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ABSTRACT. In this paper, several acceleration techniques
for numerical solutions of the Hammerstein equation by post-
processing are discussed. The paper is motivated by the re-
sults reported in papers [7, 8]. Results in these papers are
concerned with certain post acceleration techniques for nu-
merical solutions of the second kind Fredholm integral equa-
tion. Techniques consist of interpolation post-processing and
extrapolation. Post-processed solutions are shown to exhibit
better accuracy. We propose in this paper to generalize the
results in [7, 8] to nonlinear integral equations of the Ham-
merstein type. An extrapolation technique for the Galerkin
solution of Hammerstein equation is also obtained. This re-
sult appears new even in the setting of the linear Fredholm
equation.

1. Introduction. In this paper, we investigate a number of post-
processing techniques which can be used to enhance the accuracy of
numerical solutions of nonlinear integral equations of the Hammerstein
type. Post-processing techniques discussed here can be classified into
two groups, one based upon an interpolation and another based upon
an extrapolation. Motivation of this paper originates in a recent paper
[8] in which similar results were obtained for linear integral equations
of the Fredholm type. One of the goals of this paper is to extend the
results in [8] to a class of nonlinear equations. Accuracy enhancing
post-processing techniques by iterative methods are well documented
in terms of linear [1] as well as nonlinear integral equations [4, 5.
The iterative method, when applied to the collocation method as well
as to the Galerkin method, double the order of the accuracy of a
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numerical solution, provided that the solution and the kernel of integral
equation are sufficiently smooth. Iterative method is an excellent
method to improve the accuracy of a numerical solution. We note that,
in order to double the rate of convergence of numerical approximation
by the collocation or the Galerkin method, it is necessary that the
order of basis functions must be doubled. This results in the solution
process which involves a much larger system of linear or nonlinear
equations. The iterative method, on the other hand, presents an
accuracy enhancement technique which avoids a larger system and thus
is computationally more efficient.

We present in this paper a class of post-processing techniques based
upon an interpolation and an extrapolation. The cost of implementing
these techniques turns out to be less than that of the iterative methods.
In Section 2 we study a global superconvergence property of the
interpolation post-processing technique for the collocation method for
Hammerstein equations. The case for weakly singular Hammerstein
equations is also included in this section. After the original version
of this manuscript was completed, the paper by Huang and Zhang
[3] was brought to the authors’ attention which proved the same
superconvergence result for the post-processing collocation method.
Because of this discovery, we do not present our original results in
Section 2, but refer to [3] for details for one-dimensional problems.
Instead, we present, in Section 2, a numerical example exhibiting that
the same superconvergence of the post-processed collocation method
can be obtained for two-dimensional Hammerstein equations. The
numerical experiment conducted on the two-dimensional Hammerstein
equation reveals that there exist a number of interesting and important
issues which must be addressed for a successful implementation of
the post-processing technique via interpolation for multi-dimensional
integral equations. They will be discussed in a future paper. In
Section 2 we also briefly mention a post processing technique by
interpolation to enhance the order of accuracy of a numerical solution of
one-dimensional weakly singular Hammerstein equation. A numerical
example using constant basis functions is reported in [3]. We include
in Section 2 two additional numerical examples for weakly singular
Hammerstein equations, this time using linear basis functions. We
consider both types of weak singularity which are logarithmic and
algebraic.
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An extrapolation technique for the iterated collocation solution of
the Hammerstein equation is discussed in Section 3. This provides an
alternative way in which a post-processing technique can be used to
improve the order of the convergence of numerical solution. Results in
Section 3 play a critical role in establishing the global extrapolation
method presented in Section 4.

The final two sections, Sections 5 and 6, are concerned with super-
convergence of the Galerkin method by the post-processing techniques.
In Section 5 we apply the interpolation technique explored in Section 2
and by Huang and Zhang [3] to the Galerkin method. We achieve a
superconvergence result but the rate of acceleration is not as great as
that of the collocation case of Section 2. In this connection, the reader
is also referred to a recent paper by Huang and Xie, [2], which uses
different interpolation operators under different regularity conditions
to obtain a superconvergence of a higher order. Our result in Section 5
is consistent with a similar result for the Volterra equation reported in
8].

An extrapolation of the iterated Galerkin method is treated in the
final section, Section 6. Results in Section 6 appear new even in the
setting of the linear Fredholm equation.

In this paper, we consider the following Hammerstein equation:

LD ) —/0 k(t, sy (s, u(s)) ds = f(£), tel=[0,1],

where k, f and v are known functions and w is the function to be
determined. We assume throughout the paper, unless otherwise stated,
the following conditions on k, f and .

1. limy, |kt — Erllo,o = 0, 7 € [0,1], (see (1.4) below for the
definition of || - ||0,c0);

2. sup, fol \k(t,s)| ds < oo;
3. feC0,1];

4. (s,z) is continuous in s € [0,1] and Lipschitz continuous in
x € (—00,00), i.e., there exists a constant Cy > 0 for which

(1.2) |¢(s,z1) — (s, z2)| < Cyler — 2|, for all z1,z € (—00, 0);
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5. The partial derivative (%1 of ) with respect to the second
variable exists and is Lipschitz continuous, i.e., there exists a constant
C5 > 0 such that
(1.3)
1OV (s, 21) — O (5,20)| < Colwy — x|, for all 21,29 € (—o0, 00);

6. for u € C[0,1], (-, u(:)), OV (-, u(-) € C0,1].

Moreover, we introduce two norms

— (%)
(1.4) [0 = max {110l }
and
m ) 1/2
(15) ||v|m,2:{ / Z@(”(a:)fda:} ,
=0

where m is a nonnegative integer.

