws(y)
e / W (y) ,
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with
Wi(y) = (= A,
Waly) = (A= Xp)eP o,
Wi (y) = (A — ATy,
W(y) = (A1 = A) + A2(A = Ap) + A2 = Ap)Je@PFrtiy,

Clearly, the arbitrary constant Dj in (3.30) may taken to be zero and
the function f(y) must satisfy f(0) = f/(0) =0, i.e.,

iAo A 1
(3.31) Ci1+Cy+C5— WR = _AOW - L [U(y)] o
and
(3.32)
) 5 <2 i i Ay
A°CL+ A{Co + X C3 — WR = —Aow - d_yz{E [U(y)]} o
Letting

/0 EA(E) sinéyde = g(y), for y € (b, 00),

where g(y) is an unknown function to be determined, it may be obtained
from relation (3.29) that

(3.33) A© =% [ P sneyay,

where
[ fly) forye(0,b)
Ply) = {g(y) for y € (b, 00).

By putting A(¢) into the relations (3.30), the unknown function g(y)
satisfies the weakly singular integral equation

+

u
u—

i du = hy(z), for z € (b,00),

™

(331 L /b ~ g(w)log

where

b
hi(z) = h(z) — %/0 £(t) logz—ji‘dt.
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Differentiating relations (3.29) and (3.30) twice, one can obtain

o0 d2
(3.35) eae) == [ o7 sneydy

where the function g; = (d?g)/(dy?) satisfies the weakly singular
integral equation

1 (oo}
(3.36) —/ g1(u) log ute du = hy(z), for z € (b, 00),
T Jb u—x
with ) 2
d*h 1 [~ d T+t
ho(z) = S0 = [ S g |20
2(2) dz? 7r/b a2 % t

It can be shown, by a similar argument given for the previous case,
that the unknown functions g(y) and (d%g)/(dy?) are bounded at the
endpoint y = b with the behavior

d2
d—‘gw (|y—t|1/2) asy — bt.
Y

Hence, the bounded solutions for the above integral equations (3.34)
and (3.36) are given by
_ 2Vur -2 /°° t R (t)

u? b V2 — b2(t2 — u?)

g(u)

dt b
- , u€ (b,00),

provided that

(3.37) /b b % dt =0
and
(3.38)

dt, wu € (b,00),

=g 2V [T 0
N =z =77 2 b VB2t — u?)

provided that

°°t hy(t)

(3.39) ==

dt = 0.
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Utilizing the following integrals (see [8, 3.389 (3, 4)])

(viii) / ! dt = T , forxz<b,
b VB2 —2?) 2B o2
b xt
. te _ 0
(x) (@)= | ot = b[l +3 (Il(:cb) + Ll(:vb)>] ,
o o] t xt
x)  Jela) = / ¢ gt = bKy(~ab), Re(z) <0,
b t2 _ b2
* sinzt T
(xi) /b Lt = D Jo(ab),

with Jy being a Bessel function of the first kind, conditions (3.37) and
(3.39) can be expressed in terms of the unknown constants as

(340) J5()\)01 =+ J5()\1)02 + J5(X1)C3

) A

- [W‘M_” - WJG(—A)]R — MJs(M)Dy
BN 3 i

_ )\1J6()\1)D2 = _AOW‘%(_)‘)

M /Ooo A8 —E8CE) ;. (eh) e

2 [A(E)]
iM(pt —pm)A t

b
+(1+3M)\2)Q()\)J5()\)+/0 {/J*I[U(t)]} T

and

(3.41)  A2J5(\)C1 + A2J5(A1)Ca + Aads (W) Cs
B (=) — A (—)\)]R
QN QN"°
— NJ5(A1)Dy — XsJe(M) D2

= 2N - M | SEAE) ~ SN 1 ep) e

Q0 NG|
iM(pt — )N bz t
e R A L Ol e 2
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Also, matching relations (3.33), (3.35) and using the integration by
parts result the following conditions are satisfied by functions g and h:

‘ - ix
f(b) =0, ie,Cre*’ + Coet? 4 CyeM’ — RQ()‘) "

(3.42) - _AO&AA)‘BM e

and

(3.43)

It may be pointed out that, contrary to the case of the immersed
structure, condition (3.43) cannot be expressed in a suitable form by
integrating the relation (3.38).