2. Global superconvergence for Hammerstein equation by
collocation method. As was stated in the introduction, a super-
covergence of the collocation method via interpolation for the one-
dimensional Hammerstein equation was recently obtained in [3]. Hence,
the reader is referred to [3] for details. The purpose of this section is
to demonstrate that the theory pertaining to the superconvergence, for
most part, can be carried over to multi-variable Hammerstein equa-
tions. Through the numerical experiment reported below, interesting
observations arose. For example, it is found that locations of the in-
terpolation points are critical in achieving superconvergence for multi-
variable equations. Additional issues relating to the post-processing of
multi-variable integral equations will be discussed in a future paper. In
order to better explain Example 2.4 below of a two-dimension Ham-
merstein equation, we make a brief review of the post-processing of the
Hammerstein collocation method in the one-dimensional case. Let 7"
be a partition of I:

O=ti<ti <---<ty=1
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and e = [ti,ti+1], hl = ti—l—l —t; and h = max; hz We denote by Sh
the space of piecewise polynomials of degree < r, i.e.,

Sh={ve L*(I):v|, € P,,0<i<N -1},

where P, denotes the space of all polynomials of degree < r. Let
B = B,.;1 consist of zeroes of r+1 degree Legendre polynomials located
n [—1,1]. Define ®;:[-1,1] = e;,i=0,...,N —1, by

1+¢ 1-t¢
®,(t) = i tit1+ ti, tel-1,1],
2 2
and
N-1
A= |J @(B),
=0

so that A contains the collocation points. The collocation approxima-
tion u" € S is obtained under the assumption that the residual

1
RM () = ul (1) / K(t, s)b (s, 0" (s)) ds — (1)
0

disappears under the interpolation projection i}, of C'(I) onto Sh. Here
iv: C(I) — S" is defined by

ipule, € Pr, iru(t) = u(t), forte ®;(B).

Equivalently,
1
(2.1) ul(t) — / E(t,s)(s,u(s))ds = f(t), forallt e A.
0
To describe equations (1.1) and (2.1) in operator form, we let
1
KU(u)(t) = / k(t, (s, uls)) ds, te€ T,
0

and

U(u)(s) = (s, u(s)).
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Then (1.1) and (2.1) can be written, respectively, as

(2.2) u—KU(u) = f,
and
(2.3) ul — iy KU (uh) =il f.

An estimate on the size of u* — i, u, called a superclose identity, plays
a vital role in establishing the superconvergence. It can be shown that,
with
- h — (0,1) - h T
g(t, szhu(s)vu (8)70) - k(tvs)d] (szhu(s) + e(u (8) lhu(s)))v

where 0 < # < 1 and

1
Grulo) = [ glt.s,iju(s), (), 6)u(s) ds,
0
assuming that 1 is not an eigenvalue of the operator Gy,
(2.4) ul —ivu = (I —i5Gp) YL K[ (ihu) — U (u)).

An estimate on the right side of (2.4) was investigated in [5] and, in
the present setting, it is proved that

(I =i, Gn) M K9 (ipu) — ¥ (u)] = O(h**?),
which gives the superclose identity
(2.5) ul — ifu = O(R?*+2).

See also [3] for additional discussions.

The remaining analysis for obtaining global superconvergence by
interpolation post-processing technique is the same as that for the
linear case. First, we obtain a collocation solution u” over the partition
T" where it is assumed that the total number N of intervals is even.
u™ is then interpolated at the collocation points over two consecutive
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intervals e; Ue;+1 by a polynomial of degree 2r + 1. In this connection,
we define an interpolation operator Ig,’;“ as follows:

2r+1 s
I2;; u ¥ €P2T+1, Z—O,2,...N—2,
e;Ue;t1

and

Zitlu(t) = u(t), te€ ¥ (B)UT,(B).

An application of the superclose identity (2.5) and the triangle inequal-
ity yields the estimate for the post-processed collocation solution via
interpolation,

(2.6) 1255 " = ullo,c0 = O(A*"2).

We note that a similar estimate to (2.6) under the L? norm is also
valid.

Example 2.1 below confirms the estimate described in (2.6). See
[3] for additional examples. Throughout all numerical experiments
reported below, we choose the piecewise linear polynomials to be the
basis functions, i.e., = 1. Moreover, corresponding nonlinear systems
are solved by two different iteration schemes. The original Newton-
Raphson iteration method is used first, followed by another approach,
the quasi-Newton method which is obtained by

Ck4+1 = Ck — Jﬁl(ckl)F(Ck),

where c¢; is unknown coefficient to be determined, k& denotes the
iteration step and &’ is fixed. That is, the Jacobian is fixed throughout
the iterations in the quasi-Newton method. A stopping criteria is taken
within 14 digit accuracy, i.e., tolerance ¢ < 1074, The computer
programs are run on a personal computer with 2.0GHz CPU and 4GB
memory.
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TABLE 1. The computational results of Example 2.1 by using collocation and

interpolation techniques.

N Collocation Newton quasi-Newton | Interpolation

en R, |NI| CT |NI CT en Ry,
2 | 7.5734e-2 5 0.12 7 0.09 9.0912e-2

2.3643e-2 | 1.68 | 5 0.19 8 0.15 4.4949e-3 | 4.34
8 |6.2950e-3 | 1.91 | 5 0.67 8 0.58 3.3793e-4 | 3.73
16 | 1.5982e-3 | 1.98 | 5 2.54 8 2.00 2.2050e-5 | 3.94
32 | 4.0108¢e-4 | 1.99 | 5 9.77 8 7.50 1.3928e-6 | 3.98
64 | 1.0037e-4 | 2.00 | 6 | 46.19 | 8 29.47 | 8.7283e-8 | 4.00
128 | 2.5098e-5 | 2.00 | 6 | 183.00 | 9 124.41 | 5.4588e-9 | 4.00

Numerical Example 2.1. Consider the equation

1
u(t) — /0 sin(m(s +t))u?(s)ds = f(t), t€]0,1]

where f(t) is chosen so that the exact solution is u(t) = sin(wt). The
results are presented in Table 1. Notice that we defined NI to be the
total number of iterations, and CT is the computing time of solving
the collocation method of each scheme.

€
= lu=os R logs (),
h/2

_ = ep
eh = llu— It oy B = log (—)
€h/2

We can see from Table 1 that, although the quasi-Newton method
requires more iterations than Newton’s method, the computing time of
the quasi-Newton method is less. This difference is more pronounced
in the Galerkin-based computation which will be presented in Sections
5 and 6.

In the case of Hammerstein equations with weakly singular ker-
nels, the superconvergence result of (2.6) by the interpolation post-
processing technique can also be obtained. Here, the kernel is assumed
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to be of the type
t\1
k(t,s) =k*( - |-
(t,3) <s>s’

where, with ¢ = t/s and D denoting the differential operator of order
A

1 —
/ D% (o)) % < {CO <1 £=0,
0 o C<oo £2>1.

It is known that the optimal order of convergence of the collocation
method for weakly singular Hammerstein equations can be obtained
by use of a graded mesh, see, e.g., [1, 4]. For example, if the spline
of degree r is used in computation, one may select a partition Tp,
0=ty <t1 <---<ty=1,witht; = (i/N)? and ¢ > r+1, to preserve
the optimal order of convergence. To attain a similar superconvergence
result for the numerical solution of weakly singular equations by the
interpolation post-processing technique, we simple select the partition
by defining t; = (¢/N)%, ¢ > 2r+2, and perform post-processing by the
interpolation described above over the intervals beginning at ¢;. Note
that a selection of t; = N9, ¢ > 2r + 2, guarantees the size of the first
interval [0, ¢1] is small enough so that the approximation error from this
interval is consistent with the errors from subsequent intervals despite
the fact that the solution may not be differentiable over [0,¢;]. A
numerical experiment is reported in [3] demonstrating the effectiveness
of this approach using a constant basis. In what follows, we present
two additional examples.

Numerical Example 2.2. Consider the equation

u(t)—/o log |s — thu2(s) ds = f(£), te0,1]

where f(t) is chosen so that the exact solution is u(t) = t*. The results
are presented in Table 2.
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TABLE 2. The computational results of Example 2.2 by using collocation and

interpolation techniques.

N Collocation Interpolation
€n Ry €n Ry,
1.006500e-2 8.492456e-3

8 | 2.606709e-3 | 1.9490 | 7.007576e-4 | 3.5992
16 | 6.518285e-4 | 1.9997 | 5.297109e-4 | 3.7256
32 | 1.628305e-4 | 2.0011 | 3.722810e-6 | 3.8307
64 | 4.069555e-5 | 2.0004 | 2.388927e-7 | 3.9620
128 | 1.017298e-5 | 2.0001 | 1.431229e-8 | 4.0610

TABLE 3. The computational results of Example 2.3 by using collocation and

interpolation techniques.

N Collocation Interpolation
en Ry, Ehn Rh
4 | 3.202584e-1 4.562162¢-1

8 | 8.081319e-3 | 5.3085 | 7.209956e-3 | 5.9836
16 | 1.035501e-3 | 2.9643 | 5.693164e-4 | 3.6627
32 | 1.897584e-4 | 2.4481 | 4.070014e-5 | 3.8061
64 | 4.280083e-5 | 2.1485 | 3.377003e-6 | 3.5912
128 | 1.038697e-5 | 2.0429 | 2.746804e-7 | 3.6199

Numerical Example 2.3. Consider the equation

1 1 ) -
u(t)—/o S ds = @), el

where f(t) is chosen so that the exact solution is u(t) = t*. The results
are presented in Table 3.

Now we are ready to exhibit an example of multi-variable Ham-
merstein equations to demonstrate that the post-processing technique
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based upon the interpolation can be applied to a multi-variable Ham-
merstein equation. For #,5 € R?, we consider

@7 u@® —/0 /0 k(E,5)0(, u(E) d5 = f(B), ELselxl.

We use the tensor product of S* with itself, S ® S”, as our approxi-
mating space. Note that Uh_>0(5h®5h) is essentially dense in C'(I x I),
see [6]. With i, = 7 @17, 7,: C(I x I) = 8" @ S" satisfies

intle;xe; € Pr ® P, inu(f) = u(?), for € ®;(B) x ®;(B).

The collocation method is to solve

1 1
(28) u'(D) / / k(E3)0(s, u"(5)) ds = f(B),

t € Up<ij<n—1®i(B) x ®;(B).

Once u" (%) is obtained, one may interpolate its values at the colloca-
tion points over four squares e;Ue; 1 X e;Uej1 by the two-dimensional
polynomial in the form

ulh(t, 1) = a1 + agt’ + ast + agtt’ + ast”2 + agt® + art t’>

2.9
( ) + a8t2 t/ + agt/3 + a10t3.

Here, recall that linear splines are used to discretize the solution in each
direction. To double the order of accuracy, we require a polynomial of
degree 3 in two variables ¢,t’ as indicated in (2.9). Our numerical ex-
periment indicates that the location of these ten interpolation points in-
fluences much in achieving the superconvergence of a desired accuracy.
More discussions on the post-processing technique for multi-variable
Hammerstein equations will be made in a future paper.
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j+2

Jj+l

i+2

FIGURE 1. Location of ten interpolating points.

TABLE 4. The computational results of Example 2.4 by using collocation and

interpolation techniques.