Instead, relation (3.30) is twice differentiated and integrated with
respect to y, from b to oo, so that

oo hll (y)

b AyE - b

Utilizing the substitution from equation (3.35) and the integral (see [8,
6.693 (7)))

/0 " e2A(e) Jo(eb) de = dy.

/ Jo@b) 2 de =T fory > b,
0 xr 2

we derive that

b " < > h”(y)
d dy= [ —Y_ gy,
| s [ = [ s

After elementary integration and using equation (3.44), the above
equation reduces to

oo h/l (y)

b \y? b2

(3.44) dy + f'(0) = 0.
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FIGURE 2. (a) Reflection coefficient |R| in the limiting case M — 0 (8 = 0.0001)

for immersed barrier; (b) window showing variation in the curve.

Thus, the above relation (3.454) can be expressed in terms of the
unknown constants and is given by

(3.45) AC1+MCe+XiCs + [% (1- iJ3(—>\)>]

—2
+A2J3(A)Dy + X[ Js(A1) Do

_ iz2 iM(pt —p )N

o T s Y
- T =) [ gt de
- plewel)

with J3(x) given by relation (3.21).

This completes the determination of the analytical solution for the
general mixed boundary value problem posed in Section 2, correspond-
ing to the case of surface piercing wave-maker or barrier. All the un-
known constants in the relations (3.29) and (3.30) can be obtained from
the expressions (3.31), (3.32), (3.40)—(3.42) and (3.45).

3.3. Numerical discussion. By setting Ay = 0 in the boundary
value problem and its solution described in the previous subsections,
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FIGURE 3. (a) Reflection coefficient |R| for immersed barrier with 8 = 0.001; (b),
(¢) window around sharp rises.

we derive a complete analytical solution for the wave radiation, under
surface tension, by the partial vertical wave-makers. Numerical com-
putations are carried out in Mathematica for the cases when Ay = 1
and U(y) = 0, corresponding to the incident water wave scattering by
partial vertical barriers. The unknown constants Cy, Cs, C3, D1, D2, R
can be determined from the relations (3.6), (3.7), (3.19), (3.22), (3.23)
and (3.25) in the case of an immersed vertical barrier and from the
relations (3.31), (3.32), (3.40)—(3.42) and (3.45) in the case of a surface

piercing barrier.

It is well known that, for water at 25°C, surface tension is M = 72
dynes/cm, the density of water is p = 1 gm/cm? and the gravitation
constant is g = 981 cm/sec?. As water temperature varies over the
range 5°C—60°C, surface tension too varies linearly and lies approxi-
mately between 60-80 dynes/cm. Reflection coefficients are calculated
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FIGURE 4. (a) Reflection coefficient |R| with 8 = 0.005 for immersed barrier; (b),
(c) window around sharp rises.

in Mathematica for different values of a non-dimensional surface ten-
sion parameter 5 = MK? against a non-dimensional wave parameter
a = Kb in both cases of barrier configuration.

The boundary value problem under consideration is an isolated one in
the sense that the wave motion is purely because of the surface tension
and cannot exist for M = 0. But it is expected that calculations
for very small 8 values match with that of the zero surface tension.
For an immersed barrier, reflection coefficients in the limiting case, for
example, 8 = 0.00001, are exact with the analytical result for zero

surface tension as given by
Ko(KDb)
R= - .
Ko(Kb) + iy (Kb)
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The biggest value of 5 used in the computation is the typical one for
water at room temperature, that is, 0.074.

The graphical profiles of the reflection coefficient |R|, for a submerged
barrier, have been plotted in Figures 2-5 for various 8 values. In
Figure 2, reflection coefficients are shown for § = 0.0001. There is a
negligible deviation in |R| from the exact one as shown in the close up
curve in sub-figure 1 (b) at around a = 0.78, but otherwise it matches
exactly. For a slight increase in the value of the tension parameter,
i.e.,f = 0.001 or 0.005, there are spikes at certain frequencies for the
values of |R| which are depicted in Figures 3 and 4, along with the
typical spikes elaborately shown in the close up curves. These spikes
can be attributed to an interplay between the surface tension and the
incident wave frequencies. The frequencies at which this happen are
called resonant frequencies. However, as 3 gets higher, the spikes start
appearing at lower frequencies, and the gap between their appearance
also widens. This can be observed in Figure 5. These graphs show
the effect of surface tension on the waves passing through incomplete
vertical barriers. Finally, the energy conservation |R|? + |T'|?> = 1, in
this case, has been numerically verified to be exact as expected.