(N,N) | NU Collocation Interpolation
en Ry, €n Rh
(2,2) | 16 |2.604955e-1 5.303465¢-2
(4,4) 64 | 7.078941e-2 | 1.8797 | 4.782085e-3 | 3.4712

(8,8) 256 | 1.845359e-2 | 1.9396 | 3.604376e-4 | 3.7298
(16,16) | 1024 | 4.710457e-3 | 1.9700 | 2.412651e-5 | 3.9011
(32,32) | 4096 | 1.189914e-3 | 1.9850 | 1.376186e-6 | 4.1319

Numerical Example 2.4. Counsider the following two-dimensional
equation

u(t,t')—/o /0 (t—8)(t' — &) (s + & +u(s, s))2dsds’ = f(t,¢),
(t,t')eIxI

where f is chosen so that the exact solution is u(t,t') = exp(¢t+t'). Ten
points are selected from four contiguous squares e; U e;11 X e; Ueji1,
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i, =0,2,...,2N — 2, and they are circled in Figure 1, or (¢ ,¢*;1),
(t;fjtl,l’tl*j,l)’ (t;+1,2vt/*j71)7 ( ;,2775,*1',2)’ ( ;+1,2’t/*j72)7 (t;f,lvt,*jJrl,l)v
(795t j11,1), (Ep 05t j41,1), (8258 j11,2) and (81 2,8 j41,2)-

In Table 4, NU is the total number of unknown coefficients to be
determined. With the ten interpolation points described, our numerical
experiment confirms the same superconvergence as the one-dimensional
problem in Example 2.1.

3. Extrapolation of iterated collocation solution for Ham-
merstein equations. In this section, we generalize the result obtained
in [7] concerning an extrapolation technique for the iterated colloca-
tion method. The iterated collocation solution u?, for the Hammerstein
equation is defined as follows:

For a collocation solution u” of (2.1),

1
W (1) = F(8) + / k(t, )u(s, u(s)) ds,
0
or, in operator form,
(3.1) ull = f + KU (uh).

From equation (3.1),

(3.2) inup, = in f+ i KO (u"),
and (2.3) and (3.2) yield
vl = ul
Thus, (3.1) becomes
(3.3) uly = f + KU(ijull).

It is proved in [4] that if f € C?"T2(I) and k € C?*"T2(I x I), then

lu = il 0 = O (7).

Since [|u — u”||p,co = O(R"*1), the iterated solution converges at a rate
twice as fast as the collocation solution.
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The following theorem, which generalizes Theorem 1 of [7], estab-
lishes the basic fact which underlines the extrapolation technique for
the numerical solution of Hammerstein equation.

Theorem 3.1. Assume that k € C"([0,1] x [0,1]) and the
solution u of (1.1) satisfies u € C?"+4[0,1]. Also assume that 1 is
not an eigenvalue of the linear operator (K¥)'(u). Then there ezists a
b e C([0,1] x [0,1]), independent of the partition, such that

N

u(t) — uly(t) = 3 b2+ / b(t,s)ds + O (B+1), teo,1].

k=1
Proof. From (2.2) and (3.3),

u—ul = KU(u) — KU(itul)

(3-4) = KU(u) - KU(ihu) + KU(ifu) — KU(iub).

Now, recall from the previous section,

1

Gru(s) = [ glt,s,ifuls), iy (5), O)us) d,

0
where ¢ is also defined in Section 2. Then
KV (itu) — KU(i5ul) = Guit (u — ult).

Equation (3.4) becomes
(3.5) u—uly = KU(u) — KU(ijul)) + Gpif (u — ul}).
Arguing as in [4] and using assumptions 2, 5 and 6, we can show that
{Gni}} is a family of collectively compact operators and Gpi; — G =
(KV)'(u) pointwise as h — 0. Since G is compact and (I — G)~!
exists by assumption, from a theory of compact operators (see, e.g.,

(1]), (I — Gpi}) " exists and is uniformly bounded. This shows that

(3.6) ||u — ui’t

lo,00 < ClIE¥(u) — K¥(ihu)llo, = O(R**?),
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which establishes the superconvergence of the iterated collocation so-
lution [4]. For our present purposes, we require the following. Since

(3.7) (I-Guit) t=T—Gp) ' — (I Gpiy) *Gn(I—i7)(I — Gp) 1,

using (3.5) and (3.7), we obtain
(3.8)
u—ul = (I — Gpit) " H{K¥(u) — KU(isu)}
= (I Gp) twh — (I - Guiy) 'GL(I —i5)(I — Gp) twh
=" — (I — Gui}) *Gr(I —i})o",
where
wh = KU (u) — KU (il u)
and

o' = (I - Gp) 'l = (T — GR) T K [®(u) — U(ihu)].

Let L = (I — G,) 'K where L is an integral operator with a kernel
1*(s,t) with the same smoothness properties as k(s,t). Then

V" (t) = L[¥(u) — ¥(iju)] = /0 (s, 0)[9 (s, u(s)) — ¢(s, ipuls))] ds.

Using the mean value theorem, when 0 < 6§ < 1, we have

vh(t) = /0 1" (s, t)g—:f (s, (u+0(iru —u)) (s)) (u—iru)(s)ds

! . .
:/0 I(s,t)(u—ihu)(s)ds = ;/E I(s,t)(u — ihu)(s)ds
where [(s,t) = 1*(s,t)(0¢/0u) (s, (u+ 0(iju — u))(s)).

By applying the results of Lemma 3 of [7] to each subinterval Ej, (and
noting that the change of scale introduce a factor (hy/2)? for the jth
derivative), we obtain

N po\2r+2 22 ' .
o (t) = Z <7k> Z cji/ D’ (s,t) D'u(s)ds
k=1 i=r+1 Ey
j+1=2r42

+0 (R |0l
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where D, denotes the partial derivative with respect to s. The result
may be rewritten as

N
(3.9) WMty =) hprt? / b(s, t)ds + O(h* ),
k=1 2
where
2r+42
b(s,t) =27 (?r+2) Z c;iDI1 (s, t) D'u(s)
i=r+1
j+1=2r42
Also,

I(Z = Gnip) "' Ga(I = i) [lo,00 < CIGRI = i7,)0" [lo,00

(3.10) < CI(I = 7)o" [lo,00
< Ch3||v"||2.00 = O(R* ).

Here, the first two derivatives of v" are taken using (3.9); and, ar-
guing in the same way, we see that [[v"||2,00 = O(h?"*2). Equations
(3.8)—(3.10) give the desired result. o

Theorem 3.1 lends naturally to an extrapolation of the iterated
collocation method for Hammerstein equation. Let 7"/ be a partition
of I
0=ty <tyjp <ty <tgjo <--- <tn-1y2 <tn=1

where

te—1 +
b}

k=1,...,N.
2

lp—1/2 =

Let u"/? and u?t/ ? denote the collocation and iterated collocation
approximation for the Hammerstein equation with respect to this new
partition. Theorem 3.1 yields

N
ult) - ulf?(t) = 27 CriD 3" pre / b(t, s) ds + O(h> ).

k=1 €k

Richardson extrapolation gives a new approximation

hz 22l (1)
Uy (t = 22r+2 _ |
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It is straightforward that

(3.11) u(t) —al/?(t) = O(R> ).

Numerical Example 3.1. Consider the equation

1
ut)~ [ exp(els ~ () ds = f0), ¢l

where f(t) is chosen so that the exact solution is u(t) = cos(t). The
results are presented in Table 5. Notice that we defined

. _ 2
en=llu—uloses B = log, (A—>

-~ _h 5 ep
ep = |lu— uit/2||0700, and Rp= log, <;—>
€h/2

4. Global extrapolation for Hammerstein equations. Theo-
rem 3.1 once again plays a critical role in establishing another method
of improving the accuracy of numerical solution of the Hammerstein
equation. Here, we examine a global extrapolation method for the
Hammerstein equations. From (3.9),

N

ot = 3 / b(s, ) ds + O (R2"+)

k=1 Er

N h 2742
=h72y (f) / b(s,t)ds + O (R %)
k=1 Ex

— h2r+2w(t) 4 O(h2r+4),

ij:(h—hkyﬂ /E b(s, ) ds.

k=1

where

w(t)

Equivalently,

(4.1) (I — Gr)™ Gh(u — i) (t) = K> 2w(t) + O (¥ +1)
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TABLE 5. The computational results of Example 3.1 by using collocation and

post-processing techniques.

N Collocation Newton quasi-Newton Post-Processing N
en R, |NI| T |NI| cCT n R Zn Ry,
2 | 1.1667e-2 5 0.11 10 0.08 1.2547e-3
2.7077e-3 | 2.11 | 5 0.19 | 10 0.19 7.1920e-5 | 4.12 | 1.7389e-5
8 | 6.5885e-4 | 2.04 | 5 0.67 | 10 0.64 4.4079e-6 | 4.03 | 2.3326e-7 | 6.22
16 | 1.6330e-4 | 2.01 | 5 2.48 | 10 2.29 2.7419e-7 | 4.01 | 3.4813e-9 | 6.07
32 | 4.7258e-5 | 1.79 | 5 9.64 | 10 8.58 1.7117e-8 | 4.00 | 5.3746e-11 | 6.02
64 | 1.0175e-5 | 2.21 | 5 | 38.17 | 10 33.26 1.0695e-9 | 4.00 | 8.4259e-13 | 5.99
128 | 2.5433e-6 | 2.00 | 5 | 151.04 | 10 | 131.60 | 6.6836e-11 | 4.00 | 1.7541e-14 | 5.59

Applying (2.4) and using the fact that
(I —i,Gr) ™" = (I = Gp)™" = (I =i, Gn) "I = i) Gr(I — Gp) ™,

we get
(4.2)
ul —ivu = (I~ Gp) i G(inu — u)
— (I =4, Gp) M —4})GR(I — Gp) i Gr(ihu — u)
= (I — Gh)_lGh(iZu — u) + (I — Gh)_l(I — lZ)Gh(U — zflu)
- (I - i;Gh)_l(I - Z;)Gh(I - Gh)_liZGh(izu - u)

By virtue of the fact that u—4; u = 0 on Gaussian points and arguing
similarly to [8], it can be shown that

(43) (L= Gr) (I = i5)G(u = iu) = O(R*?),
and
(4.4) (I —i,Gr)™"(I —i},)Gu(I — Gp) " i, Gr(ihu — w) = O (R*12).

Equations (4.1)—(4.4) yield the superclose identity with asymptotic
error terms.

2r+2w 2r+4 r
(45) uh(thu(t):{" () + O+ 1> 1,

h*w(t) + O(h?) r=0.
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Equations in (4.5) naturally lead to the following extrapolation method.
The theory follows in exactly the same way as the one given in [8]. We
include it for completeness. Let N be the number of elements of 1",
and assume that it is a multiple of 3. Define an interpolation operator
132;"’3 mapping into a space of polynomials of degree 2r + 3, r > 1, as
follows:

N
I§;+3u ei_1Ue;Ueir; € P2T+3, 1=30+ 1,[ =0,1,..., g -1,
IZrH3u(t) = u(t), t€®; 1(B)U®;1(B)U{s? s"

where ®,(B) = {s?,...,sl'}. Using (4.5) and
2r43.r _ 72r43
Ly ip = 137,
and arguing as in [8], we obtain
(4.6) L3 ut —u=h* 12w+ 0 (R

Equation (4.6) leads naturally to a global extrapolation method for
the solution of the Hammerstein equation. In order to implement the
global extrapolation, let S?/2 be the space of piecewise polynomials of
degree less than or equal to r with partition points

Th2:0 =ty <typ <ti <tgm < - <ty (/2 <tn =1,

where ; iy
i—1 i
tli(l/z):T, Z:17...,N.

Denote the collocation approximation and interpolation operator of
degree 2r + 3 with respect to the partition 7"/2 by u"/? and 152723 SO
that
2r+2
2r+3, h/2 2r+4
I32/+2 uh/2(t) — u(t) = (§> w(t) + O (R*"H) .