In Figures 6-9, reflection coefficients, for a surface piercing barrier,
are plotted for different values of 8 against the parameter . As dis-
cussed earlier, since the slope of the surface elevation is not continuous
across the barrier, one is expected to specify certain edge constants
which are assumed to be known. Specifically, they are related to the
contact angles of the free surface at the edges (see [9]). Also, because
of surface tension, work must be done to maintain the contact angles
throughout the harmonic time motion near the edges and hence the
dissipation of energy. This would imply that, for very small values of
0, there is a conservation of energy, and this has been verified numer-
ically. However the reflection curves, with zero or non-zero edge slope
difference across the edges, are having few smaller variations like spikes
for negligible values of 5 as well. This may be expected considering the
isolated nature of the problem. It has been observed numerically in the
limiting case, for example, 8 = 0.00001 and u™ — u~ = 0, reflection
coefficients are almost exact with the analytical result

B 71, (Kb)
-l (Kb) +iK, (Kb)’

except at a few places with small spikes.
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FIGURE 6. (a) Reflection coefficient |R| for the surface piercing barrier with
B = 0.00001 and put — u~ = 0.05; (b), (c) window around sharp variations.

In Figure 6, reflection coefficients are shown for f = 0.00001 and
pT—pu~ = 0.05. Even here, with 3 being negligible, energy is conserved
but the reflection curve has few considerable spikes otherwise matching
with the analytical result. For a slight increase in the value of the
tension parameter, i.e.,§ = 0.001 or 0.005, there are many spikes for
the values of |R| as shown in Figures 7-9, along with a typical spike
curve drawn in close up. That is, at these resonant frequencies, there
is a partial or full wave transmission, and clearly it can seen the non-
conservation of energy in the sub-figures 7 (d) and 8 (d). Also, as in the
case of submerged barrier, the gap between the spikes increases for an
increase in the values of the parameter 3. Finally, reflection coefficients
and corresponding energy curves for § values 0.01, 0.02,0.05, 0.074 are
represented in sub-figures 9 (a), (b), (c) and (d), respectively.

3.4. Capillary-gravity wave trapping. It can be observed
from the graphs that there is a complete reflection or transmission
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for certain resonant frequencies, in either of the barrier configurations.
At these frequencies, physically, the progressive wave gets trapped on
either side of the partial barrier. This phenomenon was also observed
in the numerical study (see [5, 21]) of gravity waves at the end
of a semi-infinitely long channel of finite depth, with either rigid or
porous type immersed at the bottom. But it is interesting to see
such phenomenon for capillary gravity waves passing through a partial
immersed or piercing vertical barrier without any wall being in the
background. However, this does not happen in the absence of surface
tension. Indeed, the spikes in the reflection curves confirm the partial
or complete capillary gravity wave trapping on either side of the non-
complete barrier at those frequencies.

4. Conclusions. A special class of mixed boundary value prob-
lems for Laplace’s equation with higher order boundary condition has
been tackled for an analytical solution. This is associated with the
capillary-gravity wave scattering, in deep water, by partial vertical bar-
riers. Using certain mode-coupling relations, the mixed boundary value
problem has been reduced to a dual integral equations with trigono-
metric kernel. These, in turn, are solved completely by the aid of a
weakly singular integral equation. The bounded behavior of the so-
lution of the weakly singular integral equation forces a mathematical
constraint which finally helps in determining the unknowns associated
with the dual integral equations. The graphical profiles of reflection and
transmission coefficients have been plotted against a non-dimensional
parameter and are found to match with the closed form expressions
corresponding to the problem without surface tension. In this study,
slopes of the surface elevation on both sides of the barrier are assumed
to be known as the edge conditions. Hocking ([9]) has given dynamical
edge conditions involving contact angles of the surface elevation, but
again they are presumed to be known from the experiments. However,
we have not utilized these edge conditions in the solution procedure
as they too are again assumed to be constants. An extension of the
present method of solution, to a mixed boundary value problem for the
scattering of surface gravity waves under surface tension by vertical
barrier with a finite number of gaps in it, is found to be possible (see
[3]). Also, the solution method applied to solve these kinds of dual in-
tegral equations is useful in other physical situations where they arise
naturally.
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