The standard Richardson extrapolation gives an approximation with
higher order of accuracy, namely

a2 (t) — u(t) = O (),
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where 2r+2 72r+3, h/2 2r+3, h
222U A () — I TPul(2)

2r43_h/2(4\ —
B () = e

3h/2

Numerical Example 4.1. Consider the equation

u(t)—/o exp (s — tyu2(s)ds = £(£), te0,1],

where f(t) is chosen so that the exact solution is u(t) = exp (¢). The
results are presented in Table 6. Notice that we defined

-~ ~ €n

ep = ||u — I§£+3u |0,ooa Rh = 10g2 <~—>
€h/2

= _ = ?h

en = |Ju— I§;+3uh/2\|07w, and Ry =log, <,~\—>
€h/2

5. Global superconvergence for Hammerstein equations by
the Galerkin method. In this section, we examine global super-
convergence of the post-processed Galerkin method by interpolation.
In other words, we apply the technique in Section 2 to the Galerkin
method. We denote by P, the orthogonal projection of L(I) onto S".
More precisely,

(5.1) (u — Pyu,v) =0, forall v € S™.

Then the Galerkin method in solving (2.5) can be written as
(5.2) u" — PLKU(u") = P, f, u" e S"

The weak forms of (2.2) and (5.2) are

(5.3) (u,v) — (K¥(u),v) = (f,v), forallve L*(I),
and

(5.4) (u",v) = (K¥(u"),v) = (f,v), forallve S".
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TABLE 6. The computational results of Example 4.1 by using collocation and

post-processing techniques.

N Collocation Newton | quasi-Newton Post-Processing N
en R, |NI| cT |NI cT h Ry, % Ry,

3 | 2.2399e-2 6 0.20 | 13 0.14 4.2392e-4

6 | 5.9444e-3 | 191 | 6 0.44 | 13 0.45 2.7526e-5 | 3.94 | 4.8714e-7

12 | 1.5295e-3 | 1.96 | 6 1.70 | 14 1.65 1.7389e-6 | 3.98 | 7.7383e-9 | 5.98

24 | 3.8781e-4 | 198 | 6 | 6.38 | 14 6.08 1.0906e-7 | 3.99 | 1.2189e-10 | 5.99

48 | 9.7635e-5 | 1.99 | 6 | 24.82 | 14 23.23 6.8247e-9 | 4.00 | 1.9062e-12 | 6.00

96 | 2.4494e-5 | 1.99 | 6 | 98.93 | 14 91.31 4.2677e-10 | 4.00 | 3.2196e-14 | 5.89

Using (5.3) and (5.4) along with (5.1), it is obtained that
(uh — Pru,v) — (K\Il(uh) — KU (Pru),v) = (KU(Pyu) — KU(u),v),
for all v € ™,

which can be further reduced to
(5.5)
(u" — Pyu,v) — (KY) (¢)(u" — Pyu),v) = (KU(Pyu) — K¥(u),v),
for all v € S”,

where ¢ = u" + (1 — §) P,u for some 6 € (0,1). Standing conditions
4-6 described in Section 2 guarantee that (K'¥)'(£) is a compact linear
operator. Since P, — I pointwise as h — 0, a standard argument
shows that (I — P,(K¥)'(£))~! exists for sufficiently small h. Using
the strong form of (5.5) and its rearrangement of terms, we see with
&1 =60Ppu+ (1 — 0)u that
(5.6)
u — Pou = (I = Py(K9) (€)™ [Pa(K ) (&) (Pau — u)]
= (I~ KV'(§)) 'KV (&)(Phu — u)

(I~ KW(6)) (I — PKY(€)(u— Pr)

— (I = PuKW'(€2) 7 (I = Po) KW' (&) (1 — K'¥'(&1)) ™

X PhK\I/I(fl)(Ph’U, — u)

Conditions 4-6 once again guarantee that K¥’(£;) is a compact linear
operator, and we assume that it is in the form

KV(€)u(t) = [ 1t 5)uls) ds,

I
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with k* € C"2(I x I). Since, for each t € I,
/ Pu(s)k* (¢, ) (Pru — u)(s) ds = 0,
I

we obtain

KU (&) (Pou—u) = Z / k*(t,s)(Pau — u)(s) ds

=0

2

-1

3 / (I = Pu(s))k" (¢, ) (Pou — u)(s) ds

1=
O(h" ) |Jullr-41,00-

o

Hence,
(5.7) (I = K¥'(€)) 'K (&1)(Pau — u)llo,g = O(h" ) [[ul 41,4,

where ¢ = 2,00. For the second and third terms in (5.6), we proceed
as follows:

(58) (I = K¥'(&))7(I = Po) KW' (€1)(u — Pau)llog
< O = P) K (&1)(u = Puw)lo,q
< Chlk*(t, 8)ll1,qllu — Puullog < CR™[ullri1,9

and

(5.9) [|(I=PaK¥' (&))" (I — Py) KW' (&) (I-K¥' (&))"
X PoEKY'(61)(Prhu — u)llo,q
< Ch||(I = K¥' (&))" PuK V' (€1)(Prhu — u)
< Ch||Pru—ulloq
< CRP2|[ullrg1,q-

|0,q

When (5.7), (5.8) and (5.9) are combined with (5.6), we obtain

(5.10) lu” = Prullog = O (A7) [[uflr+1,00-
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In order to utilize (5.10) and obtain a global superconvergence of
the Galerkin method by interpolation, it is necessary to define an
interpolation operator I;’h+ ! as follows. In relation to the mesh 7",

1 .
I ule,uesyy € Pry1, 1=0,2,...,N =2,

such that

/ I;,fluds:/ uds, / I;’hﬂuds:/ uds
€; €; €it+1 €it+1

i i

and
/ vI;;[lu ds = / vuds, forallv € P.(e; Ue;yr).
e;Ue;t1 e;Ueit1

Using
Iy Py = Iy,
155 vllog < Cllvflo,g, for all v e S*,
ngijlv —v[o,g < Chr+2||v||r+2,q:

with ¢ = 2,00. The global superconvergence of the Galerkin method
by interpolation for the Hammerstein equation is now attained from

115w = ullog < 115, w — I3 Puullo.g + 115 Paw — ullo
< Cllu" = Puullo,g + 115w — ullo.q
= O(R" ) (|[tllr41,00 + [[ttllr42,q)-

Numerical Example 5.1. Consider the equation

1
u(t) — /0 stu?(s)ds = f(t), te[0,1]
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TABLE 7. The computational results of Example 5.1 by using Galerkin and

interpolation techniques.

N Galerkin Newton quasi-Newton | Interpolation

eh R, |NI| CT [NI| CT e, R,
2 | 1.6482e-2 5 0.11 7 0.06 2.1565e-3

4.1484e-3 [ 1.99 | 5 0.26 7 0.17 1.8942¢-4 | 3.51
8 | 1.0398e-3 | 2.00 | 5 1.03 7 0.69 2.0170e-5 | 3.23
16 | 2.6013e-4 | 2.00 | 5 3.98 7 2.62 2.3970e-6 | 3.07
32 | 6.5044e-5 | 2.00 | 5 | 15.57 | 7 10.30 2.9560e-7 | 3.02
64 | 1.6262e-5 [ 2.00| 5 | 61.70 | 7 40.95 3.6823e-8 | 3.00
128 | 4.0655e-6 | 2.00 | 8 | 396.36 | 7 164.33 | 4.5988e-9 | 3.00

where f(t) is chosen so that the exact solution is u(t) = exp (¢). The
results are presented in Table 7. Notice that we defined

e/
= lu- oz —tog, )

_ _ ey,
én=lu—-Iyu o R'h=log, <— >

We point out a much shorter computational time with a quasi-Newton
algorithm for the Galerkin method compared with the collocation
methods in earlier sections.

6. Extrapolation of iterated Galerkin solutions for the Ham-
merstein equation. In this final section, we explore the extrapolation
technique developed in Section 3 for the iterated collocation method for
Hammerstein equations and extend it to further accelerate the rate of
convergence of the iterated Galerkin method. The results reported in
this section appear new even for linear Fredholm equations. The iter-
ated Galerkin solution, ﬂ;’t, is obtained by

(6.1) uy = f+ K¥(u"),
where u” is the solution of the Galerkin method (see (5.2)),

u" — PLKU(u") = P,f, u" e S,
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and P, is the orthogonal projection of L?(I) onto S". From (6.1),
(6.2) Pyl = Pof + PoKU(u").
From (6.2) and (5.2), we see that
(6.3) Pyl = uh.
It is shown in [4] that if f € C*"*2(I) and k € C?"*2(I), then
lu = i lo2 = O (A7)

In order to successfully complete the current extrapolation method, it
is necessary to establish an asymptotic error expansion for the iterated
Galerkin solution which is analogous to Theorem 3.1. A proof can
be made similar to the proof of Theorem 3.1 but the interpolation
projection ; must be replaced by the orthogonal projection Fj,.

Theorem 6.1. Assume that k € C?"*4([0,1] x [0,1]) and the
solution u of (2.1) satisfies u € C*14[0,1]. Also assume that 1 is
not an eigenvalue of the linear operator (K¥)'(u). Then there ezists a
be C([0,1] x [0,1]), independent of the partition, such that

N

u(t) —ahy(t) =y hir“/ b(t,s)ds +O(R* ), te|0,1).
k=1 €k

Theorem 6.1 is based upon the following lemma.

Lemma 6.2. Assume that X,z € C"4[-1,1], and let P, be the
orthogonal projection of L?[—1,1] onto Sy,. Then there exists a constant
Cr4+1r+1, independent of X and z, such that

1 1
/ X(z — Prz)ds = Cri1ri1 / D txD™ 2 ds
1 1

+0(1) Y [DX]o2llD*llo0,2-
itj>2r 44
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Proof. Expand X and z in the Maclaurin series to get

r+3
X(s) = > DX(0)¢; +0 (D),
=0
r+3 1 )
z(s) = Z HDZZ(O)gb,- +0 (DT+4z)
i=0
where ¢;(s) = s/. Since Py: L*[—1,1] — S", Py¢; = ¢; for 0 < j <r,
and thus
r+3 1 )
2— Ppz= Z i—!D’Z(O)(@ — Pygi) + O (D"H2).
i=r+1

Also noting that

1
/ o(s)(z — Ppz)(s)ds =0, forall p € S",
~1

(6.4) / X()(z = Paz)(s) ds

-1

r+3 r+3 1 ' ' 1
=> > FDJX(O)Dzz(O)/ 65(5) (65 — Paoss)(s) ds
jertlizry1 “1
r+3 '
+O(1)<||DT+4Z”0’2 Z ||DJX|012
j=r+1
r+3 '
+ ID"X][o.2 Z ||D7z||072>
j=r+1
r+3 r+3 ' '
- Z Z ¢;;D?x(0)D"z(0)
j=r+li=r+1
r+3 )
+0@ (1Dl Y- 1Dzl
j=r+1

r+3
D Y ||Dﬂz||o,z),
j=r+1



ACCELERATION TECHNIQUES 591

where ¢;; = 1/(i!5!) f_ll ¢ (s)(¢s — Pnos)(s) ds. Note that, in the first
term of the last expression, ¢,41,+2 = 42,41 = 0. To see this,
note that, if » + 1 is odd, then ¢,+1 — Pnr¢r41 is also odd, since, with
(u,v) = f_ll wv ds,

Prory1 = ;bi% where bi = %’

and thus b; = 0 whenever i is even for in this case ¢, 1¢; becomes an
odd function. Hence, P,¢,41 is odd, and thus ¢,11 — Pr¢r41 is also
odd. Under the assumption that r» + 1 is odd, ¢,12 an even function
which in turn makes ¢, 2(dr1 — Prdri1) odd, provides the result that
Cri1r+2 = 0. ¢ri2rp1 = 0 is similar. Returning to (6.4),

/ X(8)(2 = Paz)(s) ds = 2¢r11 »12 D" 1X(0)D"+12(0)

-1
+ Cr41 ,,-+3DT+3X(0)DT+IZ(0)
+Cri3 T+1DT+1X(0)DT+3Z(0)
r+3
+0)(ID" 2llo2 > 1D7xllo,
j=r+1
r+3
+ 1D X0z Y 1Dz ]o.2)
j=r+1

1
= Cr41r+1 / DT+1XDT+1Z ds
1

+0(1) > IDXloz2]| D7z
itj>2r+4

|0,27

where the second order Maclaurin expansion was used in the last step. O

Proof of Theorem 6.1. Arguing exactly the same way between
(3.4) and (3.7) with the interpolation projection ij replaced by the
orthogonal projection P, we obtain

(6.5) u—1ap =" — (I — GpPy) " Gy(I — Pp)o"
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where )
Gru(s) E/ g(t, s, Pyu(s), Phal(s), 0)u(s) ds,
0
where g is defined in Section 2,
w' = KU (u) — KV (Pyu)

and
" = (I - Gp) 'w" = (I — GL) 'K [¥(u) — ¥ (Phu)).

Let L = (I — Gy)7'K so that L is an integral operator with a kernel
*(s,t) with the same smoothness properties as k(s,t). Then

V" (t) = L[¥(u) — ¥(Pyu)] = /0 1" (s, )[4 (s, u(s)) — ¥(s, Pau(s))] ds.

Using the mean value theorem as was done before in the proof of
Theorem 3.1, we obtain

v (t) = Z : I(s,t)(u — Pru)(s) ds

where I(s,t) = 1*(s,t)(0¢/0u)(s, (u+ 0Pyu)(s)).

By applying Lemma 6.2 to each subinterval Ej, and noting that the
change of scale introduces a factor (hy/2)? for the jth derivative, we
obtain

N h 2r+42
Uh(t) = Z (_k> Cr4+1r+1 /E D.:Jrll (Sa t) DT+1U(5) ds
k

k=1 2
+0 (A7) Jlully o »

(6.6)

where D, denotes the partial derivative with respect to s. The result
may be rewritten as

N

(6.7) oh(t) = Z hzrﬂ/ b(s,t)ds+ O (K*%),

k=1 B,

where
b(s,t) = 2=+ DAY (5 4) D™ u(s).



ACCELERATION TECHNIQUES 593

We already know that ||v"||g 2 = O(h?"+2). Also,

||(I — GhPh)ilGh(I — Ph)’l}h||072 < CHGh(I — Ph)vh
(6.8) < Ol[(I = Pr)v™lo,z
S Oh2||vh||2,2 -0 (h2r+4) .

lo,2

For (6.8), see the argument used in (3.10). Equations (6.5), (6.7) and
(6.8) give the desired result. o

Theorem 6.1 engenders an extrapolation of the iterated Galerkin
method for the Hammerstein equation. A process is the same with the
extrapolation of the iterated collocation method, namely, we use the
classical Richardson extrapolation technique. Let T"/2 be a partition
of I

0:t0<t1/2 <t <tgpe < <tn-1/2 <ty =1,
where

te_ t
tk—1/2:7k 12+  k=1,...,N.

Let u"/? and ﬂ?t/ ? denote the Galerkin and iterated Galerkin approxi-
mations for the Hammerstein equation with respect to this new parti-
tion. Theorem 6.1 yields

N
ult) - a2 (t) = 274 3 p2re / b(t, s)ds + O (K1) |
k=1 €k

An extrapolation gives a new approximation

—h/2
220 22 +2al/” —al (1)
Uit 22r+2 _ 1

It is straightforward that

u(t) — a2 (t) = 0 (K1) .

Numerical Example 6.1. Consider the equation

1
u(t) — /0 stu®(s)ds = f(t), te€l0,1],
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TABLE 8. The computational results of Example 6.1 using Galerkin and post-

processing techniques.

N Galerkin Newton quasi-Newton Post-Processing
e, R, [NI| cT |NI| cT A R, B R
2 1.6482e-2 5 0.11 7 0.06 1.6450e-3
4.1484e-3 | 1.99 | 5 0.26 7 0.17 1.0573e-4 | 3.96 | 5.3988e-6
8 | 1.0398e-3 | 2.00 | 5 1.03 7 0.69 6.6550e-6 | 3.99 | 8.6269e-8 | 5.96
16 | 2.6013e-4 | 2.00 | 5 3.98 7 2.62 4.1667e-7 | 4.00 | 1.3552e-9 | 5.99
32 | 6.5044e-5 | 2.00 | 5 | 15.57 | 7 10.30 2.6053e-8 | 4.00 | 2.1203e-11 | 6.00
64 | 1.6262e-5|2.00| 5 | 61.70 | 7 40.95 1.6285e-9 | 4.00 | 3.3129¢-13 | 6.00
128 | 4.0655e-6 | 2.00 | 8 | 396.36 | 7 164.33 | 1.0179e-10 | 4.00 | 7.9936e-15 | 5.37

where f(t) is chosen so that the exact solution is u(t) = exp(t). The
results are presented in Table 8. Notice that we defined

~I

~ ] fay e

&l = llu— @lo.e, R = log, <€,—">
h/2

~1

=~/ —h/2 =/ €

ep = llu— uit/ llo, and R, =log, </_\/h >
€h/2

As was the case with Example 5.1, we note that the quasi-Newton
method results in less than half of the computing time than that of
Newton’s method.
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